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that g(z, yn(un)(z)) < 6V € QandVh < hi. Hence up is a f(;‘:asible
control for (Ps,) always that b < h. Then we get Jn,r(Th,) =
In (Bny ) < Ty (ttp,) whenever hy < A7 Thus we have

INTEGRABILITY OF A LINEAR CENTER
PERTURBED BY HOMOGENEOUS POLYNOMIAL

Tp(F) = lim Ju, (Fa) < Him T (i) = ().
Now taking the liinit when j — 00, we obtain that Jr(7) < Jr(re).

Finally, the feasibility of ¥ for (RP;) and the stability condition -
(Definition 2.2) enables us to conclude that :
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inf (RPs) < Jr(F) < }}% Jr(rs) = }fi;n‘ginf (RPs) £

lim inf (P) = inf (Ps) = inf (RPs),
8 6

Abstract. Consider in the plane the ordinary differential equation
gystem of the form

which proves that 7 is a solution of (RP;). The rest of the theorem

1s immediate. ,

"J’t”i
being X{z,y) and Y{(=,y) analytical functions, definite in a certain domain

around the origin and which do not have linear and constant terms in

their power series development. Our objective is the rvesearch of the inte-
grability of these systems.

(1) d=Xe—y+X(z,y), y=e+iy+Y(zy), =
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- The problem starts with the first description that Poincaré [17]
did about the phenomenon of the appearance of one limit cycle in
one ordinary differential equation system. Later it was enunciated




