
Z2-EQUIVARIANT LINEAR TYPE BI-CENTER CUBIC

POLYNOMIAL HAMILTONIAN VECTOR FIELDS

TING CHEN1, SHIMIN LI1,∗ AND JAUME LLIBRE2

Abstract. We study the global dynamical behavior of Z2-equivariant cubic
Hamiltonian vector fields with a linear type bi-center at (±1, 0). By using a

series of symbolic computation tools, we obtain all possible phase portraits of
these Z2-equivariant Hamiltonian systems.

1. Introduction and statement of the main results

In the qualitative theory of planar vector fields the analysis when an equilibrium
point p is either a center or a focus is one of the classical problems. We called it the
center problem or the center-focus problem. Poincaré [30] and Dulac [14] defined
that an equilibrium point p of a vector field in R2 is a center if it has a neighborhood
U filled with periodic orbits with the unique exception of this equilibrium point.
And a center p is global if R2 \ {p} is filled with periodic orbits.

For polynomial vector fields the equilibrium point p in R2 is called elementary
if at least one of the eigenvalues of the Jacobian matrix (or the linear part) at
this point is nonzero, otherwise it is called non-elementary. We say that a non-
elementary equilibrium point is nilpotent if its two eigenvalues are zero but its
Jacobian matrix is not identically zero, and degenerate when the Jacobian matrix
is identically zero. Correspondingly, if a polynomial vector field in R2 has a center
at the origin, after making a time rescaling and a linear change of variables, this
system can be written as

(1) ẋ =
n∑

k=1

Xk(x, y), ẏ =
n∑

k=1

Yk(x, y),

where {̇} := d/dt, t is the time,

(2) (X1(x, y), Y1(x, y)) =


(0, 0) ,

(y, 0) ,

(−y, x) ,

Xk(x, y) and Yk(x, y) are real homogeneous polynomials of degree k (k ≥ 2) in
x and y. Then the center at the origin is called a degenerate center, a nilpotent
center and a linear type center when (X1, Y1) satisfies the right hand side of (2)
respectively. Some algorithms for the characterization of these three type centers
have been studied in [5, 11, 17, 26, 31].
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As we know, a great deal of work has been done for the classifications of centers
for the vector fields in R2 during more than a century. The center problem of
quadratic polynomial systems started with the results of Bautin [4], Kapteyn [18, 19]
and Zoladek [38]. The classification of centers for some cubic polynomial vector
fields were studied in [1, 8, 27, 34] and references therein. But it is very difficult to
provide the complete characterization of the centers for all cubic polynomial vector
fields, and it is unsolved problem. There has been partial results about the centers
of the quartic and the quintic polynomial vector fields (see [6, 7]). Recently, the
phase portraits of some cubic Hamiltonian vector fields with a nilpotent center or
a linear type center at the origin were classified in [12, 13, 16].

However there are very few families of the vector fields about the existence of
multiple centers. In this work we study a class of planar Zq-equivariant polynomial
vector fields, whose phase portraits are unchanged by a rotation of 2π/q radians
around one point, where q is a positive integer. The study of Zq-equivariant poly-
nomial systems is very importance for the Hilbert’s 16th problem, for more details
see [20, 21, 22]. Yu and Han [36, 37], Liu and Huang [24] studied the limit cycle
bifurcations for several classes of Z2-equivariant cubic polynomial systems. On the
other hand we say that Zq-equivariant polynomial systems have a bi-center at the
equilibrium points p1 and p2 if these two equilibrium points are both centers. We
will call it the bi-center problem. The authors of [23, 32] studied the bi-center
problem for some Z2-equivariant polynomial systems. Chen et al. [9] investigated
the local critical bifurcation in a class of Z2-equivariant cubic polynomial systems
with a bi-center. But they did not provide the corresponding phase portraits of
these vector fields.

To characterize the phase portraits of a planar polynomial vector field in the
Poincaré disc, we need to know the local phase portraits of the infinite and fi-
nite equilibria of these systems using the Poincaré compactification. And we will
introduce a series of methods to characterize the equilibria of the polynomial sys-
tems. Then we apply these methods to study the global dynamics of a class of Z2-
equivariant cubic Hamiltonian vector fields with a linear type bi-center at (±1, 0),
described by

(3)
ẋ =− (1 + a21)y + a21x

2y − 3b03xy
2 + a03y

3,

ẏ =− x+ x3 − a21xy
2 + b03y

3.

In Section 3 we will show how to obtain the Z2-equivariant cubic Hamiltonian
systems (3).

For determining the global flow of these polynomial vector fields we need to
characterize their separatrices. The separatrices in the Poincaré disc D2 include all
the finite equilibria, all the infinite orbits, all the limit cycles, and all the separatrices
of the hyperbolic sectors of the infinite and finite equilibria. If we denote by Σ the
closed set formed by all the separatrices of the vector field, the components of D2\Σ
are called the canonical regions. The separatrix squeleton of a polynomial vector
field is formed by Σ union one orbit for each canonical region. The phase portraits
of two polynomial vector fields in the Poincaré disc are topological equivalent if
and only if the two corresponding separatrix squeletons are topological equivalent,
see for more details [29]. We denote by s the number of separatrices, by r the
number of canonical regions. For more details about the Poincaré compactification



Z2-EQUIVARIANT LINEAR TYPE BI-CENTER CUBIC HAMILTONIAN SYSTEMS 3

see [10, 15]. And in the phase portraits of the following theorem a line of the form
“ · · · · · · ” denotes that it is filled of equilibria of a Hamiltonian system (3). We state
the main result of this paper.

Theorem 1.1. The phase portraits in the Poincaré disc of the Z2-equivariant cubic
Hamiltonian systems (3) with a linear type bi-center at (±1, 0) are topologically
equivalent to the 36 phase portraits described in Figures 1 and 2.

In the next section we will give some preliminaries about the Poincaré compacti-
fication for analyzing the equilibrium points. In Section 3 we provide how to obtain
the Z2-equivariant cubic Hamiltonian systems (3). In Section 4 we characterize the
global phase portraits of systems (3) in the Poincaré disc, that is we prove Theorem
1.1.

2. Preliminaries

In this section we introduce some preliminaries about the Poincaré compactifi-
cation and the equilibria. These are described in Chapter 5 of [15]. This compact-
ification is very helpful for studying the phase portraits of the planar polynomial
vector fields.

We denote by R2 the plane in R3 defined with the points s = (s1, s2, s3) =
(x1, x2, 1). Let P (R2) be the set of the polynomial vector fields X in R2 of the form

(4) (ẋ1, ẋ2) = (X(x1, x2), Y (x1, x2)).

The degree d of X equals max{degX,deg Y }. Let S2 = {s ∈ R3 : s21 + s22 + s23 = 1}
be the Poincaré sphere. The plane R2 is tangent to S2 at the point (0, 0, 1). We
denote by S1 = {s ∈ S2 : s3 = 0} the equator of S2 which corresponds to the
infinity of R2. For the Poincaré compactification p(X ) of X one close disc D2 =
{s ∈ R2 : s21 + s22 ≤ 1} is called the Poincaré disc. The equilibria in D2 lying
on S1, i.e. the boundary of the disc D2, are the corresponding infinite equilibria
of X . The equilibria in the interior of the Poincaré disc, i.e. on D2 \ S1, are
the corresponding finite equilibria of X . Then we provide the expressions of the
Poincaré compactification for the polynomial differential systems.

