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GLOBAL PHASE PORTRAITS OF SOME REVERSIBLE CUBIC

CENTERS WITH NONCOLLINEAR SINGULARITIES

M. CAUBERGH AND J. TORREGROSA

Abstract. The results in this paper show that the cubic vector fields ẋ = −y +
M(x, y) − y(x2 + y2), ẏ = x + N(x, y) + x(x2 + y2), where M,N are quadratic ho-
mogeneous polynomials, having simultaneously a center at the origin and at infinity,
have at least 61 and at most 68 topologically different phase portraits. To this end the
reversible subfamily defined by M(x, y) = −γxy, N(x, y) = (γ − λ)x2 + α2λy2 with
α, γ ∈ R and λ 6= 0, is studied in detail and it is shown to have at least 48 and at most
55 topologically different phase portraits. In particular, there are exactly 5 for γλ < 0
and at least 46 for γλ > 0. Furthermore, the global bifurcation diagram is analyzed.

1. Introduction

This paper finishes the topological classification of the global phase portraits on the
Poincaré disc of the 6-parameter family of cubic differential equations

ẋ = −y + ax2 + bxy + cy2 − y(x2 + y2),

ẏ = x+ ex2 + fxy + gy2 + x(x2 + y2),
(1)

that have simultaneously a center in the origin and at infinity for a, b, c, e, f, g ∈ R. This
study is started in [8, 9].
Recently related analysis are done in [3, 4, 5, 7, 11, 12]. In particular, in [12], the

so-called SIS-model is considered, that is used in the study of infectious diseases. The
papers [3, 4, 5, 7, 12] contribute to the classification of planar quadratic differential
systems; due to the 6-dimensional parameter and the richness of phase portraits, its
bifurcation diagram also is studied for intrinsic subclasses reducing its dimension, and
similarly these sub-bifurcation diagrams then are analyzed by slicing and imbedding in
projective planes. Furthermore another generalization can be found in [11], where a
global topological classification is studied for a 1-parameter cubic Hamiltonian planar
differential system in which a finite center is linked to singularities at infinity.
In [6] the differential systems (1) are characterized by a Hamiltonian class and a

reversible class, that is symmetric with respective to straight lines. In [8] and [9] re-
spectively the classification is obtained for the full Hamiltonian class and part of the
reversible class, i.e the ones having infinitely many singularities or all singularities on
the line of symmetry. The classification of the remaining vector fields of (1) is subject
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of this paper. These can be represented by the 3-parameter family Y(α,γ,λ) given by

ẋ = −y − γxy − y(x2 + y2),

ẏ = x+ (γ − λ)x2 + α2λy2 + x(x2 + y2),
(2)

where α, γ, λ ∈ R and λ 6= 0. These vector fields are reversible because they are invariant
with respect to the transformation (x, y, t, α, γ, λ) 7→ (x,−y,−t, α, γ, λ) and hence their
phase portraits are symmetric with respect to the horizontal axis when reversing time.
It is found in Section 2 that the analysis can be restricted to the semi-algebraic set

P = {(α, γ, λ) ∈ R
3 : α > 0, γ > 0, λ 6= 0}. (3)

The systematic classification here obtained for (2) with respect to the number of
singularities is summarized in the following theorem. Recall that isolated periodic orbits
are so-called limit cycles.

Theorem 1. The subfamily of cubic reversible vector fields Y(α,γ,λ), given in (2) with
α, γ, λ ∈ R and λ 6= 0, has at most 55 topologically different global phase portraits
of which at least 48 are realized, and that are drawn in Figures 1, 15, 16, 17, 20,
21, 22, 24, 25 and 28. More precisely, if the lower bound resp. upper bound for the
number of topologically different phase portraits having i singularities is denoted by Li

resp. Ui, i ∈ N, then
∑7

i=1 Li = 48 and
∑7

i=1 Ui = 55, where L = (1, 1, 4, 3, 10, 8, 21)
and U = (1, 1, 4, 6, 13, 9, 21). In particular, the number n of singularities is finite with
n ∈ {1, 2, . . . , 7} and there are no limit cycles.

Notice that the figures mentioned in previous theorem only show the phase portraits
that constitute the lower bound. Furthermore these phase portraits are grouped first
according to the number of singularities and second according to local bifurcation re-
gions. Moreover the specific order and composition of the phase portraits respects the
subsequent global bifurcation phenomena that happen between adjacent phase portraits
and is detailed for each case in the corresponding section. This also is the reason why
some topologically equivalent phase portraits appear.
Adding results from [9] to Theorem 1 to deal with the case λ = 0 leads to the

classification of the full 3-parameter family Y(α,γ,λ), by adding one more phase portrait
that has infinitely many singularities.

Corollary 2. The cubic reversible vector fields Y(α,γ,λ), given in (2) with α, γ, λ ∈ R, has
at most 56 topologically different global phase portraits of which at least 49 are realized.
In particular, the number n of singularities is finite if and only if λ 6= 0 or λ = 0, γ ≤ 2.
Furthermore, none of these phase portraits has limit cycles.

Denote by F the quotient space of all phase portraits of (1) with respect to topological
equivalence. Consider the subsets FH ⊂ F and FR ⊂ F that correspond to the phase
portraits of the Hamiltonian and reversible class of (1) respectively. Write |S| to denote
the cardinal number of S, and hence corresponding to the topologically different phase
portraits. Then, combining Theorem 1 and the results from [8, 9] leads to the following
classification for the full family (1).

Corollary 3. The 6-parameter family (1) having simultaneously a center at the origin
and at infinity induces 61 ≤ |F| ≤ 68 topologically different phase portraits. In par-
ticular, |FH| = 22, 53 ≤ |FR| ≤ 60 and |FH ∩ FR| = 14. Furthermore, none of these
phase portraits present limit cycles and phase portraits in S have maximally nPA(S)



REVERSIBLE CUBIC CENTERS 3

disjoint period annuli, where nPA(F) = nPA(FH) = 7, nPA(FR) = nPA(FH ∩ FR) = 6
and nPA(FR \ FH) = 4.

In studying the topologically different global phase portraits a great role is played
by the bifurcation diagram of the global phase portraits in terms of the parameter
(α, γ, λ) ∈ P. To simplify the reading we use, whenever no confusion is possible, the
notation ζ = (α, γ, λ).
Throughout this paper we shortly speak of the local (resp. global) bifurcation diagram

referring to the bifurcation diagram of the local (resp. global) phase portraits with
respect to topological equivalence in terms of the parameter ζ. In this, local means near
the singularities. As such local (resp. global) bifurcation surfaces and curves are the
bifurcation surfaces and curves dealing with local (resp. global) bifurcation phenomena.
First, in Section 3, we study the local bifurcation diagram. Next the global bifurcation
diagram is obtained by adding global bifurcation surfaces to it, that are determined by
crossing of separatrices. In the transition from λ < 0 to λ > 0 the global center of the
harmonic oscillator is disturbed by a circle of singularities at 1+γx+x2+y2 = 0 (see [9]
and Proposition 29). Due to their different nature, the cases λ < 0 and λ > 0 are treated
separately. To study this 3-dimensional bifurcation diagram systematically we consider
slices of P for fixed λ, that we denote by Pλ = {ζ : α, γ > 0}. Then characteristic slices
of the global bifurcation diagram in Pλ are studied in Sections 6 and 7 for λ < 0 and
λ > 0 respectively.
With increasing λ subsequently more bifurcation surfaces are encountered. Further-

more, opposed to the case λ > 0, in case λ < 0 there are no Hamiltonian phase portraits
and the local bifurcation phenomena determine the global ones. This is illustrated by
the bifurcation diagrams in Figure 2 for λ < 0 and in Figures 7, 32 and 33 for λ > 0.
In Section 3 it is seen that the local bifurcation diagram is determined by the following
semi-algebraic subsets of P = P−∪P+, where P− = P∩{λ < 0} and P+ = P∩{λ > 0} :

Fu = {γ > λ+ 2}, Eu = {γ > λ− 2},
F = {γ = λ+ 2}, E = {γ = λ− 2},
Fd = {γ < λ+ 2}, Ed = {γ < λ− 2},
Gl = {α2γ2 − 4(α2 + 1) < 0}, Hl = {2α2λ− γ < 0},
G = {α2γ2 − 4(α2 + 1) = 0}, H = {2α2λ− γ = 0},
Gr = {α2γ2 − 4(α2 + 1) > 0}, Hr = {2α2λ− γ > 0}.

(4)

Furthermore we use the notation Eλ,Fλ and Hλ for the slices obtained by intersecting
the corresponding bifurcation surfaces with Pλ for fixed λ 6= 0. In Lemma 6 it is found
that the Hamiltonian reversible vector fields Yζ correspond with the parameter ζ ∈ H.
A characteristic slice of Hλ is non-empty only for λ > 0 and its projection in the
(α, γ)-plane is presented in Figure 6. The global bifurcation diagram restricted to H is
detailed in Section 5 using results from [8]; in particular it is shown in Figure 9 and the
corresponding phase portraits are shown in Figure 8.
Using the subsets introduced in (4) we now state the main results of this paper,

distinguishing between λ < 0 (i.e., in P−) and λ > 0 (i.e., in P+).

Theorem 4. The family (2) restricted to P− has exactly 5 topologically different global
phase portraits, that are drawn in Figure 1. Furthermore the global phase portrait of Yζ
is uniquely determined by the number n of singularities; in particular, up to topological



4 M. CAUBERGH AND J. TORREGROSA

equivalence, the phase portrait is equal to n̄ with n ∈ {1, 2, 3, 5, 7}. For fixed λ < 0
characteristic slices of the global bifurcation diagram are shown in Figure 2.

1 2 3 5 7

Figure 1. Phase portraits of (2) in P−, see Theorem 4.

λ ≤ −2 −2 < λ < 0

Figure 2. Characteristic slices of the local and global bifurcation dia-
gram for (2) in Pλ for fixed λ < 0 (see also Figure 1).

Theorem 5. The family (2) restricted to P+ has at most 53 topologically different global
phase portraits of which at least 46 are realized, and that are drawn in Figures 15, 16, 17,
20, 21, 22, 24, 25 and 28. More precisely, if the lower bound resp. upper bound for the
number of topologically different phase portraits having i singularities is denoted by L+

i

resp. U+
i , i ∈ N, then

∑7
i=1 L

+
i = 46 and

∑7
i=1 U

+
i = 53, where L+ = (1, 1, 4, 3, 9, 8, 20)

and U+ = (1, 1, 4, 6, 12, 9, 20).

