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Separatrix skeleton and limit cycles
in some 1-parameter families of planar vector fields

M. Caubergh∗

Abstract— We consider polynomial vector fields Xk
m of degree 4k+1 given by ẋ = y3−x2k+1, ẏ = −x+my4k+1, x, y ∈ R,

where m ∈ R is a parameter. For any k ≥ 1 we analyze the bifurcation of the separatrix skeleton of (Xk
m)m>0 analytically.

For k = 1 the bifurcation diagram of global phase portraits is deduced. Related to it, we address Hilbert’s 16th Problem and the
nilpotent Center-Focus Problem, restricting both problems to this 1-parameter family. This contribution summarizes the author’s
main results published in Separatrix skeleton for some 1-parameter families of planar vector fields in J Differ Equations 259
(2015). Additionally, we discuss the separatrix bifurcation for a generalization of the 1-parameter family (Xk

m)m>0.

Keywords: planar vector field, separatrix skeleton, limit cycle, Hilbert’s 16th problem, nilpotent center problem.

1 Introduction

We consider the 1-parameter family of planar vector fields

Xk
m ↔ ẋ = y3 − x2k+1, ẏ = −x+my4k+1, (x, y) ∈ R2,

where k ≥ 1 is an arbitrary but fixed integer and m a real
parameter. During a conference on stability for differential
equations held in Florence in 1985, Bacciotti asked for the
stability type of the nilpotent singularity of Xk

m at the origin,
and how its change of stability relates to the appearance of
a polycycle. Shortly after that conference Galeotti and Gori
presented a work in [5] on the stability type of the origin of
Xk

m. More recently, Gasull, García and Giacomini reconsid-
ered that problem using generalized Lyapunov focus quantities
in [6]; furthermore they present a complete and rather technical
study on limit cycles in the case that k = 1. In [2] the author
completes the study of global phase portraits of X1

m, by an
analysis of the separatrix skeleton of Xk

m in function of m, for
all k ≥ 1 (see Sections 2 and 3). Besides, this study is used to
exclude centers for Xk

m and to prove that the Hilbert number
for (Xk

m)m∈R is finite (see Sections 4 and 5). Both Hilbert’s
16th Problem and the Center-Focus Problem are longstanding
challenges from the beginning of the 20th century, and so-far a
complete solution for them is not yet known beyond linear and
quadratic differential equations respectively.

Here we recall the main results from [2] and we provide
as well with outlines for their proofs, counting on a whole
arsenal of local and global machinery from Qualitative Theory
of Differential Equations. Additionally, we discuss some
generalizations to replace Xk

m.

2 Separatrix skeleton for k ≥ 1

2.1 Definitions and main result

Let X be a continuous planar vector field having only isolated
singularities. An orbit Γ of X is called separatrix if it is
homeomorphic to R and for each neighborhood N of Γ there
exists q ∈ N such that α(q) �= α(Γ) or ω(q) �= ω(Γ). The
closure of the union of separatrices is called the separatrix
skeleton of X. In next theorem we present the key result from
[2].

THEOREM 1 ([2]) Xk
m undergoes a unique separatrix bifur-

cation for increasing m > 0, giving subsequently rise to the
following three separatrix skeletons:

In the subsequent subsections we prove the existence of a
unique parameter value m = mC(k) at which Xk

m exhibits
a 2-saddle cycle. For that aim we use a parameter dependent
coordinate transformation that brings the family (Xk

m)m>0 into
a semi-complete family of indefinitely rotated vector fields.
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2.2 Preliminaries

We perform a parameter dependent rescaling of variables and
time to each of the Xk

m, and obtain the following topologically
equivalent vector fields Xk,R

m ,m > 0

Xk,R
m ↔ x̄� = ȳ3 − x̄2k+1, ȳ� = m

1
k+1 (−x̄+ ȳ4k+1).

Let mS(k) ≡ (2k + 1)!!/(4k + 1)!!!!. Then it follows from
the study in [6] that for m �= mS(k) the vector field Xk,R

m

has a nilpotent focus at the origin, which is attracting for
m < mS(k) and repelling for m > mS(k). Besides, for
m > 0 the vector field Xk,R

m has a fixed pair of hyperbolic
saddles at p± = (±1,±1). Clearly the flow of Xk,R

m as well as
Xk

m are invariant with respect to (t, x̄, ȳ) �→ (t,−x̄,−ȳ). As a
consequence, if there is a connection between the saddles p+

and p−, it immediately follows that a 2-saddle cycle exists. In
particular, polycycles necessarily are 2-saddle cycles.