In order to draw the phase portraits of the infinite equilibria of S1 we only need
to consider the local charts Ui = {s ∈ D2 : si > 0} and Vi = {s ∈ D2 : si < 0}, for
i = 1, 2, with the corresponding diffeomorphisms

(5) φi : Ui → R2, ψi : Vi → R2,

defined by

φi(s) = −ψi(s) = (
sm
si
,
sn
si

) = (u, v)

for m < n and m,n ̸= i. Thus (u, v) will play different roles in these two local
charts. The expression of p(X ) in U1 is

(6) (u̇, v̇) = (vd(Y1 − uX1),−vd+1X1),

where X1 = X(1/v, u/v) and Y1 = Y (1/v, u/v). In U2 it is

(7) (u̇, v̇) = (vd(X2 − uY2),−vd+1Y2),
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1.4 s=29, r=8;1.3 s=29, r=9;1.2 s=21, r=7;1.1 s=
�
, r=4;

1.8 s=37, r=11;1.7 s=35, r=12;1.6 s=33, r=10;1.5 s=33, r=11;

1.12 s=9, r=3;1.11 s=13, r=3;1.10 s=39, r=12;1.9 s=37, r=10;

1.16 s=21, r=7;1.15 s=18, r=6;1.14 s=10, r=4;1.13 s=6, r=3;

1.23 s=27, r=8;

1.20 s=41, r=14;1.19 s=39, r=12;1.18 s=41, r=14;

1.24 s=37, r=14.1.22 s=27, r=9;1.21 s=23, r=8;

1.17 s=25, r=7;

Figure 1. The topological phase portraits 1.1-1.24 in the Poincaré
disc of Theorem 1.1.
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1.28 s=31, r=11;

1.29 s=31, r=10; 1.30 s=33, r=12;

1.33 s=14, r=7; 1.35 s=23, r=9; 1.36 s=18, r=8.

1.32 s=19, r=8;

1.26 s=37, r=14; 1.27 s=21, r=6;

1.31 s=13, r=6;

1.34 s=10, r=5;

1.25 s=35, r=12;

Figure 2. The topological phase portraits 1.25-1.36 in the
Poincaré disc of Theorem 1.1.

where X2 = X(u/v, 1/v) and Y2 = Y (u/v, 1/v). It is sufficient to study the equi-
libria at U1|v=0 and at the origin of U2 for studying all the infinite equilibria of X .
The expressions of p(X ) in Vi, i = 1, 2 are those in Ui multiplied by (−1)d−1. Note
that if s ∈ S1 is an infinite equilibrium point, −s ∈ S1 is also an infinite equilibrium
point. Hence the number of infinite equilibria is even.

Next we introduce the topological index of an equilibrium point, which is one
useful tool to determine the type of the equilibria. Here we will present two impor-
tant theorems, the Index Poincaré Formula and the Poincaré–Hopf Theorem, for
more details see Chapter 6 of [15].

Theorem 2.1. We denote by p an isolated equilibrium point with the finite sectorial
decomposition property. Let q, h and e be the number of parabolic, hyperbolic and
elliptic sectors of p, respectively. Then the topological index of the equilibrium point
p equals 1 + (e− h)/2.

Corollary 2.2. The topological indices of a center, a cusp, a saddle and a node
equal 1, 0, −1 and 1, respectively.

Theorem 2.3. For any continuous vector field on the sphere S2 with finitely many
equilibria, the sum of their topological indices is 2.
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3. Obtaining systems (3)

Without loss of generality the Z2-equivariant cubic Hamiltonian systems here
considered are obtained from the differential systems

(8)
ẋ =a10x+ a01y + a03y

3 + a12xy
2 + a21x

2y + a30x
3 = X(x, y),

ẏ =b10x+ b01y + b03y
3 + b12xy

2 + b21x
2y + b30x

3 = Y (x, y).

Suppose (±1, 0) are two equilibrium points of systems (8). Then we have

(9) a10 = −a30, b10 = −b30,

and the Jacobian matrix of systems (8) at (±1, 0) is given by

(10) J =

(
2a30 a01 + a21
2b30 b01 + b21

)
.

Proposition 3.1. Assume a10 = −a30 and b10 = −b30. The equilibrium points
(±1, 0) are two linear type centers of Hamiltonian systems (8) if and only if

a12 + 3b03 = a21 + b12 = 3a30 + b21 = b01 − a30 = 0,

and 2a230 + (a01 + a21)b30 < 0.

Proof. If the equilibrium points (±1, 0) are two linear type centers of systems (8),
we have the trace and the determinant of (10) at (±1, 0) are zero and positive,
respectively. Thus, we obtain b01 = −b21 − 2a30 and 2a230 + (a01 + a21)b30 < 0.

Next, let H(x, y) be the quartic Hamiltonian of systems (8). To find this Hamil-
tonian, we integrate X(x, y) of (8) with respect to y and obtain

(11)
H1(x, y) =f(x) +

∫
X(x, y)dy

=f(x)− a30xy + a30x
3y +

a01
2
y2 +

a21
2
x2y2 +

a12
3
xy3 +

a03
4
y4,

for some real polynomials f . And we integrate Y (x, y) of (8) with respect to x and
obtain

(12)

H2(x, y) =g(y)−
∫
Y (x, y)dx

=g(y) +
b30
2
x2 − b30

4
x4 + (2a30 + b21)xy −

b21
3
x3y

− b12
2
x2y2 − b03xy

3,

for some real polynomials g. Equating H1(x, y) to H2(x, y) we obtain

(13) a12 + 3b03 = a21 + b12 = 3a30 + b21 = 0,

f(x) = b30x
2/2−b30x4/4 and g(y) = a01y

2/2+a03y
4/4. Therefore the statement of

this proposition holds if and only if (13), b01 = a30 and 2a230+(a01+a21)b30 < 0. �

Then we take a30 = 0, a01 + a21 = −1 and b30 = 1, so that systems (8) become
the Z2-equivariant cubic Hamiltonian systems (3) having the Hamiltonian

(14) H(x, y) =
1

2
x2 − 1

4
x4 − 1 + a21

2
y2 +

a03
4
y4 +

a21
2
x2y2 − b03xy

3.
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Doing the transformation

(15) x =

√
2x1
2

+ 1, y = y1, t =
√
2τ

systems (3) can be written as

(16)
x′1 =− y1 +

√
2a21x1y1 +

a21
2
x21y1 − 3b03y

2
1 −

3
√
2b03
2

x1y
2
1 + a03y

3
1 ,

y′1 =x1 +
3
√
2

4
x21 +

1

4
x31 −

√
2a21
2

y21 −
a21
2
x1y

2
1 +

√
2b03
2

y31 ,

where {′} := d/dτ . Note that the equilibrium point (1, 0) of systems (3) corresponds
to the origin of systems (16), which is a center-focus type point.

Since the flow of Hamiltonian systems preserves the area, any finite equilibrium
point of Hamiltonian systems must be either a center, or a union of an even number
of hyperbolic sectors. In particular, any finite nilpotent equilibrium point of Hamil-
tonian systems is either a cusp, a center or a saddle, for more details see Theorem
3.5 of [15]. Then the equilibrium points (±1, 0) of systems (3) cannot be foci, so
that they are two linear type centers. In addition we do not need to determine
the limit cycles of systems (3) because the existence of Hamiltonian prevents the
existence of limit cycles.

4. Global phase portraits of systems (3)

Note that we can assume b03 ≥ 0 because the Z2-equivariant cubic Hamiltonian
systems (3) are invariant under the following transformation

(x, y, t, a21, a03, b03) → (−x, y,−t, a21, a03,−b03).

Thus we study the phase portraits of systems (3) in two different cases b03 = 0 and
b03 > 0.

4.1. Phase portraits when b03 = 0. Systems (3) are

(17)
ẋ =− (1 + a21)y + a21x

2y + a03y
3,

ẏ =− x+ x3 − a21xy
2.

It is easy to see that systems (17) are symmetric with respect to the x-axis and the
y-axis. We calculate the resultant of ẋ and ẏ with respect to x, and obtain

(18) Res[ẋ, ẏ, x] = y3(−1− a21 + a03y
2)(−1 + a03y

2 + a221y
2)2.

For (18) to be identically zero, it needs a21 = −1 and a03 = 0. Then systems (17)
have non-isolated equilibrium points. Thus, we consider the following two subcases
a203 + (a21 + 1)2 = 0 and a203 + (a21 + 1)2 ̸= 0.

4.1.1. Subcase a203 + (a21 + 1)2 = 0. Then systems (17) become

(19)
ẋ =− x2y,

ẏ =− x+ x3 + xy2.
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Figure 3. The phase portrait of system (20).

