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The results in this paper show that the cubic vector fields ẋ = −y + M(x, y) − y(x2 + y2),
ẏ = x + N(x, y) + x(x2 + y2), where M,N are quadratic homogeneous polynomials, having
simultaneously a center at the origin and at infinity, have at least 61 and at most 68 topologically
different phase portraits. To this end, the reversible subfamily defined by M(x, y) = −γxy,
N(x, y) = (γ − λ)x2 + α2λy2 with α, γ ∈ R and λ �= 0, is studied in detail and it is shown to
have at least 48 and at most 55 topologically different phase portraits. In particular, there are
exactly five for γλ < 0 and at least 46 for γλ > 0. Furthermore, the global bifurcation diagram
is analyzed.

Keywords : Reversible planar vector field; cubic vector field; global classification of phase
portraits; bifurcation diagram.

1. Introduction

This paper completes the topological classification
of the global phase portraits on the Poincaré disc
of the six-parameter family of cubic differential
equations

ẋ = −y + ax2 + bxy + cy2 − y(x2 + y2),

ẏ = x+ ex2 + fxy + gy2 + x(x2 + y2),
(1)

that have simultaneously a center in the origin and
at infinity for a, b, c, e, f, g ∈ R. This study was
started in [Caubergh et al., 2011, 2012].

Recently related analysis are done in [Artés
et al., 2006, 2010; Artés et al., 2013; Cao & Jiang,
2008; Li & Wang, 2011; Oliveira & Rezende, 2013].
In particular, in [Oliveira & Rezende, 2013], the
so-called SIS-model is considered, that is used in
the study of infectious diseases. The papers [Artés
et al., 2006, 2010; Artés et al., 2013; Cao & Jiang,
2008; Oliveira & Rezende, 2013] contribute to the

classification of planar quadratic differential sys-
tems; due to the six-dimensional parameter and the
richness of phase portraits, its bifurcation diagram
is also studied for intrinsic subclasses reducing its
dimension, and similarly these sub-bifurcation dia-
grams are then analyzed by slicing and imbedding
in projective planes. Furthermore, another general-
ization can be found in [Li & Wang, 2011], where
a global topological classification is studied for a
one-parameter cubic Hamiltonian planar differen-
tial system in which a finite center is linked to sin-
gularities at infinity.

In [Blows & Rousseau, 1993] the differential
systems (1) are characterized by a Hamiltonian
class and a reversible class, that is symmetric
with respective to straight lines. In [Caubergh
et al., 2011, 2012] respectively the classification is
obtained for the full Hamiltonian class and part of
the reversible class, i.e. the ones having infinitely
many singularities or all singularities on the line of
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