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Abstract. The cyclicity of period annuli of some classes of reversible and
non-Hamiltonian quadratic systems under quadratic perturbations are studied.
The argument principle method and the centroid curve method are combined
to prove that the related Abelian integral has at most two zeros.

1. Introduction. As a part of the study of Hilbert’s 16th problem, many authors
considered the quadratic perturbations of quadratic centers. If the quadratic cen-
ters belong to the Hamiltonian class, then the study of the number of limit cycles
bifurcating from a period annulus or annuli (i.e. the weak Hilbert’s 16th problem
for n = 2) is finished, and the study of the number of limit cycles bifurcating from
singular loop, or from infinity is partially finished, see [7, 10, 27, 6, 17, 2, 11, 12,
8, 28, 29, 3, 15, 9, 16]. If the quadratic centers belong to the reversible class (and
do not belong to the Hamiltonian class), then the study seems very difficult, and
known results are very limited (see a list after Remark 1.1, and see [24] for more
information about the weak Hilbert’s 16th problem).

In the present paper we shall study perturbations of some classes of generic
quadratic reversible and non-Hamiltonian systems. In [22, 30] a classification is
given for integrable quadratic systems with at least one center. Following [13], such
systems can be classified into five classes in the complex form:

(i) ż = −iz − z2 + 2|z|2 + (b̄ + ic̄)z̄2, Hamiltonian (QH
3 )

(ii) ż = −iz + āz2 + 2|z|2 + b̄z̄2, reversible (QR
3 )

(iii) ż = −iz + 4z2 + 2|z|2 + (b̄ + ic̄)z̄2, |b̄ + ic̄| = 2, codimension four (Q4)

(iv) ż = −iz + z2 + (b̄ + ic̄)z̄2, generalized Lotka − Volterra (QLV
3 )

(v) ż = −iz + z̄2. Hamiltonian triangle
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