And the y-axis is filled of equilibrium points of system (19). By the rescaling time
dt = xdτ system (19) is given by

(20) x′ = −xy, y′ = −1 + x2 + y2,

which has one invariant straight line x = 0. Thus, we can analyze the phase portrait
of (20) for studying the associated Hamiltonian system (19).

First we study the infinite equilibria of (20) using the Poincaré compactification.
In the local chart U1 system (20) becomes

(21) u′ = 1 + 2u2 − v2, v′ = uv.

When v = 0 system (21) has no equilibrium points. In the local chart U2 system
(20) writes

(22) u′ = −u(2 + u2 − v2), v′ = v(−1− u2 + v2).

The origin of (22) is an equilibrium point, which is an attracting node. Hence
system (20) has only two infinite equilibrium points, the origins of the local charts
U2 and V2. Since the degree of system (20) is 2, the flow in a neighborhood of the
origin of V2 has the opposite sense with respect to the flow in a neighborhood of
the origin of U2. This completes the local phase portraits at the infinite equilibria
of system (20).

Next we study the finite equilibria of system (20). System (20) has two equilibria
p3,4 = (0,±1) different from the bi-center at p1,2 = (±1, 0). Since the eigenvalues of
the Jacobian matrix of (20) at p3 are λ1 = 2 and λ2 = −1 the equilibrium point p3 is
a saddle. Similarly we have that p4 is also a saddle. Since the y-axis is an invariant
straight line and system (19) has no more finite equilibrium points, the saddles
p3,4 must be on the boundary of the region formed by all the period annuluses
surrounding the center p1, this region is called the period annulus of the center p1.
In short, by the symmetries with respect the x-axis and the y-axis we obtain that
the phase portrait of system (20) is the one shown in Figure 3. Going back to the
Z2-equivariant cubic Hamiltonian system (19), the y-axis is filled of equilibrium
points of system (19), and due to the rescaling time dt = xdτ the orbits of system
(19) has the opposite orientation with respect to the ones of system (20) in the
region x < 0. Consequently, the global phase portrait of system (19) in Poincaré
disc is topologically equivalent to the one 1.1 of Figure 1.
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4.1.2. Subcase a203 + (a21 + 1)2 ̸= 0. Using (6) systems (17) in the local chart U1

become

(23)
u̇ =1− 2a21u

2 − v2 − a03u
4 + (1 + a21)u

2v2,

v̇ =uv(−a21 − a03u
2 + v2 + a21v

2).

Then the infinite equilibria (u, 0) of systems (23) in the local chart U1 must satisfy
1− 2a21u

2 − a03u
4 = 0. Moreover the Jacobian matrix of systems (23) at (u, 0) is

(24) M =

(
−4u(a21 + a03u

2) 0
0 −u(a21 + a03u

2)

)
.

Proposition 4.1. For systems (23) with a203 + (a21 + 1)2 ̸= 0 the following state-
ments hold.

(I) If a03 < −a221 and a21 > 0, or a03 ≤ 0 and a21 ≤ 0 systems (23) have no
infinite equilibrium points.

(II) If a03 > 0 systems (23) have two infinite equilibrium points A1,2, which are
an attracting node and a repelling node, respectively.

(III) If a03 = 0 and a21 > 0 systems (23) have two infinite equilibrium points
(±

√
2a21/2a21, 0), which are an attracting node and a repelling node, re-

spectively.
(IV) If 0 > a03 > −a221 and a21 > 0 systems (23) have four infinite equilib-

rium points A1,2,3,4, where A1,4 are two attracting nodes and A2,3 are two
repelling nodes.

(V) If a03 = −a221 and a21 > 0 systems (23) have two infinite equilibrium points
(±√

a21/a21, 0), whose local phase portraits both consist of two hyperbolic
sectors, see Figure 4(c).

Here we have

A1,2 = (±
√
(−a21 +

√
a03 + a221)/a03, 0)

and

A3,4 = (±
√
(−a21 −

√
a03 + a221)/a03, 0).

Proof. Statements (I) to (IV) are easy to prove. They just need to check the roots
of 1− 2a21u

2 − a03u
4 = 0 and compute the traces and the determinants of (24) at

these equilibrium points.

Now we consider case (V). If a03 = −a221 and a21 > 0 the infinite equilibrium
points (±√

a21/a21, 0) are degenerate. In order to study the local phase portraits of
these two infinite equilibria we need to do some changes of variables called blow-up’s,
for a detailed introduction to the blow-up’s changes see for instance [2]. Due to the
symmetries of the systems we only need to analyze the local phase at the equilibrium
point (

√
a21/a21, 0). Doing the change of variables (u, v) → (u +

√
a21/a21, v) the

equilibrium point (
√
a21/a21, 0) is translated to the origin of coordinates, and we

obtain the systems

(25)

u̇ =1− 2a21(u+
√
a21/a21)

2 + a221(u+
√
a21/a21)

4 − v2

+ (u+
√
a21/a21)

2v2 + a21(u+
√
a21/a21)

2v2,

v̇ =v(u+
√
a21/a21)(−a21 + a221(u+

√
a21/a21)

2 + v2 + a21v
2).
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u

w

 

(a)

u

w

 

(b)

u

v

(c)

Figure 4. Blow-up at the origin of (25). (a) Systems (27); (b)
Systems (26); (c) Systems (25).

We do the blow-up (u, v) → (u,w) with w = v/u for analyzing the local phase
portrait at the origin of systems (25). And we obtain the systems

(26)

u̇ =
1

a21
u2(4a221 + w2 + 4a221

√
a21u+ 2

√
a21w

2u+ 2a21
√
a21w

2u+ a321u
2

+ a21w
2u2 + a221w

2u2),

ẇ =− 1

a21
wu2(2a221 + w2 + a221

√
a21u+

√
a21w

2u+ a21
√
a21w

2u).

By the rescaling of the time dt = a21dτ/u
2 we have

(27)

u′ =4a221 + w2 + 4a221
√
a21u+ 2

√
a21w

2u+ 2a21
√
a21w

2u+ a321u
2

+ a21w
2u2 + a221w

2u2,

w′ =− w(2a221 + w2 + a221
√
a21u+

√
a21w

2u+ a21
√
a21w

2u).

Systems (27) have no equilibrium points for u = 0. Thus we study the local
phase portrait in the neighborhood of u = 0. Note that u′|w=0 = 4a221 + O(u)
showing that the flow is increasing in the direction u, and w′|u=0 = −2a221w+O(w2)
showing that the flow is decreasing and increasing in the direction w when w > 0
and w < 0 (see Figure 4(a)). Going back through the changes of variables until
systems (25), as in the pass from systems (27) to systems (26) does not change
the orientation of flows of systems (26) except that u = 0 is filled with equilibrium
points, see Figure 4(b). And taking into account the behavior of the flows on the
axes u̇|v=0 = a21u

2(2 +
√
a21u)

2 > 0 and v̇|u=0 =
√
a21(1 + a21)v

3/a21, we obtain
that the phase portrait at the origin of systems (25) consists of two hyperbolic
sectors (see Figure 4(c)). �

We proceed to study when the origin of the local chart U2 is an infinite equilib-
rium. Systems (17) in the local chart U2 acquire the form

(28) u̇ = a03 + 2a21u
2 − u4 − (1 + a21)v

2 + u2v2, v̇ = uv(a21 − u2 + v2).

Proposition 4.2. For systems (28) with a203 + (a21 + 1)2 ̸= 0 the following state-
ments hold.

(I) If a03 ̸= 0 systems (28) have no infinite equilibrium points.
(II) If a03 = 0 systems (28) have an infinite equilibrium point at the origin.

Furthermore:
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u

w

u

w

(a)

u

v

u

v

u

v

(b)

Figure 5. Blow-up at the origin of (28) with a21 ̸= 0. (a) Systems
(29) with a21 > 0 and a21 < 0 respectively; (b) Systems (28) with
a21 > 0, −1 < a21 < 0 and a21 < −1 respectively.