For λ > 0 the bifurcation diagram as well as the notation for the global phase por-
traits is more involved than for λ < 0. Typically the notation then is of the form np

q

where n refers to the total number of singularities and the symbols that appear in the
indices p and q different from 0,+,−, 1, ∗ refer to the local bifurcation phenomena (i.e.
appearance and disappearance of the singularities and their local behavior). The full
notation is explained in Section 3.2 related to the local bifurcations and in Section 7
related to the global ones.
The paper is organized as follows. The parameter space is reduced to P in Section 2

and the local bifurcation diagram is analyzed in Section 3. In Section 4 it is shown
that (2) has no limit cycles and conditions for homoclinic or heteroclinic orbits to
exist are found. In Sections 5, 6 and 7 we systematically study the global bifurcation
diagram for (2) restricted to P ∩ H, P− and P+ respectively. In Section 5 the global
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bifurcation diagram for the Hamiltonian reversible subfamily is obtained. Notice that
we already dealt with this problem in [8] presenting the topological classification of
the phase portraits but not the bifurcation diagram. Here we recall this result and
rewrite it in terms of ζ in Theorem 17, adding the bifurcation diagram in Figure 9. In
particular unfolding the Hamiltonian vector fields in (2) is one of the key tools used to
prove the existence of nearby global phase portraits of (2) for λ > 0. Next in Sections 6
and 7 the cases λ < 0 and λ > 0 are dealt with respectively and in particular we prove
Theorems 4 and 5. The case λ > 0 is dealt with systematically depending on the number
of singularities that are present. First we obtain rather directly the classification for
the cases of one, two and three singularities, that is stated in Proposition 19. Due to
increasing complexity the cases of seven, five, six and four singularities are subsequently
dealt with in Sections 7.2, 7.3, 7.4 and 7.5. Section 7.2 treats the case when the number
of singularities is maximal, independently analyzing all possible global phase portraits,
which are listed in Proposition 20. Then the other cases each time are considered as
bifurcation of previously treated cases and the key in proving the existence of possible
phase portraits is based on arguments of continuity. This is the reason why first the
cases of seven and five singularities are studied and then subsequently the cases of six
and four singularities. Finally in Section 8 we combine Theorems 4 and 5 and extend
them to the boundary of P± using results from [8, 9]. In this way, results for the full
parameter space are obtained that prove Theorem 1 and Corollaries 2 and 3.
The study is mainly done using classical techniques in qualitative theory of differen-

tial equations in the plane (see [2, 10]). To be sure to cover all global phase portraits,
the parameter space is examined systematically by the possible bifurcations. Although
some of these bifurcations result in topologically equivalent differential systems, the
corresponding phase portraits are explicitly drawn to stress on the bifurcation phenom-
ena. Besides local also global bifurcations take place. In particular a rigorous study is
done of how the separatrices starting from singularities mutually cross and bifurcation
methods are used to analyze near-Hamiltonian cases.
We end this introduction by exposing part of the complexity of the problem consid-

ered in this paper. From the quantitative part of view, the number of topologically
different phase portraits is surprisingly small, compared to the number that one obtains
by combinatorial computation after a mere study near the singularities. For instance
considering phase portraits having seven singularities there are 8 attracting and 8 re-
pelling separatrices that can connect. Computing their possibilities to connect one
finds 8! = 40320 different phase portraits. Using the reversibility property and a con-
cise analysis of the α- and ω-limit sets of the separatrices of the saddle points reduces
this number to exactly 1 for P− and 20 for P+. The total number of possible topolog-
ically different phase portraits is reduced to 5 for P− and at most 53 for P+. Adding,
in the case of P+, a careful numerical study of the relative positions of the separatrices
in case of four singularities this total number further reduces to 50. Only 46 of these
50 phase portraits are traced when for a concrete sequence of λ-values the parameter
plane (α, γ) is ran through. In particular in each of these case studies the number of

phase portraits with i singularities is Ni, where
∑7

i=1Ni and N = L+ (see Theorem 5).
Furthermore the study developed in this paper of which the theoretic and numerical
results also are confirmed by the computer software package P4 (see [10]), reinforces the
idea that the other 4 phase portraits do not occur whatever the value of the parameter.
Notice that as a consequence, including the numerical study mentioned above for the
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case of four singularities, the 6-parameter family (1) can have at most 64 topologically
different phase portraits. Furthermore based on the case studies it seems that the lower
bound in Corollary 3 is the exact total number of topologically different phase portraits.

2. Parameter space

As mentioned before the differential equations left to classify define a subfamily of
the reversible vector fields in (1). This subfamily is found to have the following normal
form:

XR
(g,ξ,e) ↔

{

ẋ = −y + (ξ − 2g)xy − y(x2 + y2),
ẏ = x+ ex2 + gy2 + x(x2 + y2),

(5)

where the parameter coordinates ξ, g, e ∈ R correspond to the notation used in [8]
and to the respective parameter coordinates a, b, c used in [9]; notice however that these
coordinates a, b, c do not correspond to the ones that appear in (1). In [8] the vector field
(5) is denoted by XR

(g,ξ,e) while in [9] by X(a,b,c). Here we recall the notation of [8] since
we want to detail on a result about the Hamiltonian reversible vector fields that have
been stated there. However throughout this paper we work with another representation
that simplifies both the statement of the results as well as the calculations.
The global phase portraits of (5) having only collinear singularities or infinitely many

are classified in [9], as is the case for parameter values satisfying (2g − ξ − e)g ≤ 0 or
2g−ξ = 0. For (2g−ξ−e)g > 0 and 2g−ξ 6= 0 the vector field XR

(g,ξ,e) has at most seven
singularities that are generally not collinear, but spread over at most three lines passing
through the origin. For a systematic study of the corresponding phase portraits, it is
convenient to introduce the new parameter coordinates (α, γ, λ) and to study Y(α,γ,λ)
which is in one-to-one correspondence with XR

(g,ξ,e) in case (2g − ξ − e)g > 0. In fact
using the transformations

T (g, ξ, e) =
(

√ −g
ξ − 2g + e

,−ξ + 2g,−ξ + 2g − e
)

for (ξ − 2g + e)g < 0, and

Q(α, γ, λ) = (α2λ, 2α2λ− γ, γ − λ) for α > 0, λ 6= 0,

(6)

one has the following relations between the different representations for (2),

Y(α,γ,λ) = XR
Q(α,γ,λ) and X

R
(g,ξ,e) = YT (g,ξ,e) and X(a,b,c) = YT (b,a,c), (7)

that are of interest in Sections 3.1 and 5 where results are used from [9] and [8] respec-
tively.
The geometric meaning of the parameter (α, γ, λ) becomes clear in the study of the

singularities of Y(α,γ,λ) in polar coordinates, defined by x = r cos θ, y = r sin θ. Then the
vector field Y(α,γ,λ) is transformed into the form

r′ = r2A(θ),

θ′ = 1 +B(θ)r + r2,
(8)

for some cubic homogeneous trigonometric polynomials A and B with coefficients de-
pending on the parameter (α, γ, λ); in particular, A and B read as

A(θ) = λ sin θ(α sin θ − cos θ)(α sin θ + cos θ),
B(θ) = cos θ[(α2λ+ γ) sin2 θ + (γ − λ) cos2 θ].

(9)

From (8) and (9) the geometric meaning of the parameter α is clear. It represents the
symmetric rays along which singularities of Y(α,γ,λ) can be carried.
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By (7) it follows that Y(0,γ,λ) = XR
(0,−γ,γ−λ), Y(−α,γ,λ) = Y(α,γ,λ), Y(α,0,λ) = XR

(α2λ,2α2λ,−λ)

and Y(α,γ,0) = XR
(0,−γ,γ). Hence to study the phase portraits of Y(α,γ,λ) having finitely

many noncollinear singularities, it suffices to study the vector fields Y(α,γ,λ) for

α > 0, γ 6= 0 and λ 6= 0. (10)

Lemma 6. Let Y(α,γ,λ) be defined in (2). Then we have

(1) Y(α,γ,λ) = Y(−α,γ,λ), for all α, γ, λ ∈ R.
(2) Y(α,γ,λ) is invariant with respect to the transformations

(x, y, t, α, γ, λ) 7→ (−x,−y, t, α,−γ,−λ), (11)

(x, y, t, α, γ, λ) 7→ (x,−y,−t, α, γ, λ). (12)

The invariance property (12) is the one of reversibility: the phase portrait of
Y(α,γ,λ) is symmetric with respect to the horizontal axis when reversing time.

(3) Y(α,γ,λ) is Hamiltonian if and only if γ = 2α2λ.

By (10) and (11) we can assume throughout this paper that α, γ > 0, it is to say
(α, γ, λ) ∈ P. In fact, since the phase portraits of Y(α,γ,λ) with γ < 0 are linearly
equivalent to Y(α,−γ,−λ), the results in Theorems 4 and 5 are evenly valid when replacing
P− and P+ respectively by {(α, γ, λ) : γλ < 0} and {(α, γ, λ) : γλ > 0}.

3. Singularities

In this section we study the possible location and type of singularities of Yζ . From
(8) and (9) candidate singularities (x, y) = (r cos θ, r sin θ) of Yζ satisfy sin θ = 0 or
cot θ = ±α. Furthermore r is solution of the quadratic equation 1 + B(θ)r + r2 = 0.
Since α > 0 we can take the angle θ1 for which

0 < θ1 < π/2 and cot θ1 = α. (13)

In particular cos(π − θ1) = −α/
√
α2 + 1 and sin(π − θ1) = 1/

√
α2 + 1; therefore

B(0) = γ − λ,A′(π − θ1) =
−2αλ√
α2 + 1

and B(π − θ1) =
−αγ√
α2 + 1

≤ 0. (14)

Clearly, for ζ fixed, it follows from the reversibility property and (14) that the origin is
a center of Yζ and all the other singularities appear along the rays R0 and R±, that are
defined as

R0 = {(x, 0) : (λ− γ)x > 0},
R± = {(r, θ) : θ = π ∓ θ1, r > 0} = {(x, y) : y = ∓x/α, x < 0}. (15)

Notice that none of the rays contain the origin and by the choice γ > 0 the rays R± are
contained in the negative x-plane. From [8] we know that there are no singularities at
infinity. These observations are summarized in the following lemma.

Lemma 7. Let ζ ∈ P and R0,R± be defined in (15). Then the following properties
hold.

(1) The vector field Yζ has at most seven singularities of which one is the center at
the origin and all singularities are finite.

(2) There are at most three rays that carry singularities of Yζ , namely the rays
R0 and R±. Each of them carry at most two singularities; in particular the
singularities on R+ and R− are symmetric with respect to the horizontal axis.
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(3) Let the configurations of singularities on the rays R0 and R± be denoted by
(i, j), 0 ≤ i, j ≤ 2 if Yζ has 1 + i + 2j singularities in the global phase portrait,
of which i lie along R0 and j along R+ (as many as along R−). The following
configurations are possible:

1 + i+ 2j 1 2 3 4 5 6 7
(i, j) (0, 0) (1, 0) (2, 0), (0, 1) (1, 1) (2, 1), (0, 2) (1, 2) (2, 2)

The precise location and topological type of the singularities along R0 (resp. along
R±) are described in Proposition 8 (resp. Propositions 9, 10 and 11).

3.1. Singularities along R0. Recall that R0 is the horizontal ray as defined in (15)
and that in [9] singularities along R0 are completely analyzed for X(a,b,c) defined in (7).
Then the topological type of the singularities of Yζ along R0 depends only on γ−λ and
is stated in the proposition below.

Proposition 8. Let ζ ∈ P. Then the local phase portrait of (2) along R0 is sketched
in Figures 3 and 4 and is described as follows:

(1) If ζ ∈ Eu ∩ Fd, then there are no singularities along R0.
(2) If ζ ∈ E ∪ F , then there is only a cusp singularity at s0 = (−sgn(γ − λ), 0). Its

direction is determined by the sign of λ.
(3) If ζ ∈ Ed∪Fu, then there are two singularities, given by s0± = (−sgn(γ−λ)r0±, 0),

where r0± is the function of γ − λ :

r0± =
|γ − λ| ±

√

(γ − λ)2 − 4

2
.

Furthermore, s0σ1
is a saddle and s0−σ1

is a center where σ1 = sgn(λ)sgn(γ − λ).