Elementary calculations show that the directional vector field
for Xk,R

m is given by next figure.

y = −1

x = −1

p−
x = y4k+1

y3 = x2k+1

y = 0

x = 0

p0

y = 1

x = 1

p+

In particular in a neighborhood of p± the separatrices at p±
are localized. Moreover it is straightforward that both saddles
p± have one unbounded stable and unstable separatrix inside
{|x| > 1, |y| > 1, xy > 0}.

Denote by Γ+(m) (resp. Γ−(m)) the stable (resp. unstable)
separatrix for Xk,R

m at p+ (resp. p−) having a non-empty
intersection with the cube C ≡ [−1, 1]× [−1, 1].

PROPOSITION 2 Let k ≥ 1,m > 0. Polycycles and limit
cycles of Xk,R

m are contained in the cube C. If both Γ±(m)

are bounded, then Γ+(m) = Γ−(m), and a 2-saddle cycle is
formed for Xk,R

m . If Γ±(m) is unbounded, then Γ∓(m) ⊂ C.

In Section 2.3 we extend the family of vector fields Xk,R
m with

m ∈ (0,∞) in a natural way to m ∈ [0,∞].

Furthermore by Poincaré compactification all these polynomial
vector fields can be extended analytically to a compact D1,
the so-called Poincaré disc; the compactified vector fields are
denoted by X̂k,R

m . From the analysis of the critical points
on the boundary of D1 we obtain the asymptotic behavior
of trajectories that become unbounded, as illustrated in next
figure.

m = 0 m > 0 m = ∞

In particular the behavior near infinity is obtained in a uniform
way (i.e. outside a fixed compact set, which does not change
when m is varied). This is important when replacing the study
of global phase portraits of Xk,R

m by the study of bifurcations
inside (Xk,R

m )m>0. In this way it can control the movement
of the separatrices in the global plane for all m > 0 in
Section 2.4, and rule out limit cycles escaping to infinity (so-
called large amplitude limit cycles) and localize the global
absence problem of limit cycles for large m in Section 5.3.

2.3 At most one separatrix bifurcation

In this section we first recall the definition of a semi-complete
family of rotated vector fields and two principles these families
obey concerning the non-intersection of separatrices and the
splitting of hyperbolic saddle connections. Next we observe
that Xk,R

m is a semi-complete family of indefinitely rotated
vector fields, which thus implies the existence of at most one
parameter value m = mC(k) with a connection between p−
and p+.

DEFINITION 3 Let E ⊂ R2 be connected, I ⊂ R an interval
and f = (f1, f2) : E × I → R2, G : E → R analytic
functions such that G−1(0) does not contain any cycle of
Xλ ↔ ẋ = f(x,λ). Then, (Xλ)λ∈I is said to be a

1. semi-complete family of positively (resp. negatively)
rotated vector fields (mod G = 0) on E if (f1

∂f2
∂λ −

f2
∂f1
∂λ )(x,λ) > 0 (resp. < 0) at all (x,λ) ∈ E × I for

which f(x,λ)G(x) �= 0 and the singularities of Xλ do
not move with λ ∈ I.
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2. semi-complete family of indefinitely rotated vector fields
(mod G = 0), if (Xλ)λ∈I is a semi-complete family
of positively or negatively rotated vector fields on any
connected component C of E \G−1(0).

THEOREM 4 ([8]) Assume that (Xλ)λ∈I is an analytic semi-
complete family of positively rotated vector fields.

1. If S(λ) is a separatrix at a hyperbolic saddle of (Xλ)λ∈I ,
then it follows that S(λ1)∩S(λ2) = ∅ for λ1 �= λ2. Fur-
thermore the tangent line to S(λ) rotates monotonically
in the positive sense as λ increases.

2. Assume that S±(λ) are separatrices at the hyperbolic
saddles p± of (Xλ),λ ∈ I, and that there is a saddle
connection at λ = λ0, i.e. S+(λ0) = S−(λ0). Then, as
λ varies from λ0, the saddle connection splits and if Σ
is a smooth curve transverse to S+(λ0), the separatrices
S+(λ) and S−(λ) move in opposite directions along Σ
as λ increases.

