

Nonlinear Analysis 36 (1999) 139-149

On a new type of bifurcation of limit cycles for a planar cubic system

J. Chavarriga^{a,*,1}, H. Giacomini^b, J. Giné^a

^aDepartament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69 Campus Cappout 25001 Lleida, Spain

^bLaboratoire de Mathématiques et Physique Théorique CNRS UPRES A6083, Faculté des Sciences et Techniques, Parc de Grandmont - 37200 Tours, France

Received 28 September 1996; received in revised form 18 February 1997; accepted 23 April 1997

Keywords: Bifurcation limit cycles; Center-focus problem

1. Introduction

In this paper we study two-dimensional autonomous differential systems of the form

$$\dot{x} = X(x, y), \quad \dot{y} = Y(x, y),$$
(1.1)

where $X(x, y) = \lambda x - y + X_3(x, y)$ and $Y(x, y) = x + \lambda y + Y_3(x, y)$, X_3 and Y_3 being homogeneous polynomials of third degree.

The most difficult and important problem for planar differential systems is the determination of their limit cycles. Let us recall that a limit cycle is an isolated periodic solution of the system (1.1), see [10].

In a recent paper [5] a new method has been introduced to study the existence and nonexistence of limit cycles of planar vector fields. This method is based on the following result.

Theorem 1. Let (P,Q) be a C^1 vector field defined in the open subset U of \mathbb{R}^2 . Let V = V(x, y) be a C^1 solution of the linear partial differential equation

$$P\frac{\partial V}{\partial x} + Q\frac{\partial V}{\partial y} - \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}\right)V = 0.$$
(1.2)

* Corresponding author. E-mail: chava@eup.udl.es, giacomini@univ-tours.fr, gine@eup.udl.es.

¹ The first author is partially supported by DGICYT grant number PB96-1153.