We conclude that 5 different possibilities for the local phase portraits along the hor-
izontal axis are distinguished; restricting to P− only 3 of them are encountered since
P ⊂ {γ > 0}. This is presented in Figures 3 and 4 in which furthermore the relative po-
sition of the separatrices at the singularities of saddle or cusp type with respect to R0 is
shown. To distinguish different separatrices at a singularity s along R0 of saddle or cusp
type, we denote the stable and unstable manifolds at s by W(s) and U(s) respectively.
Moreover we introduce the subsets WI(s) ⊂ W(s) \ {s} and UI(s) ⊂ U(s) \ {s} for the
respective subsets having their germ at s included in {(x, y) : y < 0}; analogously we
introduce WE(s) ⊂ W(s)\{s} and UE(s) ⊂ U(s)\{s} for the respective subsets having
their germ at s included in {(x, y) : y > 0}. This notation is used in Figures 12, 13, 14,
18, 19 and 29, where the different possible relative positions for the stable and unstable
manifolds are sketched.

3.2. Singularities on R±. Recall that R± are the symmetric rays defined in (15). Due
to the symmetry of Yζ we only need to study the singularities onR+. The singularities on
R− and their type can be obtained directly using the reversibility property. Moreover,
the singularities occur in pairs: singularities on R+ are reflected on R− with respect to
the x-axis, and viceversa. The number, location and topological type of the singularities
of Yζ along R+ are described in Propositions 9, 10 and 11, where the local bifurcation
diagram is found to be determined by the surfaces G,Gl,Gr,H,Hl and Hr as introduced
in (4). The following proposition follows from straightforward calculations.
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Fu s
0
+ s

0
−

0

F
s
0 0

Fd 0

Figure 3. Fu,F ,Fd form a partition of P− defined by different config-
urations of singularities along R0, see Proposition 8.

Fu
s
0
+

s
0
− 0

F
s
0 0

Eu ∩ Fd 0

E 0 s
0

Ed 0
s
0
−

s
0
+

Figure 4. Fu,F ,Fd ∩ Eu, E , Ed form a partition of P+ defined by the
different configurations of singularities along R0, see Proposition 8.

Proposition 9. Let ζ ∈ P.
(1) If ζ ∈ Gl, then the vector field Yζ has no singularities on R+.
(2) If ζ ∈ G, then the vector field Yζ has one singularity on R+, that we denote by

s1 = (x1, y1). In particular,

s1 = 1/
√
α2 + 1 · (−α, 1), r1 = ‖s1‖ = 1, (16)

α = −x1/y1 and γ = −
(

(x1)2 + (y1)2 + 1
)

/x1. (17)

(3) If ζ ∈ Gr, then the vector field Yζ has two singularities on R+, that we denote
by s1±. In particular,

s1± = y1± · (−α, 1), where y1± =
αγ±

√
α2γ2−4(α2+1)

2(α2+1)
=

r1
±√

α2+1
, (18)

r1± = ‖s1±‖ =
αγ±

√
α2γ2−4(α2+1)

2
√
α2+1

, 0 < r1− < 1 < r1+, (19)

α = −x1+/y1+ and γ = −
(

(x1+)
2 + (y1+)

2 + 1
)

/x1+. (20)

Analogously as in Proposition 9 the singularities on R− are denoted by s2± or s2, and
by symmetry are determined by

s2 = 1/
√
α2 + 1 · (−α,−1) and s2± = y1± · (−α,−1).



10 M. CAUBERGH AND J. TORREGROSA

Proposition 10. Let ζ ∈ Gr ∩ P and let s1± and y1± be as defined in (18). Then the
singularities s1± are hyperbolic and are classified as follows:

s1− s1+
in Gr ∩ P+ saddle stable node or focus in Hl,

Hamiltonian center in H and
unstable node or focus in Hr

in Gr ∩ P− stable node or focus saddle

The trace tr and determinant D of the linearization of (2) at s1± are given by

tr(s1±) = (2α2λ− γ)y1± and D(s1±) = ±2αλ(y1±)
2
√

α2γ2 − 4(α2 + 1). (21)

In particular sgn(tr(s1±)) = sgn(2α2λ − γ) and sgn(D(s1±)) = ±sgn(λ). For λ 6= 0 the
tangent vectors to the separatrices at the saddle point s1σ2

where σ2 = sgn(−λ) are given
by

v
1,σ2

± = (2(y1σ2
)2,−µ1,σ2

± + (2αy1σ2
− γ)y1σ2

),

and the direction of the flow on the corresponding separatrices is determined by

µ1,σ2

± =

(

−γ +
1

2
(γ + 2α2λ)± 1

2

√

(γ + 2α2λ)2 − 16y1σ2
α(α2 + 1)λ

)

y1σ2
.

Proof. The statement about the singularities s1± in case γ > 2
√
α2 + 1/α is based on the

classification of the trace and determinant at their linearizations; the formulas in (21)
follow from direct calculation. To determine the asymptotics of the separatrices at the
saddle point s1σ2

, one can calculate the eigenvalues µ1,σ2

± and corresponding eigenvectors

v
1,σ2

± of the linearization J at the singularity s1σ2
:

J(s1σ2
) =

[

y1σ2
(−γ + 2αy1σ2

) −2(y1σ2
)2

αy1σ2
(2αy1σ2

+ 2λ− γ) 2αy1σ2
(−y1σ2

+ αλ)

]

,

where we use the fact that x1σ2
= −αy1σ2

and 1 + γx1σ2
+ (x1σ2

)2 + (y1σ2
)2 = 0. �

Furthermore to distinguish between different separatrices at the saddle singularity or
saddle-node along R±, we introduce the open sets I and E such that

I ∩ E = ∅,R2 = I ∪ E ∪ (R+ ∪R− ∪ {(0, 0)}),
I ⊃ {(x, 0) : x < 0} and E ⊃ {(x, 0) : x > 0}. (22)

In Propositions 10 and 11 the relative position and tangency of the separatrices of the
singularities along R± is detailed precisely like in Figures 5 and 6; in particular in which
region I or E they start. Moreover these regions are used to describe possible connec-
tions between singularities later in this paper. If the stable and unstable manifolds at a
saddle or saddle-node s along R± are denoted by W(s) and U(s) respectively, then we
denote by WI(s) ⊂ W(s)\{s} and UI(s) ⊂ U(s)\{s} the respective subsets having their
germ at s in I. Analogously we denote byWE(s) ⊂ W(s)\{s} and UE(s) ⊂ U(s)\{s} for
the respective subsets having their germ at s in E. This notation is used in Figures 12,
13, 14, 18, 19 and 29.
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0

Figure 5. Gl,G,Gr form a partition of P− defined by different configu-
rations of singularities along R±, see Propositions 9, 10 and 11.
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−
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+
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−
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Figure 6. Gl,G ∩ Hr,G ∩ H,G ∩ Hl,Gr ∩ Hr,Gr ∩ H,Gr ∩ Hl form a
partition of P+ defined by different configurations of singularities along
R±, see Propositions 9, 10 and 11.
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Proposition 11. Let ζ ∈ G ∩ P and let r, s1 = (x1, y1), I and E be defined in (16) and
(22). Then γ = 2

√
α2 + 1/α and the trace tr and determinant D of the linearization of

(2) at the singularity s1 are given by

tr(s1) = 2α2(λ− lα)/
√
α2 + 1 = 2(λ(x1)3 + (y1)2)/(x1y1) and D(s1) = 0,

where

lα =

√
α2 + 1

α3
> 0. (23)

Then,

(1) H ∩ G ∩ P = {(α, 2α2lα, lα) : α > 0} = {(α0(λ), 2(α0(λ))
2λ, λ) : λ > 0}, where

the analytic curve α0 : (0,∞) → (0,∞) is defined by the positive solution α0(λ)
of λ2α6−α2 − 1 = 0. In particular, if ζ ∈ H∩G ∩P, then s1 is a nilpotent cusp
whose separatrices can asymptotically be parameterized by

u 7→
(

− α√
α2 + 1

+ u2,
1√

α2 + 1
− 1

α
u2 + ϕ±(α)u

3 +O(u4)

)

, u→ 0, (24)

where ϕ±(α) = ±(α2 + 1)5/4/
√
3α3 = ±1/(

√

3(x1)3y1).
(2) If ζ ∈ (G ∩ P) \ H, then s1 is a semi-hyperbolic saddle-node, whose separatrices

can asymptotically be parameterized by

u 7→ (x1 + u2, y1 + φ1(α)u
2 + φ2(α, λ)u

4 +O(u5)), for u→ 0 and (25)

u 7→ (x1 + u2, y1 + φ3(α, λ)u
2 +O(u3)), for u→ 0, (26)

where φ1(α) = −1/α = y1/x1,

φ2(α, λ) = αl2α/[2(λ− lα)] = −(y1)3/[2(x1)2(λ(x1)3 + (y1)2)] and

φ3(α, λ) = α(1− αλ
√
α2 + 1) = −x1(λx1 + (y1)2)/(y1)3.

The relative position and tangency of the separatrices (24), (25) and (26) with respect
to R+, I and E, and the direction of the flow on these separatrices is as in Figure 5 for
λ < 0 and Figure 6 for λ > 0.

Proof. Since the function (0,∞) → (0,∞) : α 7→ lα defined by (23) is strictly decreasing
with α, it has an analytic inverse, that we call by α0. As a consequence, along the
curve γ = 2

√
α2 + 1/α, there is a unique α0 such that lα0

=
√

α2
0 + 1/α3

0. For all
ζ ∈ G ∩Hl = G ∩{α < α0} it follows that λ > lα0

and for all ζ ∈ G ∩Hr = G∩{α > α0}
it follows that λ < lα0

.
To analyze the topological type of the singularity s1 in P ∩ G, we use [9] and Topo-

logical Normal Form Theorems for semi-hyperbolic and nilpotent singularities (see e.g.
[1, 10]). Let ζ ∈ P ∩ G be fixed. A direct calculation shows that

J(s1) =
1

α2 + 1

[ −2/α −2

2(λα
√
α2 + 1− 1) 2α(λα

√
α2 + 1− 1)

]

;

therefore

µ = tr(s1) =
2λα2

√
α2 + 1

− 2

α
and D(s1) = 0.

If λ 6= lα, then µ 6= 0 and hence s1 is semi-hyperbolic. Notice that when λ < 0 this is
always the case and then µ < 0. If λ = lα, then s1 is nilpotent and needs a separate
study.
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Suppose first that λ 6= lα, then we reduce (2) to the topological normal form for
semi-hyperbolic singularities, i.e. u̇ = f(u, v), v̇ = µv + g(u, v), where f and g are
O (‖(u, v)‖2) for ‖(u, v)‖ → 0, by the transformation

(u, v) = C−1

(

x+
α√
α2 + 1

, y − 1√
α2 + 1

)

, where C =

[

−α 1

1 α(1− λα
√
α2 + 1)

]

.

For any curve C along which v̇ vanishes identically, its asymptotics for u → 0 is given
by v = −1

2
α(α2 + 1)3/2(−α3λ+ α2 + 1)−2u2 + O(u3). As such the asymptotics of f

restricted to C is given by ρu2 +O(u3), u→ 0, with

ρ =
α3λ(α2 + 1)

α
√
α2 + 1(α3λ−

√
α2 + 1)

.

For λ < 0 it follows that ρ > 0 and µ < 0. For λ > lα one has ρ, µ > 0 and for
0 < λ < lα one has ρ, µ < 0. From the Topological Normal Form Theorem for semi-
hyperbolic singularities it then follows that s1 = (x1, y1) is a saddle-node with the local
phase portraits drawn in Figures 5 and 6. Furthermore it can easily be checked that the
separatrices at s1 in the coordinates (x, y) has the asymptotics given in (25) and (26).
Next suppose that λ = lα and hence s1 = (x1, y1) is a nilpotent singularity. Then

we reduce (2) to the standard normal form for these singularities, u̇ = v + f(u, v), v̇ =
g(u, v), where f(u, v) = g(u, v) = O (‖(u, v)‖2) , ‖(u, v)‖ → 0, by the transformation

(x, y) 7→ C−1

(

x+
α√
α2 + 1

, y − 1√
α2 + 1

)

, where C =

[

−α 1
2
α2(α2 + 1)

1 0

]

.