Returning to Xk,R
m ,m > 0, we let Gk : R2 → R be defined by

(1) Gk(x̄, ȳ) = (ȳ3 − x̄2k+1)(ȳ4k+1 − x̄).

Hence, the 0-level set G−1
k (0) determines the 0-isoclines for

Xk,R
m ,m > 0. Then one can easily check that (Xk,R

m )m≥0 is a
semi-complete family of indefinitely rotated vector fields (mod
Gk = 0), that is positively rotated in G−1

k [0,∞) and negatively
rotated in G−1

k (−∞, 0].

2.4 Existence of separatrix bifurcation

We claim the existence of m0 and m∞ for which Γ+(m0) and
Γ−(m∞) are unbounded.

Assuming that our claim is true, it follows by Proposition 2 that
the relative positions of Γ±(m) are opposite in cases m = m0

and m = m∞. Furthermore the continuous dependence on the
parameter then implies the existence of m0 < m < m∞ for
which Xk,R

m has a connection between p+ and p−. This idea
is illustrated in next figure.
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m sufficiently small m = mC(k) m sufficiently large

Recall that by the rotated property this value mC is unique.

To prove our claim we analyze the flow of Xk,R
m for arbitrarily

small m > 0 (resp. large m > 0), relying on the limiting

vector field for m → 0 (resp. m → ∞). The behavior of Xk,R
m

for arbitrarily large m can be obtained by introducing the new
parameter variable η = 1/m, rescaling time, and taking the
limit for η → 0. For η > 0 the vector field Y k,R

η thus obtained
is given by

Y k,R
η ↔ x̄� = η1/(k+1)(ȳ3 − x̄2k+1), ȳ� = −x̄+ ȳ4k+1.

For m > 0 the phase portraits of Xk,R
m and Y k,R

1/m are iden-
tical. Clearly, the families of vector fields Xk,R

m ,m > 0
and Y k,R

η , η > 0 extend analytically to m = 0 and η = 0

respectively. The limiting vector field Xk,R
0 (resp. Y k,R

0 )
exhibits a horizontal (resp. vertical) strip flow with a curve
full of singularities. By continuous dependence on initial
conditions and parameter, Proposition 2 and the monotonicity
principle of separatrix intersections for rotated vector fields,
our claim follows.

2.5 Generalizations

Here we provide with a more abstract setting in which the
bifurcation result from Theorem 1 remains valid under some
genericity condition. Besides we consider a particular case in
which the genericity condition is violated though the bifurca-
tion result still partially holds true. For arbitrary fixed integers
k ≥ l ≥ 1, we consider the analytic family of vector fields

Zk,l
m ↔ ẋ = y2l+1 − f(x), ẏ = m(−x+ g(y)),

for analytic functions f, g : R → R that are strictly increasing,
convex and odd (i.e. f(−x) = −f(x) and g(−x) = −g(x))
with jets j2k+1f0(x) = x2k+1 and j4k+1g0(y) = y4k+1. Then
Zk,l
m has exactly 3 singularities (independent of m): a nilpotent

singularity at the origin and a pair of symmetric singularities
p±. Furthermore each p± has exactly four hyperbolic sectors
as in the case of Xk,R

m , however the singularities are not neces-
sarily elementary neither topological saddles. The hyperbolic
sectors can be alternated by repelling and attracting sectors
(see [4]). In next figure we present (a) the topological saddle
as found for Xk

m and (b) an example of a non-elementary
singularity at p+ = (p+,1, p+,2); both are drawn, in relation
to the isoclines and the lines {x = p+,1} and {y = p+,2}.

(a)Topological saddle (b) a non-elementary singularity

In case that p+ is a topological saddle, Theorem 1 with Xk,R
m

replaced by Zk,l
m is obtained reasoning in the same way.