(II.1) If a21 > 0 or a21 < −1 the local phase portrait at the origin of systems
(28) consists of two parabolic sectors and two elliptic sectors, see the first
or the third picture in Figure 5(b), respectively.
(II.2) If −1 < a21 ≤ 0 the local phase portrait at the origin of systems (28)
consists of two hyperbolic sectors, see the second picture in Figure 5(b).

Proof. Obviously the origin of systems (28) is not an infinite equilibrium point
when a03 ̸= 0.

If a03 = 0 the origin of systems (28) is a degenerate equilibrium point. In order
to study its local phase portrait we apply the directional blow-up (u, v) → (u,w)
with w = v/u and the rescaling of the time dt = dτ/u2, then systems (28) become

(29) u′ = 2a21 − u2 − w2 − a21w
2 + u2w2, w′ = w(−a21 + w2 + a21w

2).

When a21 ̸= 0 systems (29) have no equilibrium points for u = 0, therefore
we study the local phase portrait in a neighborhood of the origin. Since u′|w=0 =
2a21−u2 and w′|u=0 = −a21w+O(w3), the local phase portrait at the origin of (29)
is given by Figure 5(a) when a21 > 0 and a21 < 0. Going back through the change
of variables until systems (28) and taking into account the flow of systems (28) on
the axes we have u̇|u=0 = −(1 + a21)v

2, u̇|v=0 = 2a21u
2 + O(u4) and v̇|u=0 = 0.

Then we obtain that the local phase portrait at the origin of the chart U2 consists
of two parabolic and two elliptic sectors when a21 > 0 or a21 < −1, and it consists
of two hyperbolic sectors when −1 < a21 < 0, see Figures 5(b).

When a21 = 0 systems (29) have one equilibrium point (0, 0) for u = 0, which is
degenerate. Again we apply the blow-up (u,w) → (u, V ) with V = w/u and obtain

(30) u′ = −1− V 2 + u2V 2, V ′ = V (1 + V 2 + uV 2 − u2V 2),
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u

V

(a)

u

w

 

(b)

u

v

(c)

Figure 6. Blow-up at the origin of (28) with a21 = 0. (a) System
(30); (b) Systems (29); (c) Systems (28).

I

V

VIVII

II

III

IV

0 a21

a03

−1

Figure 7. The bifurcation diagram of the infinite equilibrium
points of systems (17) with a203 + (a21 + 1)2 ̸= 0.

by a rescaling of the time dt = dτ/u2. Taking u = 0 system (30) has no equilibrium
points. We reconstruct the flow through these changes of variables to obtain the
local phase portrait of the origin of systems (28), and obtain that it consists of two
hyperbolic sectors, see Figure 6. �

In summary the polynomial differential systems (17) have at most eight equilib-
rium points at infinity. And the bifurcation diagram of these infinite equilibria is
shown in Figure 7, and the results for the infinite equilibria are listed in Table 1.
Here we denote by C, S, N, H and E the center, the saddle, the node, the equilib-
rium point whose local phase portrait consists of two hyperbolic sectors, and the
equilibrium point whose local phase portrait consists of two parabolic sectors and
two elliptic sectors, respectively. Note that the degree of systems (17) is odd, the
flow in the local chart Vi (i = 1, 2) has the same sense as in the local chart Ui.

Now we shall study the finite equilibria of systems (17). These systems have
the third finite equilibrium point p3 = (0, 0), which is a center or a saddle when
a21 < −1 or a21 > −1, respectively. If a21 = −1 the origin p3 is nilpotent. Doing
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Table 1. The results for the infinite equilibrium points of systems
(17) with a203 + (a21 + 1)2 ̸= 0.

Regions Isolated infinite equilibria Conditions
I 2 attracting N, 2 repelling N a03 > 0

II 2 attracting N, 2 repelling N, 2 E a03 = 0, a21 > 0

III 2 H a03 = 0, −1 < a21 ≤ 0

IV 2 E a03 = 0, a21 < −1

V 4 attracting N, 4 repelling N a21 > 0, −a221 < a03 < 0

VI 4 H a21 > 0, a03 = −a221
VII 0 a03 < 0, a21 < 0

or a21 > 0, a03 < −a221

the change of time t→ −t systems (17) become

(31)
ẋ =(x2 − a03y

2)y = H(x, y),

ẏ =x(1− x2 − y2) = x+G(x, y).

Therefore x = 0 is one solution of x+G(x, y) = 0 in a neighborhood of the origin
of systems (31). Then we have

H(0, y) = −a03y3

and (
∂H

∂x
+
∂G

∂y

)∣∣∣∣
(0,y)

= 0.

From Theorem 3.5 of [15] we have that p3 is a center or a saddle when a03 > 0 or
a03 < 0, respectively.

In addition if (1 + a21)a03 > 0 systems (17) have the fourth and the fifth finite

equilibrium points p4,5 = (0,±
√
(1 + a21)a03/a03), which are two centers or two

saddles when a03 + a21 + a221 > 0 or a03 + a21 + a221 < 0, respectively. And they are
nilpotent when a03 + a21 + a221 = 0. We again apply Theorem 3.5 of [15] for these
nilpotent equilibria and obtain that they are two saddles.

Now we consider the equilibrium points which are not on the x-axis or on the
y-axis. Solving −1− a21 + a21x

2 + a03y
2 = 0 and −1 + x2 − a21y

2 = 0, we obtain
four possible equilibria

(xi, yi) =

(
±

√
(a03 + a221)(a03 + a21 + a221)

a03 + a221
,±

√
a03 + a221
a03 + a221

)
,

for i = 6, 7, 8, 9. Therefore systems (17) have four equilibrium points pi = (xi, yi)
(i = 6, 7, 8, 9) different from the above five ones when a03 + a221 > 0 and a03 +
a21 + a221 > 0, otherwise they have no these equilibrium points. And they are
saddles because the traces and the determinants of the Jacobian matrix of (17)
at pi = (xi, yi) (i = 6, 7, 8, 9) are zero and −4(a03 + a21 + a221)/(a03 + a221) < 0,
respectively.

Proposition 4.3. The phase portraits of systems (17) are topologically equivalent
to
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1.3

1.8

1.11

1.13

1.6

1.12

1.16
1.2

1.17

1.15

1.14

1.4

1.5

1.9
1.10

1.7
1.1

0

a03 = 1− a221

1

a21

a03 = −a221a03 = −a21 − a221

a03a21 = −1

Figure 8. The bifurcation diagram of the phase portraits of sys-
tems (17).

1.1 if a03 = 0 and a21 = −1;
1.2 if a03 > 0, a21 > −1 and a03 + a21 + a221 ≤ 0;
1.3 if a03 > 0, a21 > −1, a03 + a21 + a221 > 0 and a03 ̸= 1− a221;
1.4 if a03 > 0, a21 > −1, a03 + a21 + a221 > 0 and a03 = 1− a221;
1.5 if a03 = 0 and 0 < a21 < 1;
1.6 if a03 = 0 and a21 = 1;
1.7 if a03 = 0 and a21 > 1;
1.8 if 0 > a03 > −a221, a21 > 0 and a03 < 1− a221;
1.9 if 0 > a03 > −a221, a21 > 0 and a03 = 1− a221;
1.10 if 0 > a03 > 1− a221 and a21 > 0;
1.11 if a03 = −a221 and a21 > 0;
1.12 if a03 = 0 and 0 ≥ a21 > −1;
1.13 if a03 < −a221 and a21 > 0, or a03 < 0 and −1 ≤ a21 ≤ 0;
1.14 if a03 ≤ −a21 − a221 and a21 < −1;
1.15 if 0 > a03 > −a21 − a221 and a21 < −1;
1.16 if a03 = 0 and a21 < −1;
1.17 if a03 > 0 and a21 ≤ −1.

Moreover the corresponding bifurcation diagram is shown in Figure 8.

Proof. We just prove the phase portraits from 1.3 to 1.10 because the proof of the
others follows from the previous analysis and Propositions 4.1 and 4.2 directly.