For any curve C along which u̇ vanishes identically, its asymptotics for u → 0 is given
by v = α

√
α2 + 1 u2 + O(u3). As such the asymptotics of g restricted to C is given by

ρu2 +O(u3), u→ 0, with

ρ =
−2

√
α2 + 1

α2
< 0 and

∂f(u, v)

∂u
+
∂g(u, v)

∂v

∣

∣

∣

∣

(u,v)∈C
= 0.

Therefore from the Topological Normal Form Theorem for nilpotent singularities it
follows that s1 is a cusp in case λ = lα (see Figure 6). It can easily be checked that the
separatrices at s1 in the coordinates (x, y) have the asymptotics given in (24).
To verify the relative position of the separatrices of the saddle-node and its dynamical

behavior for λ 6= lα, we notice that (26) can locally be written as

y = y1 + φ3(x− x1) +O((x− x1)2), x→ x1,

and hence the behavior on it is asymptotically given by

ẏ = µ(y − y1) +O((y − y1)2), y → y1.

For λ < lα (resp. λ > lα) the hyperbolic behavior is attracting (resp. repelling).
Furthermore it follows that the non-hyperbolic behavior of the saddle-node happens
along the separatrix with parametrization (25). This separatrix is tangent to R+ at s1

and locally near s1 concave up (resp. concave down) for λ > lα (resp. λ < lα).
To determine the sense of the flow on the separatrices determined by (25) and (26)

we consider the sign of ṙ for θ near π − θ1 :

sgn(ṙ) = sgn(λ)sgn(θ1 − θ) for θ → π − θ1,



14 M. CAUBERGH AND J. TORREGROSA

since cot(π − θ1) = −α. Taking this into account we find the saddle-nodes as drawn in
Figures 5 and 6. Similarly the relative position of the separatrices of the cusp and its
dynamic behavior is found as drawn in Figure 6. �

3.3. Local bifurcation diagram. In this section we combine the results from Sections
3.1 and 3.2 to obtain the local bifurcation diagram in P. It is thus formed by the
bifurcation surfaces E ,F ,G and H restricted to P as defined in (3) and (4), i.e. surfaces
passing through which the number and/or the topological type of singularities change.
All characteristic slices of the local bifurcation diagram for fixed λ < 0 (resp. λ > 0)
are drawn in Figure 2 (resp. Figure 7); the relative position of the bifurcation curves is
justified by Lemma 12 below. Let π1, π2 and π3 denote the canonical projections

π1(α, γ, λ) = (γ, λ), π2(α, γ, λ) = (α, λ) and π3(α, γ, λ) = (α, γ).

A characteristic slice of the bifurcation diagram Pλ is composed by four bifurcation
curves Eλ,Fλ,Gλ and Hλ. Passing through these curves the singularities on the horizon-
tal axis appear or disappear through a cusp or split into a center and a saddle, depending
on the relative order or mutual intersections of the bifurcation surfaces that are given
in Lemma 12. Furthermore the number and topological type of the singularities along
R± are controlled by the bifurcation curves π3(Hλ) and π3(Gλ). Both can be written as
graphs γ = γ(α), α > 0. The latter one contains the parameter values (α, γ) for which
the singularity of Yζ along R± generically is a saddle-node and the other curve contains
parameter values (α, γ) for which Yζ is Hamiltonian.

Lemma 12. Let P, E ,F ,G,H be as defined in (3) and (4).

(1) Hλ = ∅ if λ < 0.
(2) π3(Gλ) is identical for all λ > 0 : π3(Gλ) = π3(G); as the graph γ = 2

√
α2 + 1/α,

α > 0, it is strictly decreasing with respect to α and it has a horizontal asymptote
γ = 2 for α→ ∞ and a vertical asymptote at α = 0.

(3) Hλ0
∩Gλ0

is empty for λ0 < 0 and a singleton {(α0, γ0, λ0)} for λ0 > 0. Further-
more, the curves α0 : (0,∞) → (0,∞) and γ0 : (0,∞) → (2,∞) are analytic and
strictly decreasing resp. increasing such that α0 = α(λ0) is the positive solution

of α3
0λ

2
0 − α2

0 − 1 = 0 and γ(λ0) = 2
√

1 + α2
0(λ0)/α0(λ0) with

lim
λ0↓0

γ0(λ0) and lim
λ0→∞

γ0(λ0) = ∞.

(4) The intersection E ∩ Pλ is nonempty if and only if λ ≥ 2. In particular,
(a) π3(Eλ) < π3(Gλ) if 2 ≤ λ ≤ 4. Equivalently, for all α > 0 and γe, γg ≥ 0

with (α, γe, λ) ∈ Eλ and (α, γg, λ) ∈ Gλ, it holds that γe ≤ 2 < γg.
(b) Eλ ∩Gλ = {(α+(λ), γ−(λ), λ)} for some α+(λ) > 0 and γ−(λ) ≥ 0 such that

γ−(λ) < γ0(λ) if 4 < λ < 6.
(c) E6 ∩ G6 = {(1/

√
3, 4, 6)}.

(d) Eλ ∩ Gλ = {(α−(λ), γ+(λ), λ)} for some α−(λ) > 0, γ+(λ) > 0 such that
γ0(λ) < γ+(λ) if λ > 6.

(5) The intersection Fλ is nonempty if and only if λ ≥ −2. In particular,
(a) π3(Fλ) < π3(Gλ), if −2 ≤ λ < 0. Or, for all α > 0 and γf , γg ≥ 0 with

(α, γf , λ) ∈ Fλ and (α, γg, λ) ∈ Gλ, it holds that γf < 2 < γg.
(b) Fλ ∩ Gλ = {(α1(λ), γ1(λ), λ)}, for some α1(λ) > 0, γ1(λ) > 0 such that

γ0(λ) < γ1(λ) if λ > 0.
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It turns out that for fixed λ < 0 the local bifurcation diagram near R0 and R±
is determined in a unique way by the total number of singularities. Moreover if γ ≥
2
√
α2 + 1/α, then γ > λ+2; hence, by Propositions 8 and 9, if there appear singularities

along R+, then there are always two singularities present along R0. Hence the total
number of singularities can be one, two, three, five or seven. Summarized we have the
following result.

Proposition 13. Let ζ ∈ P− be fixed. Then the number of singularities of (2) is prime
and 1 ≤ n ≤ 7. The local phase portrait of Yζ near the rays R0 and R± is uniquely
determined by the number of singularities n, and therefore denoted by n̄. The slice of
the bifurcation diagram of the local phase portraits of Yζ near R0 and R± is shown in
Figure 2.

In Section 6 we will see that the global bifurcation diagram restricted to P− is com-
pletely and uniquely determined by the local one. In Section 7 it becomes clear that
this is not the case for P+. The following proposition describes the local bifurcation
diagram in this region in terms of the number of singularities.

Proposition 14. The slice of the local bifurcation diagram for λ > 0 fixed is shown in
Figure 7. Here we use the following notation to distinguish between different configura-
tions of singularities: nh, n

G,k
h or nk

h, 1 ≤ n ≤ 7, k ∈ {l,H, r} and h ∈ {d, c, u}. If Yζ
has n singularities, the parameter ζ induces locally near the rays R0 and R± the phase
portrait nh, n

G,k
h or nk

h. In case all singularities are on the horizontal axis, ζ belongs
to nh; in case that the rays R± each carry one singularity (resp. two singularities), ζ

belongs to nG,k
h (resp. nk

h). Furthermore the configuration of singularities along R0 is
specified by the lower index h according to the following scheme:

h ·h R0

u ζ ∈ F ∪ Fu one or two
c ζ ∈ Fd ∩ Eu zero
d ζ ∈ E ∪ Ed one or two

The configuration of the singularities along R± is specified by the upper index, which
is of type ·G,k or ·k depending whether it has one resp. two singularities along R±,
according to the following scheme:

k ·G,k R± k ·k R±
l ζ ∈ Hl ∩ G one l ζ ∈ Hl ∩ Gr two
H ζ ∈ H ∩ G one H ζ ∈ H ∩ Gr two
r ζ ∈ Hr ∩ G one r ζ ∈ Hr ∩ Gr two

Proof. By Propositions 8, 9, 10 and 11 and Figures 4 and 6, the topological type of
the singularities of Yζ along R0 and R± and its corresponding number are precisely
determined by the notation introduced in previous proposition, and so also the local
bifurcation diagram of Yζ near R0 and R±. �
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6 < λ

λ = 6 4 < λ < 6

2 < λ ≤ 4 0 < λ ≤ 2

Figure 7. Characteristic slices of the local bifurcation diagram for fixed
λ > 0.

4. Periodic, homoclinic and heteroclinic orbits

For fixed ζ the divergence is div(Yζ) = div(Yζ)(x, y) = (2α2λ−γ)y. Hence by Dulac’s
Theorem (see [10]) we can draw the following conclusion.

Proposition 15. If ζ ∈ P \H, then periodic, homoclinic or heteroclinic orbits intersect
the horizontal axis. Furthermore all periodic orbits are part of a continuum.

As a corollary and since H represents the Hamiltonian vector fields, there are no limit
cycles for Yζ . Furthermore,

Corollary 16. None of the differential systems (1), (2) nor (5) have limit cycles.



REVERSIBLE CUBIC CENTERS 17

5. Global bifurcation diagram in H ∩P
By rather straightforward algebraic manipulations we obtain from [8] the topological

classification of the Hamiltonian reversible vector fields in (2), i.e. with γ = 2α2λ. Then
the Hamiltonian is given by

H(α,λ)(x, y) =
1

2
(x2 + y2) +

1

3
(2α2 − 1)λx3 + α2λxy2 +

1

4
(x2 + y2)2.

In [8] they are represented by (5) with ξ = 0. Here we add to the result in [8] the global
bifurcation diagram.

Theorem 17. Up to topological equivalence the Hamiltonian reversible vector fields
of (1) or (2) are given by the 2-parameter family Yζ with γ = 2α2λ, α > 0, λ > 0
(i.e ζ ∈ H ∩ P) and show 14 topologically different phase portraits depending on the
parameter (α, λ) as shown in Figure 8. The classification for topological equivalence is
listed according to the number of singularities as follows: 1c; 2d; 3d if the singularities
are collinear and 3G,Hc if the singularities are noncollinear; 4G,Hd ; 5Hc and 5G,Hd if there
are one resp. three singularities on the line of symmetry; 6Hd or 6Hu that are topologically
equivalent; 7H

σ

d if 2α2− 1 < 0 and 7H
σ

u if 2α2− 1 > 0, where σ = sgn{(2α2− 1)Ψ(α, λ)}
if Ψ(α, λ) 6= 0 and σ = 0 if Ψ(α, λ) = 0 and Ψ reads as

Ψ(α, λ) =(2α2 − 1)(α2 + 1)2
√

((2α2 − 1)2λ2 − 4)3 + 16α3
√

(α6λ2 − (α2 + 1))3

+ 8α6λ2 − 6α2 − 3λ2α2 + λ2 − 6.
(27)

The bifurcation diagram is sketched in Figure 9.

1c 2d 3d 3G,Hc 4G,Hd

5Hc 5G,Hd 6Hd 6Hu 7H
−

d

7H
0

d 7H
+

d 7H
−

u 7H
0

u 7H
+

u

Figure 8. Phase portraits in P ∩H.
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In Figure 8 it is seen that the phase portraits 6Hd and 6Hu are topologically equivalent;
both representations are included to visualize better the bifurcation that happens when
passing through the bifurcation curves in Figure 9.