In case of a non-elementary singularity at p+, then using a
similar technique as in [3], there still can be found a connected
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set M ⊂ R of parameters with a connection between p− and
p+. However, in that case, the maximal connected invariant set
containing p+ can change when varying m in M. For instance,
let us assume that p+ is of the topological type sketched in
(b) for all m > 0. Then for 0 < m < min(M) (resp.
m > max(M)), there is a unique separatrix skeleton, that is as
the one for Xk

m with 0 < m < mC(k) (resp. m > mC(k)), but
with the attracting (resp. repelling) separatrix replaced by an
attracting (resp. repelling) sector; in between, i.e. for m ∈ M,
there are 7 possible separatrix skeletons as illustrated below.

0 < m < min(M) m ∈ M m ∈ M

m ∈ M m ∈ M m ∈ M

m ∈ M m ∈ M m > max(M)

3 Bifurcation of phase portraits for k = 1

To determine the phase portraits of Xk
m, we rely on the Theo-

rem of Markus, Neumann and Peixoto. It says that continuous
planar vector fields with only isolated singularities topolog-
ically are uniquely determined by their so-called completed
separatrix skeleton whose definition is given below.

A limit cycle is a periodic orbit γ that is isolated in the
Hausdorff sense. Then, according to the definition given in
Section 2.1 a limit cycle is not a separatrix and it is not included
in the separatrix skeleton. Furthermore, topological sinks and
sources are considered as degenerate limit cycles and therefore
not included in the separatrix skeleton.

The union of the separatrix skeleton, limit cycles and topolog-
ical sinks and sources of X is called the extended separatrix
skeleton of X. Maximal connected components in the comple-
ment of the extended separatrix skeleton are called canonical
regions of X . Such a canonical region is found to be parallel,
i.e. given either by a strip, an annular or spiral flow (see [4]).
The union of the extended separatrix skeleton together with one

orbit from each of the canonical regions is called the completed
separatrix skeleton.

As a corollary of Theorem 1, Bendixson-Dulac Theorem,
Poincaré-Bendixson Theorem and the hyperbolicity of the 2-
saddle cycle, one can rule out limit cycles or prove their exis-
tence (see also Section 5), and hence the bifurcation diagram
of global phase portraits can be completed.

THEOREM 5 ([6, 2]) The bifurcation diagram of the 1-
parameter family (X1

m)m>0 is as follows:

0 < m < mC(1) m = mC(1)
no limit cycles nor polycycles hyperbolic 2-saddle cycle

mC(1) < m < 3/5 m ≥ 3/5
1 limit cycle, no polycycles no limit cycles nor polycycles

4 Nilpotent Center-Focus Problem

A singularity is called a center if it has a punctured neighbor-
hood full of non-isolated periodic orbits. The Center-Focus
Problem aims at deciding whether a singularity is a center or a
focus. Classically this problem deals with singularities being a
center for the linearization of a polynomial or an analytic vector
field (i.e. having purely imaginary eigenvalues), and is referred
to as the Center Problem of Poincaré. A well-known classical
result says that the analytic linear type center is proved to be a
topological center if an analytic first integral exists.

Furthermore it is known that the Center-Focus Problem is
algebraically solvable, also in the nilpotent case, by calculating
(generalized) Lyapunov quantities (see [1]). However the
expressions in the calculations often become too involved when
the singularity changes stability, that in practice it is not at all
an easy task to distinguish between a center or a focus.

Here, we decide between center and focus in a geometric-
analytic way, relating it to the separatrix skeleton. Indeed,
suppose that m = mS(k) and that the origin is a center for Xk

m.
Then it follows that m = mC(k) and a stability analysis shows
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that for this parameter value the 2-saddle cycle is hyperbolic.
This contradiction leads to the following result.

THEOREM 6 ([2]) Let k ≥ 1 and m = mS(k). The nilpotent
singularity of Xk

mS(k) at the origin is a focus and not a center.

The stability of the origin for m = mS(k) and the bifurcation
of small amplitude limit cycles for m → mS(k) for k ≥ 2 is a
work in progress in collaboration with Ilker Çolak.

5 Hilbert 16th Problem for (Xk
m)m∈R

Hilbert’s 16th Problem asks, if it exists, for an upper bound
for the number of limit cycles of a planar polynomial vector
field ẋ = Pn(x, y), ẏ = Qn(x, y), only depending on the
degree n of the polynomials Pn, Qn. This problem is very vivid
among specialists and a complete answer to it is not yet known.
Dulac’s problem, which concerns the finiteness of the number
of limit cycles for individual analytic vector fields, is solved
independently by Ilyashenko and Ecalle. Next result deals with
the finiteness part of Hilbert’s 16th Problem for (Xk

m)m∈R; i.e.
the existence of a uniform upper bound for the number of limit
cycles of Xk

m,m ∈ R, only depending on k.

