On the quartic algebraic solutions of quadratic systems

J. Chavarriga¹

J. Llibre²

J. Sorolla¹

Abstract

In this paper we give some properties and conditions for algebraic curves to be particular solutions of a polynomial differential system. In particular, we prove that quadratic systems cannot have a quartic algebraic particular solution composed by two ovals being both limit cycles of the system.

Introduction

We consider the real polynomial differential system

$$\dot{x} = P(x,y) \equiv \sum_{i=0}^{m} P_i(x,y), \quad \dot{y} = Q(x,y) \equiv \sum_{i=0}^{m} Q_i(x,y),$$
 (1)

where P(x, y) and Q(x, y) are coprime real polynomials of degree m, and $P_i(x, y)$ and $Q_i(x, y)$ are homogeneous polynomials of degree i = 0, 1, ..., m. If m = 2 then system (1) is called *quadratic*.

Let f(x,y) = 0 be a real algebraic solution of degree n for system (1), that is

$$\frac{\partial f}{\partial x}P(x,y) + \frac{\partial f}{\partial y}Q(x,y) = k(x,y)f(x,y), \tag{2}$$

where $k(x,y) = \sum_{i=0}^{n} k_i(x,y)$ is a polynomial of degree at most m-1 called *cofactor* of f=0 and $k_i(x,y)$ are homogeneous polynomials of degree i=0,1,...,m-1. If the cofactor is identically zero then f(x,y) is a polynomial first integral for system (1).

We say that (x_0, y_0) is a *singular point* of system (1) if it satisfies that $P(x_0, y_0) = Q(x_0, y_0) = 0$. A *limit cycle* of system (1) is an isolated periodic solution in the set of all periodic solutions of system (1).

Our main objective is to prove the following result:

Theorem 1 A quartic algebraic curve with real coefficients being an algebraic solution of a quadratic system, cannot have two real ovals that are limit cycles of the system.

Preliminary Results

We consider the projective coordinates x = X/Z, y = Y/Z. Let f(x, y) = 0 be an algebraic curve of degree n in the affine complex plane. This equation, in projective