Figure 9. Global bifurcation diagram in P ∩H, projected in the (α, λ)-
plane, see Theorem 17 and Figure 8.

Let us recall some notations used in Theorem 17 and Figure 9. The curves labeled
by E ,F ,G correspond to the local bifurcations defined in Section 3.3, intersected with
γ = 2α2λ and projected in the (α, λ)-plane. The curves labeled by I,J correspond
to global bifurcations, more precisely the ones of crossing of separatrices. These only
appear when there are seven singularities. In particular, for the Hamiltonian case, when
the local phase portrait is given by 7Hu or 7Hd respectively. The bifurcation surfaces I
and J restricted to H distinguish between 3 possible global phase portraits 7H

σ

u and
7H

σ

d respectively, where σ ∈ {−, 0,+}. From [8] it is deduced that I restricted to H is
the semi-algebraic set Ψ−1(0) ∩ P ∩ H ∩ Fu, where Ψ is defined in (27). The curve J
restricted to H is the semi-algebraic set {(α, λ) ∈ R

2 : α = 1/
√
3, λ ≥ 6}.

To end we draw the global bifurcation diagram of Hamiltonian reversible vector fields
for (5), i.e. with ξ = 0, to complete the result in [8], for g > 0, e ∈ R. Notice that the
family Y(α,2αλ2,λ), α, λ > 0 is a strict subfamily of XR

(g,0,e), g < 0, e ∈ R, that corresponds
with e < 2g, g > 0. Although for topological equivalence no other phase portraits are
found than the ones presented in Figure 8, there is a new bifurcation curve that is
denoted by D. Along D the ray R0 is triple (i.e. A(0) = A′(0) = A′′(0) = 0, A′′′(0) 6= 0)
implying that the singularities along R0 are non-elementary. To highlight this fact the
corresponding phase portraits are denoted by 2t and 3t for the case of two and three
singularities respectively, and are topologically equivalent to 2d and 3d respectively (see
Figure 11). In particular the bifurcation diagram for the Hamiltonian reversible phase
portraits of (5) covers the parameter plane π1(Q(H ∩ P)) ∪ {(g, e) : e ≥ 2g, g > 0}, as
in Figure 10 that thus can be obtained by transformation of Figure 9 by Q, given in
(6), and adding the region e ≥ 2g, g > 0 (including the bifurcation curve D).
The transformed bifurcation curves in Figure 10 are called correspondingly again by

E ,F ,G, I,J . Now the algebraic set I restricted to H is determined by ψ, with

ψ(g, e) =2304g2−1536ge+256e2−1152g4+384g3e−864g2e2+576ge3−96e4+144g6

+360g4e2−120g3e3+81g2e4−54ge5+9e6−32g6e2−24g4e4+8g3e5,

and J restricted to H corresponds to the semi-algebraic set {(g, e) : g > 2, e+ g = 0}.
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Figure 10. Global bifurcation diagram of XR
(g,0,e), for g > 0, e ∈ R.

2t 3t

Figure 11. Phase portraits of XR
(g,0,e) for e = 2g, g > 0, see Figure 10.

6. Global bifurcation diagram in P−

In this section we prove Theorem 4 establishing that for λ < 0 the local phase portraits
n̄ (where n = 1, 2, 3, 5, 7) near R0 and R± in Proposition 13 determine uniquely the
global phase portraits. Therefore we use the same notation to refer to the global phase
portraits as to refer to the local ones. As a consequence the global phase portraits can
be distinguished by the total number of singularities.
To this end we start by a technical lemma. As in Propositions 10 and 11 we use the

notations s1± = (x1±, y
1
±) for the saddle and s1 = (x1, y1) for the saddle-node along R+.

Lemma 18. Let ζ ∈ (G ∪ Gr) ∩ P−. Then the relative position of the singularities and
the direction of the flow of Yζ in {y ≥ 0} is as indicated in Figure 12. More precisely,
for ζ ∈ Gr :

(1) The vertical line x = x1+ intersects the segment bounded by the center point
(x0+, 0) and the saddle point (x0−, 0), i.e., x

0
+ < x1+ < x0−.

(2) The direction of the flow of the vector field Yζ along the vertical x = x1+ is as
follows:

ẋ|x=x1
+
,0<y<y1

+
> 0, ẏ|x=x1

+
,0<y<y1

+
> 0,

ẋ|x=x1
+
,y>y1

+
< 0 and ẏ|x=x1

+
,y>y1

+
< 0.

(28)
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These properties are sketched in Figure 12(a). By reflection about the x-axis the behavior
in {y < 0} is obtained. Analogous properties hold for ζ ∈ G, only replacing x1+ and y1+
by x1 and y1 respectively, and are sketched in Figure 12(b).

(a) (b)

Figure 12. Local phase portrait of Yζ in {y ≥ 0} for (a) Gr ∩ P− and
(b) G ∩ P−, see Lemma 18.

Proof. The claims follow by direct algebraic manipulation using the expression in (20).
Notice furthermore that |x0+| > 1 ≥ ‖(x1+, y1+)‖ > |x1+| and that |x0−| > |x1+| if and only
if

(x1+)
2 + (y1+)

2 + 1 + λx1+ +
√

((x1+)
2 + (y1+)

2 + 1 + λx1+)
2 − 4(x1+)

2 < 2(x1+)
2.

This last inequality holds for (y1+)
2+λx1+ > 0. To obtain the signs in (28), one calculates

ẋ|x=x1
+
= y(y1+ − y)(y1+ + y),

ẏ|x=x1
+
= −x1+(y1+ − y)(y1+ + y)((y1+)

2 + λx1+)/(y
1
+)

2.

Recall that the rays R0 and R± are isoclines for ṙ = 0. �

Proof of Theorem 4. The global phase portraits 1̄, 2̄, and 3̄ are obtained directly from
the local phase portraits described in Propositions 8 and 13 and Figure 3 and clearly are
uniquely determined. Using Lemma 18, Figure 12 and the Poincaré-Bendixson Theorem
we find that the relative positions of the separatrices in {y ≥ 0} in cases 5̄ and 7̄ are as
pictured in Figures 13 and 14 respectively. Using the reversibility property one obtains
that the global phase portraits in cases 5̄ and 7̄ are uniquely determined and as drawn
in Figure 1.

Figure 13. Relative positions of the separatrices in {y ≥ 0} in case 5̄.

The proof that the relative positions of the separatrices in case 5̄ are as drawn in
Figure 13, is analogous to the one for Figure 14 in case 7̄. We only detail this last case.
By Lemma 18, in backward time, the separatrixWI(s

1
+) has to intersect the horizontal

axis in between x0+ and x1+. Next UI(s
1
+) in forward time has to intersect the horizontal
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Figure 14. Relative positions of the separatrices in {y ≥ 0} in case 7̄.

axis on the left of x0+. By the direction of the flow along R+ between s1− and s1+ and the
Poincaré-Bendixson Theorem, the separatrix UE(s

1
+) has to connect the singularities

along R+ like pictured in Figure 14. Furthermore, in backward time, WE(s
1
+) has to

intersect the positive horizontal axis. By Poincaré-Bendixson Theorem, UE(s
0
−) has to

connect the singularities s0− and s1−, and the separatrix WE(s
0
−) has to intersect the

positive horizontal axis on the left of the intersection WE(s
1
+) ∩ {y = 0}. Therefore the

relative positions of the separatrices in {y ≥ 0} is uniquely determined as in Figure 14,
ending the proof.

�

7. Global phase portraits in P+

The global bifurcation diagram for fixed λ > 0 is obtained by the local one as described
in Proposition 14 and shown in Figure 7, adding the global bifurcation curves that
determine the crossing of separatrices.
In this case there are a lot more possibilities even for the local phase portrait than in

the case treated in Section 6. For one, two and three singularities the local phase portrait
near R0 and R± completely determines the global one, see Proposition 19. The other
cases are subsequently analyzed in Sections 7.2 until 7.5 starting with the case of the
maximal number of singularities. In particular, in Section 7.2, the classification for this
case is proven and summarized in Proposition 20. Notice that in this case all singularities
are non-degenerate and elementary. This is also the case for five singularities if all of
them different from the origin are along R±. However most often this is not the case
and there are singularities along R0 as well as along R±; then the phase portrait is
obtained from the case with seven singularities by coalescence of a saddle and a node
to a saddle-node on both rays R±. Both cases with five singularities are treated in
Section 7.3. Next, in Section 7.4 (resp. 7.5) the case of six (resp. four) singularities is
obtained as continuous bifurcation from the case with seven to five (resp. five to three
and six to two) singularities. In Section 7.5 we also add a detailed numerical study
that completes the case of four singularities. Finally in Section 7.6 we draw the global
bifurcation diagram with the partial help of numerical analysis.
From the classification results in this section, i.e. Propositions 19, 20, 21, 22 and 23,

we find the classification of the phase portraits in P+, that is summarized in Theorem 5.

7.1. Less than or equal to three singularities. The following proposition describes
the classification of the phase portraits with at most three singularities and is obtained
by using the symmetry property and the local classification from Section 3.
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Proposition 19. Let ζ ∈ P+. The phase portrait of (2) has at most three singularities
if and only if ζ ∈ Gl ∪ (G ∩ Eu ∩ Fd). Furthermore the global phase portrait is uniquely
determined by the local phase portrait and there are exactly 6 topologically different ones,
that are drawn in Figure 15 and are listed by increasing number of singularities: 1c in
Gl ∩ Eu ∩ Fd; 2d in Gl ∩ E or 2u in Gl ∩ F (these are equivalent); 3d in Gl ∩ Ed, 3u in
Gl ∩ Fu, 3

G,t
c in G ∩Ht (where t ∈ {l, r}, both determining topologically the same phase

portrait) and 3G,Hc in G ∩ H.

1c 2d 2u 3d

3G,lc 3G,Hc 3G,rc 3u

Figure 15. Phase portraits of Yζ with one, two or three singularities for
ζ ∈ P+, see Proposition 19.

7.2. Seven singularities.

Proposition 20. Let ζ ∈ P+. The phase portrait of (2) has seven singularities if and
only if ζ ∈ (Ed∪Fu)∩Gr. In this case there are 20 topologically different phase portraits.
More precisely, there are 9 (resp. 11) in Ed ∩ Gr (resp. Fu ∩ Gr) that are listed in
Figure 16 (resp. Figure 17) and all together they are shortly referred to as 7d (resp.
7u). In particular, 7l

σ

z and 7r
σ

z with σ ∈ {+,−} are equivalent, for z = d (resp. z = u).

Notice that the specific composition of the phase portraits in Figures 16 and 17
respects the subsequent bifurcation phenomena that happen between adjacent phase
portraits and is detailed at the end of this section. This also is the reason why some
topologically equivalent phase portraits appear.

Proof of Proposition 20. From the local bifurcation diagram in Figure 7 and Proposi-
tion 14 we know that the case with seven singularities distinguishes between 7d and
7u. To complete the global phase portraits we analyze the separatrices at the saddles,
and follow the flux forward and backward in time. By the reversibility property we can
restrict our attention to the half plane {y ≥ 0}.
We only detail the proof of case 7d. The possible intersections of WI(s

1
−) and UE(s

1
−)

with the ray R+ in backward resp. forward time are shown in Figure 18. The case (b)
corresponds to the Hamiltonian one. The possibilities (a), (b), (c) are referred to as
7rd, 7

H
d , 7

l
d respectively. Next for each of these cases we analyze the possible intersections

of WE(s
1
−) and UE(s

0
−) with the vertical axis in backward resp. forward time; for further
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7l
−

d 7l
0

d 7l
∗

d 7l
1

d 7l
+

d

7H
−

d 7H
0

d 7H
+

d

7r
−

d 7r
0

d 7r
+

d

Figure 16. Phase portraits in P+ ∩ Gr ∩ Ed (referred to as 7d), see Proposition 20.