1) If a21 > −1 and a03 + a21 + a221 > 0 we obtain that systems (17) have four
infinite equilibrium points on the Poincaré sphere by Propositions 4.1 and 4.2. The
equilibrium points A1,2 are in U1, and the corresponding points in V1, which are all
nodes. And there are nine finite equilibrium points, where p1,2,4,5 are four centers
and p3,6,7,8,9 are five saddles. Hence systems (17) have two bi-centers, one at p1,2
and one at p4,5. We have that the local phase portraits at these equilibria in the
Poincaré disc are shown in Figure 9(a). And the Hamiltonian H(x, y) has the same
value at saddles p6,7,8,9 because it is an even function.
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(a) (b) (c)

Figure 9. The local phase portraits at all equilibria of systems
(17). (a) If a21 > −1 and a03 + a21 + a221 > 0; (b) If a03 = 0 and
a21 > 0; (c) If 0 > a03 > −a221 and a21 > 0.

Figure 10. A eight–figure loop.

Since the finite equilibrium points are either centers or saddles, there must be at
least one saddle on the boundary of the period annulus of each center. If only saddle
p3 is on the boundary of period annulus of p1, taking into account the symmetry,
p3 must be also on the boundary of period annulus of p2. Thus it creates one eight–
figure loop, see Figure 10. Then there are two saddles on the boundary of period
annulus of p4. We suppose that these two saddles are p6,8. So the other two saddles
p7,9 are on the boundary of period annulus of p5. Furthermore the phase portraits
of systems (17) in this case are topologically equivalent to the 1.3 of Figure 1.

If two saddles p6 and p7 are on the boundary of period annulus of p1. Taking
into account the symmetry the saddles p8 and p9 must be on the boundary of
period annulus of p2. Then the saddle p3 must be on the boundary of the period
annulus of the period annulus of p4, by the symmetry, p3 is also on the boundary
of period annulus of p5. And it creates one eight–figure loop. Hence in this case
the global phase portrait in the Poincaré disc is shown in Figure 11. Since the
separatrix skeletons of the phase portrait in Figure 11 and of the phase portrait 1.3
are equivalent, these two phase portraits are topologically equivalent.

From the phase portrait 1.3 to the phase portrait of Figure 11, and the continuity
of the phase portraits with respect to the parameters there is a bifurcation curve
a03 = f(a21) which corresponds to the phase portrait 1.4 of Figure 1. In order
to obtain this phase portrait it requires to find a set of explicit values a03 and
a21, which is not an easy task. But in this case we can find this bifurcation curve
by computing the invariant straight lines of systems (17). In fact, assuming that
x = ky is an invariant line of systems (17), we have

(32)
ẋ− kẏ = (−1− a21 + a21k

2y2 + a03y
2)y − k2y(−1 + k2y2 − a21y

2)

= (−1− a21 + k2)y + (a03 + 2a21k
2 − k4)y3.
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Figure 11. The phase portrait of systems (17) with a21 > −1,
a03 + a21 + a221 > 0 and a03 > 1− a221.

Hence when (32) is identically zero we have k = ±
√
1 + a21 and a03 = 1 − a221.

Furthermore the saddles p6,9 are on the invariant straight line x =
√
1 + a21y and

the saddles p7,8 are on the invariant straight line x = −
√
1 + a21y. And we have

that the infinite equilibrium points A1,2 = (y/x, 0) = (±
√
1 + a21/(1 + a21), 0) are

on the lines x =
√
1 + a21y and x = −

√
1 + a21y, respectively. Then there are three

saddles p3, p6 and p7 on the boundary of period annulus of p1. In fact we obtain
that H(x, y) is zero at these three saddles. By the symmetry we obtain the phase
portrait 1.4 of Figure 1.

2) Assume that a03 = 0 and a21 > 0, by Propositions 4.1 and 4.2, the infinite
equilibrium points are (±

√
2a21/2a21, 0) in U1 and the origin in U2, and also the

corresponding points in V1,2. The four infinite equilibrium points in U1 and V1
are nodes. The phase portraits at the origins of U2 and V2 both consist of two
parabolic and two elliptic sectors. And systems (17) have seven finite equilibrium
points, where p1,2 are two centers and p3,6,7,8,9 are five saddles. We have that the
local phase portraits at these equilibria in Poincaré disc are shown in Figure 9(b).

If only the saddle p3 is on the boundary of period annulus of p1, taking into
account the symmetry, this saddle is also on the boundary of period annulus of p2.
It creates one eight–figure loop. Then one attracting separatrix and one repelling
separatrix of saddle p6 connect with one repelling separatrix of the saddle p7 and
one attracting separatrix of the saddle p8, respectively. By the symmetry we have
that the phase portrait in the Poincaré disc is topologically equivalent to 1.5 of
Figure 1, which is realized when a21 = 0.5.

In a similar way to the analysis of the phase portrait 1.4, we have that if a03 =
1− a221, i.e. a21 = 1 the straight lines x = ±

√
2y are two invariant lines of systems

(17). Then the saddles p6,9 and p7,8 are on the invariant lines x =
√
2y and

x = −
√
2y, respectively. And the infinite equilibrium points (±

√
2/2, 0) are also

on these two invariant lines, respectively. Hence the saddles p3, p6 and p7 are on
the boundary of the period annulus of p1. Taking into account the symmetry the
phase portraits of systems (17) are topologically equivalent to 1.6 of Figure 1.

If the two saddles p6 and p7 are on the boundary of the period annulus of p1.
The separatrices of the saddle p3 must go to the infinity. Then this phase portrait
is topologically equivalent to 1.7 of Figure 1. When a21 = 2 this phase portrait is
realized.

Moreover we have that the phase portraits of systems (17) in the Poincaré disc
are topologically equivalent to 1.5, 1.6 and 1.7 of Figure 1 when 0 < a21 < 1,
a21 = 1 and a21 > 1, respectively.
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3) Assume that 0 > a03 > −a221 and a21 > 0, the infinite equilibrium points are
A1,2,3,4 in U1, and also the corresponding points in V1. And all of them are nodes.
In addition there are seven finite equilibrium points for systems (17), where p1,2 are
two centers and p3,6,7,8,9 are five saddles. We obtain that the local phase portraits
at these equilibria in the Poincaré disc are shown in Figure 9(c). Similarly to the
above cases now the phase portraits of systems (17) are topologically equivalent to
1.8, 1.9 and 1.10 of Figure 1 when a03 < 1− a221, a03 = 1− a221 and a03 > 1− a221,
respectively.

Further, all results for the isolated equilibrium points in the above cases are
listed in Table 2. �

Table 2. The isolated equilibrium points corresponding to the
topological phase portraits 1.1-1.17.

Phase portraits Isolated finite equilibria Isolated infinite equilibria
1.1 2 C 0

1.2 2 C, 3 S 2 attracting N, 2 repelling N

1.3,1.4 4 C, 5 S 2 attracting N, 2 repelling N

1.5,1.6,1.7 2 C, 5 S 2 attracting N, 2 repelling N, 2 E

1.8,1.9,1.10 2 C, 5 S 4 attracting N, 4 repelling N

1.11 2 C, 1 S 4 H

1.12 2 C, 1 S 2 H

1.13 2 C, 1 S 0

1.14 3 C, 2 S 0

1.15 5 C, 4 S 0

1.16 3 C, 4 S 2 E

1.17 3 C, 4 S 2 attracting N, 2 repelling N

4.2. Phase portraits when b03 > 0. Without loss of generality we can assume
that b03 = 1 and systems (3) become

(33)
ẋ =− (1 + a21)y + a21x

2y − 3xy2 + a03y
3,

ẏ =− x+ x3 − a21xy
2 + y3.

Then we obtain that systems (33) have finitely many equilibrium points. Indeed,
by computing the resultant of ẋ and ẏ with respect to x we have the polynomial

(34) (−1− a21)y
3 + F1y

5 + F2y
7 + F3y

9,

where

(35)

F1 =9 + 3a03 + 9a21 + 2a03a21 + 2a221 + 2a321,

F2 =− 9a03 − 3a203 + 18a21 − a203a21 + 15a221 − 4a03a
2
21

− 2a03a
3
21 − a421 − a521,

F3 =27 + a303 − 18a03a21 + 2a203a
2
21 − 2a321 + a03a

4
21.
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For polynomial (34) to be identically zero, it needs a21 = −1 so that the coefficient
of y3 is zero. Then (34) simplifies to

(36) a03y
5 + (−3− 11a03 − 2a203)y

7 + (29 + 19a03 + 2a203 + a303)y
9.

