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Abstract

In this paper we give some properties and conditions for algebraic curves
to be particular solutions of a polynomial differential system. In particular, we
prove that quadratic systems cannot have a quartic algebraic particular solution
composed by two ovals being both limit cycles of the system.

Introduction

We consider the real polynomial differential system
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where P(z,y) and Q(z,y) are coprime real polynomials of degree m, and P;(z,y) and
Qi(z,y) are homogeneous polynomials of degree i = 0, 1,...,m. If m = 2 then system
(1) is called quadratic.

Let f(x,y) = 0 be a real algebraic solution of degree n for system (1), that is

%P(x,y) + %Q(m y) = k(z,y)f(z.y), 2)

where k(z,y) = 37 ¢ ki(z,y) is a polynomial of degree at most m — 1 called cofactor
of f =0 and k;(z,y) are homogeneous polynomials of degree i = 0,1, ...,m — 1. If the
cofactor is identically zero then f(z,y) is a polynomial first integral for system (1).
We say that (z9,y0) is a singular point of system (1) if it satisfies that P(zg,y) =
Q(xo,y0) = 0. A limit cycle of system (1) is an isolated periodic solution in the set of
all periodic solutions of system (1).
Our main objective is to prove the following result:

Theorem 1 A quartic algebraic curve with real coefficients being an algebraic solution
of a quadratic system, cannot have two real ovals that are limit cycles of the systern.

Preliminary Results

We consider the projective coordinates z = X/Z, y = Y/Z. Let f(z,y) = 0 be an
algebraic curve of degree n in the affine complex plane. This equation, in projective
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