7l
−

u 7l
0

u 7l
∗

u 7l
1

u 7l
+

u

7H
−

u 7H
0

u 7H
+

u

7r
−

u 7r
1

u 7r
∗

u 7r
0

u 7r
+

u

Figure 17. Phase portraits in P+ ∩ Gr ∩ Fu (referred to as 7u), see Proposition 20.
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reference the y-coordinates are denoted by y1E and y0E. Additionally in case (c) we analyze
the possible intersections of WI(s

1
−) and UE(s

0
−) with the vertical axis in backward resp.

forward time; as before the y-coordinates are denoted by y1I and y0E. Observe that this
leads to 3 possibilities in cases (a) as well as (b), and 5 possibilities in case (c), adding
to 11 possibilities in total for case 7d. Then clearly always y1E < y1I (if it exists) and so
all the possibilities are summarized by:

(a) (b) (c)

If y0E < y1E : 7r
−

d 7H
−

d 7l
−

d ;

If y0E = y1E : 7r
0

d 7H
0

d 7l
0

d ;

If y1E < y0E : 7r
+

d 7H
+

d







If y0E < y1I : 7l
∗

d ;

If y0E = y1I : 7l
1

d ;

If y1I < y0E : 7l
+

d .

(a)

(b)

(c)

Figure 18. Possibilities for the separatrices in case 7d.

The cases 7z
0

d , where z ∈ {r,H, l}, correspond to the fact that WE(s
1
−) = UE(s

0
−).

The case 7l
1

d corresponds to the fact that WI(s
1
−) = UE(s

0
−).

We now show that all these possibilities occur and correspond to the phase portraits
as drawn in Figure 16. The existence of the Hamiltonian phase portraits, i.e. case (b),
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follows from [8]. In all these cases the separatrices WI(s
1
−) and UE(s

1
−) coincide. Bifur-

cating from 7H
−

d or 7H
+

d the only singularity that changes its type is s1+, and changes
from center to stable or unstable focus. By continuity, the attracting or repelling nature
of s+, Proposition 15 and the reversibility with respect to the horizontal axis, the con-
nection WI(s

1
−) = UE(s

1
−) breaks in only one possible way for each of the cases as drawn

in Figure 18(a) and (c). Therefore the global phase portraits denoted by 7r
−

d , 7r
+

d , 7l
−

d

and 7l
+

d exist for values of the parameter close to the Hamiltonian case. Next 7r
0

d (resp.

7l
0

d , 7
l∗

d , 7
l1

d ) exists by continuous dependence on the parameter and the existence of 7r
−

d

and 7r
+

d (resp. 7l
−

d and 7l
+

d ). This ends the proof of this case.
The case 7u is obtained in a similar way as the case 7d. Then we distinguish the

different phase portraits based on the possible intersections of the separatrices at the
saddles (s1− and s0+) with the straight line through the anti-saddles (s1+ and s0−), see
Figure 19. It is seen that 7l

σ

z and 7r
σ

z with σ ∈ {+,−} are equivalent in case 7z, for

Figure 19. Possibilities for the separatrices in case 7u.

z ∈ {u, d}. Comparing the phase portraits in Figure 16 with the ones in Figure 17, it is
found that these phase portraits are mutually different. �

From the previous proof we notice that the only 2 possible connections in the non-
Hamiltonian case 7d are found and defined by the bifurcation surfaces:

J = {ζ : WE(s
1
−) = UE(s

0
−)} and K = {ζ : WI(s

1
−) = UE(s

0
−)}. (29)

In the non-Hamiltonian case 7u the 2 connections are found and defined by the bifur-
cation surfaces:

I = {ζ : WE(s
0
+) = WI(s

1
−)} and L = {ζ : UE(s

0
+) = UE(s

1
−)}. (30)

In Section 7.6 we draw these surfaces in the bifurcation diagram with the aid of
numerical methods.
Notice that the specific composition of the different phase portraits in Figures 16

and 17 is according to the bifurcation surfaces H, I,J ,K and L; the phase portraits
on the middle line correspond to H, say the Hamiltonian surface, and the upper resp.
lower line correspond to Hl resp. Hr. In Figure 16 the diagonal connecting the phase
portraits referred to as 7z

0

d with z ∈ {l,H, r} corresponds to the bifurcation surface J ,
and the branch from 7H

0

d to 7l
1

d corresponds to the bifurcation surface K. In Figure 17

the diagonal connecting the phase portraits referred to as 7z
b

u with z ∈ {l, r} and b = 0

(resp. b = 1) passing through 7H
0

u corresponds to the bifurcation surface I (resp. L).
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7.3. Five singularities. In case of five singularities there are essentially two cases to
be distinguished, whether or not all singularities are non-degenerate and elementary.
If it is the case, the singularities different from the origin are located along R±, and
the local phase portraits are referred to as 5c. However, most often this is not the case;
then the corresponding parameters belong to G. In Figure 23 the global bifurcation
diagram restricted to G is drawn. Notice that only bifurcation curves are drawn that
lead to the lower bound in the classification. Furthermore the dashed lines correspond
to the bifurcation curves that are numerically obtained. Next theorem summarizes the
topological classification that is found in all cases of five singularities.

Proposition 21. Let ζ ∈ P+. The phase portrait of (2) presents five singularities for
ζ ∈ (G ∩ (Ed ∪ Fu)) ∪ (Gr ∩ Eu ∩ Fd). In this case there are 9 ≤ n ≤ 12 topologically
different phase portraits.

(1) There are exactly 3 in G ∩ Fu as shown in Figure 20 and are referred to as 5u.
(2) There are exactly 2 in Gr∩Eu∩Fd. These are shown in Figure 21 and are referred

to as 5c. In particular, 5lc and 5rc are equivalent.
(3) There are 4 ≤ n ≤ 7 in G ∩ Ed. More precisely, there are exactly 4 in G ∩ Ed ∩

(Hr ∪ H) and 1 ≤ n ≤ 5 in G ∩ Ed ∩ Hl. These are shown in Figure 22 and are

referred to as 5d. In particular, 5G,ld and 5G,r
−

d are equivalent.

5G,l
−

u 5G,l
0

u 5G,l
+

u

Figure 20. Phase portraits in P+ ∩ G ∩ Fu (referred to as 5u).

5lc 5Hc 5rc

Figure 21. Phase portraits in P+ ∩ Gr ∩ Eu ∩ Fd (referred to as 5c).

Proof. The proofs of cases 5u, 5c and 5d are similar to the proof of case 7d in Proposi-
tion 20. First we use arguments of continuity to prove the existence of the corresponding
global phase portraits. Next, using the symmetry, we study the possible intersections
of the separatrices at the saddle along R0 and the saddle-node along R+ (resp. at the
symmetric saddles along R+ and R−) in cases 5u and 5d (resp. 5c) in the upper plane
y > 0, using pictures similar to Figures 18 and 19.
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5G,ld 5G,Hd 5G,r
−

d 5G,r
0

d 5G,r
+

d

Figure 22. Phase portraits in P+ ∩ G ∩ Ed (referred to as 5d).

First we deal with case 5u. Bifurcating from 7l
∗

u (resp. 7l
−

u ) to 3u there exists 5G,l
+

u

(resp. 5G,l
−

u ). Next by continuity from 5G,l
+

u to 5G,l
−

u also 5G,l
0

u exists. Based on the
relative positions of the separatrices at the saddle-node and the saddle, the attracting
nature of the nodal part of s1, Proposition 15 and the reversibility property, it turns
out that these are the only possible phase portraits. Now by comparing these phase
portraits in G ∩ Fu, it is seen that, up to topological equivalence, there are exactly 3
that are shortly referred to as 5u.
Next we deal with case 5c. Bifurcating from the Hamiltonian case 5Hc there exist 5lc and

5rc. That these are the only possible phase portraits follows as in case 5u, considering now
the relative positions of the separatrices at the saddle and the node and the attracting
nature of s1. Now by comparing these phase portraits in Gr ∩ Eu ∩ Fd, it is seen that,
up to topological equivalence, there are exactly 2 that are shortly referred to as 5c.
Next we deal with case 5d. Bifurcating from 7l

−

d (resp. 7r
−

d and 7r
+

d ) and 3d, there

exists 5G,ld (resp. 5G,r
−

d and 5G,r
+

d ). Next by continuity from 5G,r
−

d to 5G,r
+

d also 5G,r
0

d exists.
Finally from the study of the separatrices at the saddle s0− and the saddle-node s1 in

G∩Ed there are exactly 4 in G∩Ed∩ (Hr ∪H) and there are 5 possibilities in G∩Ed∩Hl

for the intersection of UE(s
0
−) with R+ in forward time, each giving rise to exactly 1

global phase portrait; this can be seen by a picture similar to Figure 18(c). All these
5 phase portraits are topologically mutually distinct. It is seen that 1 of these phase

portraits is 5G,ld , and thus is equivalent to 5G,r
+

d . Another is equivalent to 5G,r
−

d , and the
other 3 are different from any of the phase portraits in Figures 18, 19 and 20. Therefore
there are 4 ≤ n ≤ 7 in G ∩ Ed and 9 ≤ n ≤ 12 with five singularities. �

However, as can be seen in the bifurcation diagram drawn in Figure 33 in Section 7.6,
the region G ∩ Ed ∩ Hl is far from the region 7l

+

d and therefore it is believed that the
lower bounds in Proposition 21 are the exact numbers.

7.4. Six singularities.

Proposition 22. Let ζ ∈ P+. The phase portrait of (2) presents six singularities for
ζ ∈ (E ∪ F) ∩ Gr. In this case there are at least 8 ≤ n ≤ 9 topologically different phase
portraits.

(1) There are exactly 4 in F ∩ Gr as shown in Figure 24 and are referred to as 6u.

In particular, 6lu and 6r
−

u are equivalent.
(2) There are 6 ≤ n ≤ 7 in E ∩ Gr. More precisely, there are exactly 6 in E ∩ Gr ∩

(Hl ∪ H) and 1 ≤ n ≤ 3 in E ∩ Gr ∩ Hr. These phase portraits are shown in

Figure 25 and are referred to as 6d. In particular, 6rd and 6l
+

d are equivalent.

In particular, 6lu and 6rd are equivalent, as also 6Hu and 6Hd are.
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Figure 23. Bifurcation diagram restricted to G projected in the (α, λ)-
plane, i.e. π2(G ∩ P+).

6lu 6Hu 6r
−

u 6r
1

u 6r
∗

u

Figure 24. Phase portraits in P+ ∩ Gr ∩ F (referred to as 6u).

6l
−

d 6l
0

d 6l
∗

d 6l
1

d

6l
+

d 6Hd 6rd

Figure 25. Phase portraits in P+ ∩ Gr ∩ E (referred to as 6d).