It is easy to see that the coefficients of y5 and y7 in polynomial (36) cannot be zero
at the same time. Hence polynomial (34) is not identically zero.

On the other hand, the Jacobian matrix of systems (33) at one finite equilibrium
point (x, y) is

(37)

(
(2a21x− 3y)y M1

M2 −(2a21x− 3y)y

)
,

where

M1 = −1− a21 + a21x
2 − 6xy + 3a03y

2, M2 = −1 + 3x2 − a21y
2.

We claim that there is no degenerate finite equilibrium points for systems (33).
Indeed, we obtain that (2a21x− 3y)y and M2 have no common solutions, because
the Gröbner basis for the polynomials ẋ, ẏ, (2a21x − 3y)y and M2 is 1. We again
calculate the Gröbner basis for ẋ, ẏ, (2a21x − 3y)y and M1, then we obtain four
polynomials 1 + a21, (9 + 4a03)y

2, y2(−12 + 31y2) and 8x+ 31y3. It means that if
a21 = −1 the origin p3 is nilpotent, and if a21 = −1 and a03 = −9/4 systems (33)

have two nilpotent equilibrium points (3
√
3/31,±2

√
3/31) additional to the origin.

By Theorem 3.5 of [15] we have that the origin is a saddle and (3
√
3/31,±2

√
3/31)

are two cusps. Moreover the other finite equilibrium points must be saddles or
centers.

Now we study the infinite equilibrium points of systems (33). In U1 systems (33)
become

(38)
u̇ =1− 2a21u

2 + 4u3 − a03u
4 − v2 + u2v2 + a21u

2v2,

ẏ =uv(−a21 + 3u− a03u
2 + v2 + a21v

2).

And the Jacobian matrix of systems (38) at (u, 0) is

(39)

(
−4u(a21 − 3u+ a03u

2) 0
0 −u(a21 − 3u+ a03u

2)

)
.

Obviously the origin is not an equilibrium point of systems (38). And if a03 = 0
systems (38) have at most three equilibrium points on v = 0, and if a03 ̸= 0 they
have at most four equilibrium points on v = 0. From (39) it is easy to compute
that these infinite equilibrium points in U1 must be nodes or degenerate equilibria.

If

(40) f1(u) = 1− 2a21u
2 + 4u3 − a03u

4, f2(u) = a21 − 3u+ a03u
2.

we compute the Gröbner basis for f1(u) and f2(u), then we obtain one polynomial

(41) 12a03 − a203a21 − a221 − a03a
3
21 + (3a21 − 4a203)u.

Hence systems (38) have at most one degenerate infinite equilibrium point for the
value of u which vanishes the previous polynomial.

In order to provide a complete analysis of the global phase portraits of (33), it
is necessary to study separately in a03 = 0 and a03 ̸= 0.
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4.2.1. Subcase a03 = 0. By the above analysis we obtain that there are one and
three infinite equilibrium points in U1 when a21 < 3/ 3

√
2 and a21 > 3/ 3

√
2, respec-

tively. And they are all nodes. On the other hand, if a21 = 3/ 3
√
2 systems (36) have

two infinite equilibrium points (−1/(2 3
√
2), 0) and (1/ 3

√
2, 0), which are a repelling

node and a degenerate equilibrium point. We apply the blow-up technique and
obtain that the local phase portrait of (1/ 3

√
2, 0) consists of two hyperbolic sectors,

as it is shown in Figure 6(c).

We proceed to analyze the origin of the local chart U2. Systems (33) in this
chart acquire the form

(42)
u̇ =− 4u+ 2a21u

2 − u4 − v2 − a21v
2 + u2v2,

v̇ =v(−1 + a21u− u3 + uv2).

Obviously the origin of systems (42) is an equilibrium point, which is an attracting
node.

We will now study the finite equilibria. We get that the third equilibrium point
of systems (33) is p3 = (0, 0), which is a center or a saddle when a21 < −1 or
a21 > −1, respectively. If a21 = −1, p3 is a nilpotent saddle.

Next we consider the finite equilibria different from p1,2,3. We compute the
Gröbner basis for −1− a21 + a21x

2 − 3xy and −x+ x3 − a21xy
2 + y3, and obtain

four polynomials, the following two

(43)
(4a21 + 3a221)x+ (3 + 12a21 + 9a221 + a321 + a421)y + 9xy2

+ (16a221 + 15a321 − a521 − a621)y
3 + (27a21 − 2a421)y

5 = 0

and

(44)
f(y) =1 + a21 + (−9− 9a21 − 2a221 − 2a321)y

2 + (−18a21 − 15a221

+ a421 + a521)y
4 + (−27 + 2a321)y

6 = 0,

will be enough for our analysis. Then we obtain that there are at most six finite
equilibrium points additional to p1,2,3. But the explicit expressions of these finite
equilibria and their eigenvalues in terms of parameter a21 are complicated, it is hard
to study their existence and their types. Hence we need to present more algebraic
tools for solving this problem.

Now we provide an useful way to obtain the information about the number of
real roots of an arbitrary polynomial f(x). We need to calculate the discriminant
sequence {S1, S2, · · · , Sn} of f(x) (for more details see [10, 35]) and determine its
sign list

[sign(S1), sign(S2), · · · , sign(Sn)],

where the sign function is

(45) sign(x) =


−1, if x < 0,

0, if x = 0,

1, if x > 0.

For any sign list (SL) [l1, l2, · · · , ln], we obtain the revised sign list (RSL) [r1, r2, · · · , rn]
as follows:

1. If lk ̸= 0 we write rk = lk.
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2. If a section [li, li+1, · · · , li+j ] of the given sign list satisfies with li+1 = · · · =
li+j−1 = 0 and lili+j ̸= 0, we replace the subsection [li+1, li+2, · · · , li+j−1]
with [−li,−li, li, li,−li,−li, li, li,−li, · · · ] keeping the number of terms.

Then we obtain that the RSL [r1, r2, · · · , rn] has no zeros between two nonzero
members. From [35], we have the following theorem for computing the number of
real roots of f(x).

Theorem 4.4. For any polynomial

(46) f(x) = a0 + a1x+ · · ·+ akx
k

with real coefficients, if the number of the sign changes of the RSL [r1, r2, · · · , rn]
of (46) equals m, and the number of nonzero elements of this RSL equals n, the
number of the distinct real roots of (46) is n− 2m.

Thus we can determine the number and the type of the remaining finite equi-
librium points by Theorems 4.4, 2.1 and 2.3. And we do not need to calculate the
coordinates of these equilibrium points.

Assume that −27 + 2a321 ̸= 0 and 1 + a21 ̸= 0, we compute the discriminant
sequence {S1, S2, S3, S4, S5, S6} of f(y) from (44), and obtain

(47)
S1 = 6M2

1 , S2 = −12a21M
3
1M2,

S3 = −16a21M
3
1M2M3, S4 = −32(1 + a21)M

3
1M3M4,

S5 = −32(1 + a21)
2M3

1M4M
2
5M6, S6 = −64(1 + a21)

3M3
1M

4
5M

2
6 ,

where

(48)

M1 =− 27 + 2a321, M2 = −18− 15a21 + a321 + a421,

M3 =− 729− 729a21 + 162a221 + 432a321 + 279a421 − 24a521 − 54a621

− 30a721 + a821 + 2a921 + a1021,

M4 =− 8748− 10206a21 − 2187a221 + 1620a321 + 3078a421 + 783a521

+ 144a621 − 316a721 − 97a821 − 42a921 + 11a1021 + 4a1121 + 2a1221,

M5 =− 27− 27a21 + 4a321 + 3a421,

M6 =− 135− 81a21 − 45a221 + 13a321 + 8a421 + 4a521.