THEOREM 7 ([2]) For all k ≥ 1 there exists a finite number
H(k) that bounds the number of limit cycles of Xk

m for all
m ∈ R. Any such upper bound, H(k), is at least one.

In the rest of this section we sketch the proof of Theorem 7.

5.1 Roussarie compactification-localization method

In this section we indicate how Hilbert’s 16th Problem for
(Xk

m)k∈R is reduced to so-called cyclicity problems, which are
bifurcation problems of limit cycles, inside a compact family.

From [9] there exists the following equivalence between the
global and local bounds for limit cycles, working with a
compact analytic family of planar vector fields (Xλ)λ: the
number of limit cycles of Xλ in D is bounded uniformly with
respect to λ ∈ P if and only if for every limit periodic set
of (Xλ)λ there are only finitely many limit cycles bifurcating
from Γ.

By a compact family of planar vector fields (Xλ)λ we mean
a family of vector fields that are defined on a compact metric
space D, and that depend on a parameter λ, also belonging to
a compact metric space P. A compact set Γ is called a limit
periodic set of Xλ for λ → λ0 if and only if there exists a
sequence (λn)n≥1 with λn → λ0 for n → ∞ such that for all
n ≥ 1 there exists a limit cycle γn of Xλn with γn → Γ when
n → ∞ (in the Hausdorff sense). There exists an analogue
of the Poincaré-Bendixson Theorem determining the structure
of limit periodic sets, in case that the analytic family (Xλ)λ
has only a finite number of singularities. In that case, a limit

periodic set is either a singular point, a periodic orbit or a
graphic of Xλ0

. A proof of this structure theorem can be found
in [9].

THEOREM 8 ([2]) Let k ≥ 1. There exist 0 < m0(k) <
m∞(k) < ∞ such that Xk

m does not have limit cycles
nor polycycles for m < m0(k) nor for m > m∞(k).
Furthermore, in these cases the global phase portrait of
Xk

m is uniquely determined up to topological equivalence:

0 < m < m0(k) m > m∞(k)

For m ≤ 0 it is found by means of a convenient Lyapunov
function that the origin is a global attractor for Xk

m and hence
Xk

m does not have any limit cycles. For small m > 0,
in Subsection 5.2, we apply a generalization of Bendixson-
Dulac Theorem to rule out limit cycles. For large m, in Sub-
section 5.3, we use a Roussarie compactification-localization
procedure to localize the problem of global absence of limit
cycles.

Hence by this theorem the global finiteness problem for
(Xk

m),m ∈ R is reduced to the one on a compact parameter
interval, m ∈ [m0(k),m∞(k)]. By a Poincaré compactifica-
tion of Xk

m, in Subsection 5.4, the global finiteness question
of limit cycles of Xk

m for m0(k) ≤ m ≤ m∞(k) can thus be
approached by local finiteness problems of limit cycles.

5.2 Proof of Theorem 8 for m < m0(k)

For each m small enough we apply an interesting generaliza-
tion of the Bendixson-Dulac Theorem that we recall from [6].

THEOREM 9 ([6]) Let X : U → R2 be a C1 vector field
on an open subset U ⊂ R2 such that the boundary of U is
formed by a finite union of algebraic curves. Assume that
V is a rational function and λ ∈ R,λ > 0 such that M =
�X,∇V �−λV divX does not change sign on U and it vanishes
only along a finite union of points and curves that are not
invariant by the flow of X. (1) If all connected components
of U \ {V = 0} are simply connected, then X has neither
limit cycles nor polycycles entirely in U . (2) If all connected
components of U \{V = 0} are simply connected, except one,
say Ũ , that is 1-connected, then X has at most one limit cycle
or polycycle in U , that cannot coexist. Furthermore, if a limit
cycle γ exists, then it is hyperbolic and γ ⊂ Ũ ; the stability of
γ is given by the sign of VM on Ũ .
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Returning to Xk,R
m , define Vm(x, y) = 2m1/(k+1)x2 + y4 and

M(x, y,m) = �Xk,R
m (x, y),∇Vm(x, y)�

− 2

2k + 1
Vm(x, y)divXk,R

m (x, y).