Proof. The proofs of cases 6u and 6d are similar to the proof of case 7d in Proposition 20.
First we use arguments of continuity to prove the existence of the corresponding global
phase portraits. Next, using the symmetry, we study the possible intersections of the
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separatrices at the cusp s0 and the saddle s1− in the upper plane y > 0, using pictures
similar to the ones in Figures 18 and 19.
First we deal with case 6u. Bifurcating from the Hamiltonian case 6Hu there exist

6lu and 6r
−

u . Next by continuity from 5rc and 7r
∗

u also 6r
∗

u exists. As a consequence, by

continuity from 6r
−

u and 6r
∗

u there exists 6r
1

u .
Next we deal with case 6d. Bifurcating from the Hamiltonian case 6Hd , there exist

6l
+

d and 6rd. Next by continuity from 5lc and 7l
−

d also 6l
−

d exists. As a consequence, by

continuity from 6l
−

d and 6l
+

d , there exist 6l
0

d , 6
l∗

d and 6l
1

d .
Based on the relative positions of the separatrices at the cusp and the saddle, the

attracting resp. repelling nature of s1+, Proposition 15, the reversibility property and

continuity, it turns out that 6lu, 6
H
u , 6

r−

u , 6r
0

u and 6r
+

u are the only phase portraits in
F ∩Gr. Analogously, it turns out that 6

l−

d , 6
l0

d , 6
l∗

d , 6
l1

d , 6
l+

d , 6
H
d , and 6rd are the only phase

portraits in E ∩ Gr ∩ (Hl ∪ H).
Finally, analyzing the relative positions of the separatrices at the saddle and cusp as

above there are only 2 more phase portraits possible in E ∩ Gr ∩ Hr than 6rd, the one
that is drawn in Figure 25. These other possibilities are determined by the relative
position of the intersection of the unstable separatrix at the cusp with the ray R+.
Firstly, this intersection point is at distance smaller than r1− from the origin, giving

rise to 6l
−

d topologically; secondly, the intersection point is at distance larger than r1−
from the origin, giving rise to a phase portrait that is topologically different from 6rd
and 6l

−

d and all other phase portraits with six singularities. Therefore there are at
most 3 topologically different phase portraits in E ∩ Gr ∩ Hr. Furthermore, since 6rd
is topologically equivalent to 6l

+

d , there are at least 6 and at most 7 phase portraits in
E∩Gr. Comparing the phase portraits of 6u and 6d we find furthermore that topologically
6lu = 6l

+

d , 6
H
u = 6Hd and 6r

−

u = 6rd; hence there are at least 8 and at most 9 phase portraits
with six singularities. �

In Figures 26 and 27 the bifurcation diagram is drawn restricted to E and F in
the (α, λ)-plane respectively. In particular the bifurcation surfaces G,H,J ,K and L,
defined in (4), (29) and (30), also are drawn restricted to E and F ; the dashed lines are
used to indicate those bifurcation curves that are numerically obtained.

Figure 26. Bifurcation diagram restricted to E projected in the (α, λ)-
plane, i.e. π2(E ∩ P+).
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Figure 27. Bifurcation diagram restricted to F projected in the (α, λ)-
plane, i.e. π2(F ∩ P+).

From this proof it is seen that there cannot exist more bifurcation curves in the region
of six singularities neither in Figure 27 neither in the region Gr ∩ Hl ∩ E in Figure 26,
that is referred to as 6ld. However from this proof one cannot conclude whether there
are more bifurcation curves in the region Gr ∩ Hr ∩ E in Figure 26, that is referred to
as 6rd.
Fixing concrete values of λ, increasing α and studying the relative positions of the

separatrices at the cusp and the saddle, we find that the hyperbolic separatrix WE(s
1
−)

intersects the ray R0 on the left of the cusp. Therefore numerically no other bifurca-
tions are found. Taking into account the numerically obtained bifurcation diagram in
Figure 28 they cannot appear since 5rc and 7r

+

d are the only that are nearby.

7.5. Four singularities. When Yζ has exactly four singularities the local phase por-

traits can be 4G,Hd , 4G,rd , 4G,ld or 4G,lu . From Theorem 17 we already know that the local

phase portrait 4G,Hd uniquely determines the global phase portrait and it is drawn in
Figure 28. Here we obtain the uniqueness of the global phase portrait in case of the local
phase portrait 4G,lu , that is proven in Proposition 23 below. In case of the local phase

portraits 4G,rd and 4G,ld we have strong numerical evidence that the global phase portraits
are unique as well in these cases and are as drawn in Figure 28; this is explained after
proving Proposition 23.
Notice that the vector fields having exactly four singularities correspond to G∩(E∪F)

and determine the 1-parameter family Y(α,γ(α),λ(α)), where

γ(α) = 2
√
α2 + 1/α and (λ(α) = γ(α) + 2 or λ(α) = γ(α)− 2). (31)

Proposition 23. Let ζ ∈ P+. The phase portrait of (2) has four singularities if and
only if ζ ∈ G ∩ (E ∪ F). In this case there are 3 ≤ n ≤ 6 topologically different phase
portraits that are drawn in Figure 28.

(1) There exists exactly 1 in G ∩ F and 1 in G ∩ H. These are denoted respectively

as 4G,lu and 4G,Hd .
(2) There exist 2 ≤ n ≤ 5 in (G ∩ E) \ H. In particular, there are 1 ≤ n ≤ 3 in

G ∩ E ∩Hr of which 4G,rd is one and there are 1 ≤ m ≤ 5 in G ∩ E ∩Hl of which
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4G,ld is one. Furthermore all possible phase portraits in G ∩ E ∩ Hr are possible
ones in G ∩ E ∩ Hl.

In particular, 4G,rd and 4G,lu are equivalent.

4G,ld 4G,Hd 4G,rd 4G,lu

Figure 28. Phase portraits in G ∩ (E ∪ H ∪ F).

Proof. The Hamiltonian case has already been treated in Section 5, so we are left with
the existence of the phase portraits 4G,lu , 4G,rd and 4G,ld and the unicity of the first one.
The existence part follows reasoning in the same way as in the proof of Proposition 22
using a continuity argument from the existence of corresponding phase portraits with
three and five singularities. Therefore we concentrate on the unicity of 4G,lu and to end
we briefly describe the different possibilities in G ∩ E to give a fine upper bound for the
total number of phase portraits with four singularities.
Let ζ such that the local phase portrait near R0 and R+ is given by 4G,lu . This

corresponds to

γ =
2
√
α2 + 1

α
and λ =

2
√
α2 + 1

α
− 2.

The unique singularity along both R± is a saddle-node corresponding to G ∩Hl and the
unique singularity along R0 is a cusp corresponding to F . Consider the straight line L
through the singularities s0 and s1. Let ∆(0, s0, s1) be the triangle bounded by R0, L
and R+ as illustrated in Figure 29(a).
The unstable separatrix UI(s

1) is tangent toR+ and lies inside the triangle ∆(0, s0, s1)
for reversed time sufficiently large (t→ −∞). The stable separatrixWE(s

0) is tangent to
R0 and lies in E but outside the triangle ∆(0, s0, s1) for times sufficiently large (t→ ∞).
The orbit UI(s

1) will leave the triangle ∆(0, s0, s1) only by crossing R0 between 0 and s0.
Indeed suppose to the contrary that UI(s

1) would leave the triangle by first crossing L
between s0 and s1. This would imply the existence of four tangency points along L that
are two by two distinct (including the singularities s0 and s1), see Figure 29(b). This is
in contradiction with the fact that the system is cubic and irreducible and therefore can
have at most three tangency points, see e.g. [10]. Hence by symmetry the orbit UI(s

1)
connects the saddle-nodes s1 and s2 inside the polygon 0, s1, s0, s2. Now the global phase
portrait 4G,lu as presented in Figure 28 clearly is uniquely determined.
Now we count the phase portraits with four singularities. There is exactly 1 in G ∩F

and 1 in G ∩ H referred to as 4G,lu and 4G,Hd respectively. There are 3 (resp. 5) possible
phase portraits in G ∩ E ∩Hr (resp. G ∩ E ∩Hl), and the 3 possible ones in G ∩ E ∩Hr

are topologically equivalent to 3 of the 5 possible ones in G ∩ E ∩Hl. One of the phase
portraits in G ∩ E ∩Hr, 4

G,r
d , is equivalent to 4G,lu . Therefore there are at least 3 and at

most 6 phase portraits with four singularities. �
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(a)

(b)

Figure 29. (a) Triangle ∆(0, s0, s1) in the phase plane; (b) Four tan-
gency points along the straight line L if UI(s

1) cuts L in forward time.

The crucial part in proving the global phase portrait 4G,lu is to guarantee the relative
position of the separatrices UI(s

1) and WE(s
0). We showed analytically that there is

only one possibility for it. In Figure 30 the forward and backward intersections of
respectively UI(s

1) and WE(s
0) with the rays R0 and R+ are drawn for the 1-parameter

family Yζ , ζ ∈ P+∩G∩F , as functions of the parameter α, that are numerically obtained
using Taylor methods of higher order with sufficiently accuracy. More precisely if the
intersection of UI(s

1) with ray R0 in forward time happens at distance |uα| from the
origin, the function uα is numerically obtained and its graph is drawn in Figure 30(a).
As we prove analytically we find also that −1 < uα < 0 for all α > 0, it is to say
that the separatrix UI(s

1) intersects R0 on the right of s0; furthermore numerically
we find that the graph is monotone with α. Next if the intersection of WE(s

0) with
ray R+ in backward time happens at distance wα from the origin, the function wα is
numerically obtained and its graph is drawn in Figure 30(b). Corresponding to our
analytical findings we obtain numerically that wα > 1 for all α > 0, it is to say that the
separatrix WE(s

0) intersects R+ in backward time at a distance from the origin bigger
than r1 = ‖s1‖; furthermore numerically we find that the graph is monotone with α.
For ζ ∈ P+ ∩ G ∩ E the family Yζ is 1-parametric and can be parameterized by

α as in (31). Again the key in establishing the global phase portrait is the relative
position between the separatrices WE(s

1) and UE(s
0). We study this numerically using

Taylor methods of higher order with sufficiently accuracy. Let Σ denote the bisection
line between the rays R0 and R+; hence Σ is the ray determined by the angle (π −
arctan (1/α))/2. Let wα denote the first intersection of the separatrix WE(s

1) with Σ
in backward time and let uα denote the first intersection of the separatrix UE(s

0) with
Σ in forward time. Then ∆(α) = ‖uα‖ − ‖wα‖ measures the distance between the
separatrices WE(s

1) and UE(s
0) along Σ and is found numerically by Taylor methods

of sufficiently high accuracy. The graph of the numerically obtained function ∆ is
pictured in Figure 31. In particular for α = 1/

√
3 we find numerically that this distance
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(a) (b)

Figure 30. Relative positions of the separatrices UI(s
1) and WE(s

0) in
case 4G,lu determined by uα and wα and whose graphs are drawn respec-
tively in (a) and (b).

is 0 and so that there is a connection between the cusps s0 and s1, as we also found
analytically for the Hamiltonian case 4G,Hd . For α 6= 1/

√
3 this graph depicts the relative

position of the separatrices WE(s
1) at the saddle-node s1 and UE(s

0) at the cusp s0.
As a consequence in case α < 1/

√
3 the separatrix WE(s

1) intersects the ray R0 in
backward time on the right of s0, while for α > 1/

√
3 it does so on the left of s0. Using

the symmetry of Yζ the global phase portraits are uniquely determined by the local ones

4G,ld and 4G,rd for α < 1/
√
3 and α > 1/

√
3 respectively as drawn in Figure 28.

Figure 31. Graph of the distance between the intersection of the sepa-
ratrices WE(s

1) and UE(s
0) with the line of slope (π− arctan (1/α))/2 in

case 4Gd .