From the above analysis of the infinite equilibrium points of systems (33), we sep-
arate the study in the following three cases.

1) If a21 > 3/ 3
√
2 we have S1 > 0, S4 < 0, S5 < 0, S6 < 0 and S2S3 ≥ 0. We

denote by Root[f(α), i] the i-th real root of the polynomial f(α) with respect to
α, and it has Root[f(α), i] < Root[f(α), j] when i < j. We have S2,3 > 0 when

3/ 3
√
2 < a21 < Root[M2, 2]. And we have S2,3 = 0 when a21 = Root[M2, 2], and

S2,3 < 0 when a21 > Root[M2, 2]. Therefore the corresponding RSL of the first case
is [1, 1, 1,−1,−1,−1], and the RSL of the last two cases is [1,−1,−1,−1,−1,−1].
Thus, by Theorem 4.4, systems (33) have four finite equilibrium points p6,7,8,9 other
than p1,2,3, where p1,2 are two centers and p3 is a saddle.

On the other hand, systems (33) have three infinite equilibrium points Ai =
(ui, 0) (i = 1, 2, 3) in U1, one in the U2, and the corresponding points in V1,2. Denote
that u1 > u2 > u3. The eight infinite equilibria are nodes. Hence, on the Poincaré
sphere the sum of the indices of the known equilibria is 10. By Theorem 2.3, the
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(a) (b) (c) (d)

Figure 12. The local phase portraits at all equilibria of systems
(33) with a03 = 0. (a) If a21 > 3/ 3

√
2; (b) If −1 ≤ a21 < 3/ 3

√
2; (c)

If a21 < −1; (d) If a21 = 3/ 3
√
2.

Figure 13. A center-loop.

sum of the indices of the remaining finite equilibria must be −8. Furthermore the
remaining equilibrium points in the interior of the Poincaré disc are four saddles,
where two must be symmetry to the other ones with respect to the origin. Then
we obtain that the local phase portraits at these equilibria in the Poincaré disc are
shown in Figure 12(a).

We claim that in this case systems (33) have at most two saddles on the boundary
of period annulus of the bi-center at p1,2. By computing the Gröbner basis for the
three polynomials ẋ/y, ẏ and H(x, y) − h with some h ∈ R/{0}, we get that
H(x, y) has the same non-zero values at no more than two equilibrium points.
And we obtain four even polynomials Fi(a21, y, h) (i = 1, 2, 3, 4) in y from this
Gröbner basis, where F2,3(a21, y, h) are quadratic and F4(a21, y, h) is quartic. There
is a polynomial F5(a21, x, y, h) which is linear in x with nonzero coefficients. We
calculate the resultant of the coefficients of y2 in F2(a21, y, h) and F3(a21, y, h) with
respect to h, and obtain A(1+a21)M6 > 0, where A is a constant. Thus at least one
coefficient of y2 of the polynomials F2,3(a21, y, h) is nonzero. It means that there
are at most two distinct real roots for these three polynomials, then our claim is
proved.

By the symmetry of systems (33) there must be only one saddle on the boundary
of period annulus of each center, creating a center-loop, see Figure 13. Here we
assume that these two saddles are p7,8.

If one repelling and one attracting separatrix of the origin of systems (33) connect
with the origin of U2 and with the infinite equilibrium point A1 of U1, respectively,
then we have that this phase portrait in the Poincaré disc is topologically equivalent
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Table 3. The conditions of the revised sign lists of f(y) when

−1 < a21 < 3/ 3
√
2.

RSL SL Conditions
[1, 1, 1, 1,−1, 1] [1, 1, 1, 1,−1, 1] −1 < a21 < Root[M3, 1];

[1, 1,−1, 1, 1, 1] [1, 1,−1, 1, 1, 1] Root[M4, 1] < a21 < 0;
[1, 1,−1, 0, 0, 1] a21 = Root[M4, 1];

[1, 1,−1,−1,−1, 1] [1, 1,−1,−1,−1, 1] Root[M3, 1] < a21 < Root[M4, 1];
[1, 1, 0, 0,−1, 1] a21 = Root[M3, 1];

[1,−1,−1, 1, 1, 1] [1,−1,−1, 1, 1, 1] Root[M4, 2] < a21 < 3/ 3
√
2;

[1,−1,−1, 0, 0, 1] a21 = Root[M4, 2];

[1,−1,−1,−1, 1, 1] [1,−1,−1,−1, 1, 1] Root[M3, 2] < a21 < Root[M5, 2]
or Root[M5, 2] < a21 < Root[M6, 1];

[1,−1,−1,−1,−1, 1] [1,−1,−1,−1,−1, 1] Root[M6, 1] < a21 < Root[M4, 2];

[1,−1, 1, 1, 1, 1] [1,−1, 1, 1, 1, 1] 0 < a21 < Root[M3, 2];

[1,−1, 0, 0, 1, 1] a21 = Root[M3, 2];

[1,−1,−1,−1, 0, 0] [1,−1,−1,−1, 0, 0] a21 = Root[M5, 2]
or a21 = Root[M6, 1].

to 1.18 of Figure 1, which can be realized when a21 = 4. If one repelling and one
attracting separatrix of the origin of systems (33) connect with the origin U2 and
with the infinite equilibrium point A3 of U1, respectively, then the phase portraits of
systems (33) are topologically equivalent to 1.20 of Figure 1, which can be realized
when a21 = 2.5.

From the phase portraits 1.18 to 1.20 it follows by the continuity of the phase
portraits with respect to the parameters that there must exist one phase portrait
that one attracting separatix of the origin of systems (33) connects with the finite
equilibrium point p6, which corresponds to the phase portrait 1.19 of Figure 1. In
fact we can find this bifurcation point a21 by computing the invariant straight lines
x = ky of systems (33). Similarly to (32) we obtain a21 = 3 and k = 2. Then we

have p6,9 = (±2
√
6/3,±

√
6/3) and the infinite equilibrium point A2 = (1/2, 0) are

on the invariant line x = 2y. Moreover we obtain that the phase portrait in the
Poincaré disc is topologically equivalent to 1.18 or 1.20 of Figure 1 when a21 > 3
or 3/ 3

√
2 < a21 < 3, respectively.

2) Assume that −1 ≤ a21 < 3/ 3
√
2. If −1 < a21 < 3/ 3

√
2 we obtain the possible

RSL of f(y) and their associated SL as it is shown in Table 3. By Theorem 4.4
systems (33) have two finite equilibrium points p7,8 additional to p1,2,3, where p1,2
are two centers and p3 is a saddle. Then on the Poincaré sphere the sum of the
indices of the known equilibria is 6. From Theorem 2.3 the sum of the indices of the
remaining equilibria must be −4. Thus, the two remaining finite equilibrium points
p7,8 are two saddles. The local phase portraits of systems (33) at these equilibria
in the Poincaré disc are shown in Figure 12(b). On the other hand, if a21 = −1

we have p7,8 = (±3
√
3/29,∓

√
3/29), which also are two saddles. And the y-axis is

invariant by the flow of systems (33). Similarly to the above case the saddles p7,8
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Table 4. The conditions of the revised sign lists of f(y) when
a21 < −1.

RSL SL Conditions
[1, 1, 1,−1,−1,−1] [1, 1, 1,−1,−1,−1] Root[M2, 1] < a21 < Root[M5, 1]

or Root[M5, 1] < a21 < −1;

[1,−1,−1,−1,−1,−1] [1,−1,−1,−1,−1,−1] a21 < Root[M2, 1];

[1, 0, 0,−1,−1,−1] a21 = Root[M2, 1];

[1, 1, 1,−1, 0, 0] [1, 1, 1,−1, 0, 0] a21 = Root[M5, 1].

must be on the boundary of period annulus of the bi-center at p1,2, respectively.
And they create two center-loops. Then we have that the phase portraits of systems
(33) with −1 ≤ a21 < 3/ 3

√
2 are topologically equivalent to 1.21 of Figure 1.

3) If a21 < −1 then the RSL of f(y) and their associated SL are given in Table
4.