For m small enough it is found that M(x, y,m) ≥ 0. Be-
sides, the origin is the only maximal invariant set contained
in M(x, y,m) = 0. Then by Theorem 9(2) there exists at most
one limit cycle or polycycle, and both cannot coexist. Then,
by Poincaré-Bendixson Theorem and a stability analysis of the
origin and the polycycle, limit cycles as well as polycycles are
ruled out for m small enough.

5.3 Proof of Theorem 8 for m > m∞(k)

The Roussarie localization method can evenly be used to obtain
the global absence of limit cycles uniformly from local absence
results (see [2]). For a limit periodic set Γ of (Xλ) for λ → λ0,
we say that no limit cycles bifurcate from Γ if and only if there
exists a neighborhood VΓ of Γ in the Hausdorff sense and there
exists a neighborhood WΓ ⊂ Rp of λ0 such that for all λ ∈ WΓ

the vector field Xλ does not have any limit cycles in VΓ.

For m > 0 the vector field Xk
m is topologically equivalent to

Y k,S
η ↔ ẋ = y3 − ηx2k+1, ẏ = −x+ y4k+1, where mη = 1.

Obviously, (Y k,S
η )0<η≤η0

can analytically be extended to a
compact analytic family (Ŷ k,S

η )0≤η≤η0
on the Poincaré disc.

Using the Lyapunov function V (x, y) = 2x2 + y4 it is seen
that the origin of Ŷ k,S

0 exhibits a global repeller:

Therefore the only candidate limit periodic set of Ŷη for η ↓ 0
is the nilpotent focus at the origin. Then, clearly there are no
large nor medium amplitude limit cycles for η ↓ 0. This means
that for every open ball B0 centered at the origin of R2, there
exists η0 > 0 such that for 0 ≤ η ≤ η0 there are no limit cycles
of Ŷ k,S

η outside B0.

Considering the Poincaré map of first return using coordinates
near the origin from a quasi-homogenous blow up, one shows
that neither there are small amplitude limit cycles for η ↓ 0.
This means that there exists an open ball B0 centered at the
origin of R2 and there exists η1 > 0 such that for 0 ≤ η < η1
there are no limit cycles of Ŷ k,S

η starting in B0.

5.4 Global finiteness for Xk
m,m ∈ [m0,m∞]

As explained in Section 5.1 we reduce the global finiteness
problem of limit cycles to local cyclicity problems. For a
given m∗(k) > 0 limit periodic sets for the family (X̂k,R

m )m>0

for m = m∗(k) can be (0, 0), a periodic orbit or a 2-saddle
cycle (in the latter case m∗(k) = mC(k)). The bifurcation
problem of limit cycles from (0, 0) or a periodic orbit of Xk,R

m

is reduced to the bifurcation problem of fixed points of the
analytic family of Poincaré first return maps. Therefore it is
immediately seen that the number of limit cycles bifurcating
from (0, 0) or a periodic orbit is finite. From [7] it follows that
the number of limit cycles bifurcating from the hyperbolic 2-
saddle cycle Γ inside (Xk,R

m )m>0 for m near mC(k) also is
finite. It is to say, there exist an integer N(k,Γ), positive con-
stants mk

1 ,m
k
2 such that mC(k) ∈ (mk

1 ,m
k
2) and a neighbor-

hood V of Γ in the Hausdorff sense such that Xk
m has at most

N(k,Γ) limit cycles in V for all m ∈ (mk
1 ,m

k
2). Therefore

all limit periodic sets generate at most a finite number of limit
cycles in the family (X̂k,R

m )mk
0≤m≤mk

∞
. As a consequence, the

Roussarie compactification-localization method guarantees the
existence of a uniform upper bound H(k) < ∞.

5.5 Lower bound for the Hilbert number
In fact, for k = 1, Theorem 7 follows from Theorem 5 with
optimal upper bound H(1) = 1. For general k ≥ 2 it is seen
that when m passes through mS(k) a Hopf-like bifurcation
takes place. Then the focus at the origin changes its stability
and at least one limit cycle is created for some values m near
mS(k).
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