7.6. Global bifurcation diagram in P+. From the previous sections we know that
the global bifurcation diagram is obtained from the local one adding the bifurcation
surfaces I,J ,K and L. Here we concentrate on slices of the global bifurcation diagram
for fixed λ > 0 in the (α, γ)-plane. As seen in Figure 7, the slices of the local bifurcation
diagram for fixed λ do not change qualitatively in the region γ > γ∗(λ), where

γ∗(λ) =
λ+ 2 +max{γ0, λ− 2}

2

and γ0(λ) the unique positive solution of γ3− 4γ− 8λ = 0. It does so for γ < γ∗(λ) and
adding the global bifurcation curves there are 7 typical slices to be distinguished. Then
the slices of the global bifurcation diagram for fixed λ is presented over Figures 32 and
33 for {α > 0, γ ≥ γ∗(λ)} and {α > 0, 0 < γ ≤ γ∗(λ)} respectively. In both figures an-
alytically obtained curves are drawn by continuous lines and numerically obtained ones
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by dashed lines. The different bifurcation regions are identified by the corresponding
global phase portraits as they are referred to in Propositions 19, 20, 21, 22 and 23 and
the corresponding figures. Notice furthermore that the phase portraits nu (resp. nd)
are included in γ ≥ γ∗(λ) (resp. 0 < γ ≤ γ∗(λ)).
The typical slice of the global bifurcation diagram for fixed λ > 0 restricted to

{α > 0, γ ≥ γ∗(λ)} is obtained from the local one adding the corresponding slices of I
and L, that we found in (30). These curves are obtained numerically for some concrete
values of λ, for which each of these curves show the typical behavior drawn in Figure 32.
In particular we find that L is very close to H, which makes its search more delicate.
Both bifurcation surfaces originate from 7H

0

u , both having one branch in Hl and one in
Hr. The branch of I in Hl dies in G and the branch of L in Hr dies in F .

Figure 32. Characteristic slice of the global bifurcation diagram for
fixed λ > 0 restricted to {α > 0, γ ≥ γ∗(λ)}.

Next the slices of the global bifurcation diagram for fixed λ > 0 restricted to {α >
0, 0 < γ < γ∗(λ)} are obtained from the local one adding J and K as we found in (29).
These curves are obtained numerically for some concrete values of λ. Depending to
which λ-range it belongs, the curves J and K are present and have the typical behavior
shown in Figure 33. Furthermore we found that the curves K and H are very close and
their distance decreases with increasing λ, as is shown in Figure 26. In fact we can be
more precise. From the zoom in Figure 23 it is seen that the slice of J in G presents
a minimum λ∗ in the (α, λ)-plane. This λ∗ is approximately equal to 5.98323 and it is
taken by α∗ ≈ 0.59405. For 0 < λ < λ∗ the bifurcation diagram is determined by the
local one. For λ ≥ λ∗ the bifurcation surfaces J and K appear. In Figure 26 it is seen
that besides the fact that the curves H and K are very close also the distance between
them decreases for increasing λ.
For λ > 6 the bifurcation surfaces originate from 7H

0

d , both having one branch in
Hl ending in E while J also has a branch in Hr ending in G. In particular, based on
Figure 33, it can be concluded that there is only 1 phase portrait for 5G,ld and for 6rd by
arguments of continuity as was observed in Section 7.4. Indeed the other possibilities
for 5G,ld (resp. 6rd) would appear by continuity from 3d to 7l

+

d (resp. 5rc to 7r
−

d ), that are
separated by an open set having another configuration.
When λ decreases, the area of the region 7ld (resp. 7r

−

d ) shrinks and collapses to the

point 4G,Hd for λ = 6 (resp. 5G,r
0

d for λ = λ∗) to disappear for λ < 6 (resp. λ < λ∗).
Besides in Figures 32 and 33 these facts are also seen in Figures 23, 26 and 27, where

the slices of I and J in G, the slices of J and K in E , and the slice of L in F respectively
are shown in the (α, λ)-plane. Notice that in Figure 26 (resp. 27) the global bifurcation
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diagram is shown when restricting to E (resp. F), that are included in {0 < γ ≤ γ∗(λ)}
(resp. {γ ≥ γ∗(λ)}). In particular in Figure 26 the global bifurcation diagram is shown
in terms of (α, λ) when restricting to the plane E . Fixing λ > 0 in Figure 26 we can follow
the mutual intersections of the bifurcation surfaces with E for increasing α. This way,
for λ > 6, increasing α along E the bifurcation surfaces G,J ,K and H are subsequently
met. For λ = 6, increasing α along E only the joint intersection of G and H is passed
by. For 4 < λ < 6, increasing α along E only the bifurcation surface G is met, while for
0 < λ ≤ 4, α > 0 there are no bifurcation surfaces met.
Similarly in Figure 27 the global bifurcation diagram is shown when restricting to the

plane F . Fixing λ > 0 we also see the mutual intersections of the bifurcation surfaces
with F for increasing α, that are subsequently G,H and L.
However in Figure 23 both γ ≥ γ∗(λ) and 0 < γ ≤ γ∗(λ) are present. To distinguish

these cases we notice the following. For fixed λ > 0 there exists a unique α∗(λ) such that
(α∗(λ), γ∗(λ), λ) ∈ G and the curve {(α∗(λ), λ) : λ > 0} lies above π2(F ∩ G) but below
π2(H∩G)∪(π2(E ∩G). Then ζ ∈ G∩{γ > γ∗(λ)} if and only if ζ ∈ G∩{0 < α < α∗(λ)},
and ζ ∈ G∩{0 < γ < γ∗(λ)} if and only if ζ ∈ G∩{α > α∗(λ)}. Fixing λ > 0, increasing
α along G, it is seen in Figure 32 the intersection with I and F subsequently, and then
continuing in Figure 33 the intersections with E ,H and J subsequently. The same can
be observed in Figure 23.

8. Conclusions

In the previous sections, Theorems 4 and 5 are proven that deal with the classification
of the phase portraits of Yζ, given in (2), restricted to P±. Furthermore, by slicing the
bifurcation diagram is obtained in both P±. Here, as before, we write ζ = (α, γ, λ) and
we consider the extensions P̄± = P̄1

± ∪ P̄2
±, P̄ = P̄1 ∪ P̄2 and P̄0 in the parameter space

R
3 = P̄ ∪ P̄0, where

P̄1
− = {ζ ∈ R

3 : γ = 0, λ < 0} and P̄2
− = {ζ ∈ R

3 : γλ < 0},
P̄1

+ = {ζ ∈ R
3 : γ = 0, λ > 0} and P̄2

+ = {ζ ∈ R
3 : γλ > 0},

P̄ i = P̄ i
− ∪ P̄ i

+, i = 1, 2 and P̄0 = {ζ ∈ R
3 : λ = 0}.

In this section we extend the bifurcation diagram of Yζ to P̄1, P̄2 ∩ {α = 0}, P̄±
and P̄0, that are described in Propositions 24, 25, 27, 28 and 29 respectively. As a
consequence we obtain Theorem 1 and Corollary 2, that ask for the classification of Yζ
for ζ ∈ P̄ = R

3 \ {λ} and ζ ∈ R
3 = P̄ ∪ P̄0 respectively.

Using results from [9] we obtain the classification on the boundaries P̄1 and P̄2∩{α =
0}. The first boundary is the natural extension of P±, described in [9] as the case of three
rays with aligned singularities, while the second boundary deals with the case of one
simple and one double ray. In both cases by the reversibility property the local phase
portrait determines the global phase portrait completely. In this way the following two
propositions are proven.

Proposition 24. The subfamily of cubic reversible vector fields Yζ for (2) with ζ ∈ P̄1,
has 3 topologically different global phase portraits that are completely determined by the
number of singularities. The classification is listed according to it: 1̄, 2̄ for λ < 0 or
2d for λ > 0 and 3̄, with one, two and three singularities respectively; they happen for
|λ| < 2, |λ| = 2 and |λ| > 2 respectively.



36 M. CAUBERGH AND J. TORREGROSA

6 < λ

λ = 6 λ∗ < λ < 6

λ = λ∗ 4 < λ < λ∗

2 < λ ≤ 4 0 < λ ≤ 2

Figure 33. Characteristic slices of the global bifurcation diagram for
fixed λ > 0 restricted to {α > 0, 0 < γ ≥ γ∗(λ)}.

Proposition 25. The subfamily of cubic reversible vector fields Yζ for ζ ∈ P̄2∩{α = 0},
has 4 topologically different global phase portraits. The classification is listed according
to the number of singularities as follows: 1c for |γ − λ| < 2; 2̄ for γ − λ = −2 or 2u for
γ−λ = 2; 3d for |γ− λ| > 2 and (γ−λ)λ < 0, and 3u for |γ−λ| > 2 and (γ−λ)λ > 0
(up to rotation of 180◦ for γ − λ < 0).

The sign of α does not alter the equations, hence by orthogonal reflection about the
(γ, λ)-plane and using (11), the bifurcation diagram restricted to P± can be extended
to P̄2 ∩ {α 6= 0}. Therefore Proposition 25 gives rise to the following generalization of
Theorems 4 and 5.
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Corollary 26. Theorems 4 and 5 hold true when replacing P± by P̄± respectively.

From Proposition 24 and Corollary 26 we obtain Propositions 27 and 28 establishing
the classification in P̄±.

Proposition 27. The subfamily of cubic reversible vector fields Yζ for ζ ∈ P̄−, has
exactly 5 topologically different global phase portraits, that are drawn in Figure 1. Fur-
thermore the global phase portrait of Yζ is uniquely determined by the number n of
singularities; in particular, up to topological equivalence, the phase portrait is equal to
n̄ with n ∈ {1, 2, 3, 5, 7}.
Proposition 28. Theorem 5 evenly holds when replacing P+ by P̄+. The subfamily of
cubic reversible vector fields Yζ for ζ ∈ P̄+ has at most 53 topologically different global
phase portraits of which at least 46 are realized, and that are drawn in Figures 15, 16,
17, 20, 21, 22, 24, 25 and 28.

Passing from P̄− to P̄+ we pass through P̄0, and find a bifurcation phenomenon that
is already discussed in Section 1 and that is detailed in Proposition 29. Let us therefore
recall from [9] that ∞ represents, for γ > 2, the phase portrait of a global center at
the origin disturbed by a circle of singularities at (−γ/2, 0) and radius γ2/4 − 1. Next
proposition deals with the classification on P̄0, which has already been dealt with in [9].

Proposition 29. The subfamily of cubic reversible vector fields Yζ for ζ ∈ P̄0, is 1-
parametric and has 3 topologically different global phase portraits that are completely
determined by the number of singularities. The classification is listed according to it:
1c, 2u and ∞ for one, two and infinitely many singularities respectively; they happen
for |γ| < 2, |γ| = 2 and |γ| > 2 respectively.

Proof of Theorem 1 and Corollaries 2 and 3. The classification of Yζ in P̄ = R
3 \ P̄0 is

obtained by combining Propositions 27 and 28, noticing that 5̄ and 7̄ are the only ones
in P̄− that do not correspond with any of the ones in P̄+. Then, adding Proposition 29,
Corollary 2 follows. Finally, combining the results from this paper and [8, 9], Corollary 3
follows. Here we take into account that the reversible class in (1) is obtained by adding
the triple case studied in [9] to Propositions 27, 28 and 29. �
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Departament de Matemàtiques. Edifici C. 08193 Bellaterra (Barcelona, Spain)
E-mail address : leen@mat.uab.cat, torre@mat.uab.cat


	1. Introduction
	2. Parameter space
	3. Singularities
	3.1. Singularities along R0
	3.2. Singularities on R
	3.3. Local bifurcation diagram

	4. Periodic, homoclinic and heteroclinic orbits
	5. Global bifurcation diagram in HP
	6. Global bifurcation diagram in P-
	7. Global phase portraits in P+
	7.1. Less than or equal to three singularities
	7.2. Seven singularities
	7.3. Five singularities
	7.4. Six singularities
	7.5. Four singularities
	7.6. Global bifurcation diagram in P+

	8. Conclusions
	References