From Theorem 4.4, if a21 ̸= Root[M5, 1] the polynomial f(y) has four distinct real
roots. Thus systems (33) have four finite equilibrium points p6,7,8,9 additional to
p1,2,3, where p1,2,3 are three centers. And systems (33) have four infinite equilibria,
which are nodes. Hence the sum of the indices of the known equilibria is 10 on the
Poincaré sphere. By Theorem 2.3, the sum of the indices of the remaining equilibria
must be −8. Thus, they are four saddles in Poincaré disc. If a21 = Root[M5, 1]
there two distinct roots and two repeated real roots for f(y). In fact systems (33)
also have four finite equilibrium points p6,7,8,9 different from p1,2,3, and they are
four saddles. Then we have that the local phase portraits at all equilibria in the
Poincaré disc are shown in Figure 12(c).

From the previous proof we have that H(x, y) has the same non-zero values
at no more than two equilibrium points. Hence there must be one saddle on the
boundary of the period annulus of each center, and every one of these saddles
creates a center-loop. Here we assume that these two previous saddles are p7,8.
And the other two saddles p6,9 must be on the boundary of the period annulus of
the center at the origin. Then the phase portraits of systems (33) in the Poincaré
disc are topologically equivalent to 1.22 of Figure 1.

Now we consider the case a21 = 3/ 3
√
2, then systems (33) have two finite equi-

librium points p7,8 ≈ (±1.06093,∓0.22024) additional to p1,2,3, and they are two
saddles. And systems (33) have six infinite equilibrium points, three in U1,2 and
three in V1,2. We have that the local phase portraits of all equilibria in the Poincaré
disc are shown in Figure 12(d). Similarly to the above case, there are no more than
two equilibrium points in the same energy level. Hence the saddles p7,8 must be
on the boundary of the period annulus of the centers p1,2, respectively. Then these
two saddles create two center-loops. Therefore the phase portrait of systems (33)
now is topologically equivalent to 1.23 of Figure 1.

In summary all results for the isolated equilibrium points of the phase portraits
1.18-1.23 are listed in Table 5. Further, we have the following result.
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Table 5. The isolated equilibrium points corresponding to the
topological phase portraits 1.18-1.23.

Phase portraits Isolated finite equilibria Isolated infinite equilibria
1.18,1.19,1.20 2 C, 5 S 4 attracting N, 4 repelling N

1.21 2 C, 3 S 2 attracting N, 2 repelling N

1.22 3 C, 4 S 2 attracting N, 2 repelling N

1.23 2 C, 3 S 2 attracting N, 2 repelling N, 2 H

1.231.211.22

1.20

1.19

1.18

−1 3/ 3
√
2 3

a21

Figure 14. The bifurcation diagram of the phase portraits of sys-
tems (33) with a03 = 0.

Proposition 4.5. The phase portraits of systems (33) in the Poincaré disc with
a03 = 0 are topologically equivalent to

1.18 if a21 > 3;
1.19 if a21 = 3;
1.20 if 3/ 3

√
2 < a21 < 3;

1.21 if −1 ≤ a21 < 3/ 3
√
2;

1.22 if a21 < −1;
1.23 if a21 = 3/ 3

√
2.

Moreover the bifurcation diagram is shown in Figure 14.

4.2.2. Subcase a03 ̸= 0. In this subcase the characterization of the phase portraits
of systems (33) become extremely difficult because the explicit expressions of some
infinite and finite equilibrium points are complicated. To overcome these difficulties
we do the following analysis.

We compute the Gröbner basis for −1−a21+a21x2−3xy+a03y
2 and −x+x3−

a21xy
2 + y3 from (33), and obtain five polynomials. And we only need to consider

two polynomials, one is linear in x and the other one is

(49) − 1− a21 + F1y
2 + F2y

4 + F3y
6,

where F1,2,3 are shown in (35). Hence there are at most six finite equilibrium points
additional to p1,2,3. Then we compute the discriminant sequence {S1, S2, S3, S4}
of polynomial f1(u) from (40) for determining the infinite equilibrium points. And
we have

(50)
S1 = 4a203, S2 = −16a203(−3 + a03a21), S3 = −64a203F4,

S4 = −256a203F3,

where F3 is shown in (35) and

F4 = −3a03 + a203a21 − 2a221 + a03a
3
21.
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We separate the study in the two cases a21 ≥ −1 or a21 < −1, then p3 is a saddle
or a center, respectively.

1) Assume that a21 ≥ −1.

1.a) When the polynomial f1(u) has four distinct real roots, the RSL of its
discriminant sequence must be [1, 1, 1, 1], which needs either a03 < 0 and a21 >

Root[F3, 2], or 0 < a03 < 3/ 3
√
16 and Root[F3, 1] < a21 < Root[F3, 2]. Then

systems (38) have four equilibrium points in U1, which are all nodes, and the origin
of U2 is not an equilibrium point.

The sum of the indices of the known equilibria is 10 on the Poincaré sphere. By
Theorem 2.3, the sum of the indices of the remaining equilibria must be −8. From
the previous analysis of (37) we have that the remaining finite equilibrium points are
elementary and a pair of points are symmetric with respect to the origin. Thus they
must be four saddles. Similarly to the subcase a03 = 0, by computing the Gröbner
basis for ẋ, ẏ and H(x, y) − h we obtain that H(x, y) has the same h ∈ R/{0}
at no more than two finite equilibrium points. Then we obtain that the global
phase portraits of systems (33) in the Poincaré disc are topologically equivalent
to 1.18 and 1.20 of Figure 1. In particular when a03 = 1 − a221 + 4

√
1 + a21 the

phase portrait is topologically equivalent to 1.19 of Figure 1, which has an invariant
straight line. Indeed, forcing that the straight line x = ky be this invariant line of
systems (33) we obtain

(51) ẋ− kẏ = (−1− a21 + k2)y + (a03 + 2a21k
2 − k4 − 4k)y3.

Hence we need that G1 = −1− a21 + k2 = 0 and G2 = a03 + 2a21k
2 − k4 − 4k = 0

in order that (51) be identically zero. The resultant of G1 and G2 with respect to
the variable k is

−15− 2a03 + a203 − 16a21 − 2a221 + 2a03a
2
21 + a421.

This resultant is zero if a03 = 1 − a221 + 4
√
1 + a21 or a03 = 1 − a221 − 4

√
1 + a21,

but the latter cannot occur in this case. Indeed, we just need to substitute it into
(50) and check its RSL.

1.b) When the polynomial f1(u) has three distinct real roots, the RSL of its

discriminant sequence must be [1, 1, 1, 0], which needs either a03 < 3/ 3
√
16 and

a21 = Root[F3, 2], or 0 < a03 < 3/ 3
√
16 and a21 = Root[F3, 1]. From these two

cases we have F3 = 0, thus systems (33) have three infinite equilibrium points,
where one is degenerate and the other two are nodes. Let A1 = (u1, 0) be the
degenerate infinite equilibrium point, and A2 = (u2, 0) and A3 = (u3, 0) be two
nodes, for u1 > u2 > u3. In addition the polynomial (49) becomes a quartic
polynomial, hence there are at most four finite equilibrium points additional to
p1,2,3.

When 0 < a03 < 3/ 3
√
16 and a21 = Root[F3, 1] the local phase portrait of the

degenerate point A1 consists of two hyperbolic sectors, see the second picture of
Figure 5(b). By Theorem 2.3 the sum of the indices of the known equilibria of
systems (33) is 6 on the Poincaré sphere. Then the sum of the indices of the
remaining finite equilibria must be −4. By the symmetry of the equilibria the
only possibility is that systems (33) have two saddles different from p1,2,3 in the
Poincaré disc. Then we have that in this case the phase portrait in the Poincaré
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disc is topologically equivalent to 1.23 of Figure 1, which is realized when a03 = 1
and a21 = 2.

When a03 < 3/ 3
√
16 and a21 = Root[F3, 2] the local phase portrait of A1 consists

of two parabolic and two elliptic sectors, see the first picture of Figure 5(b). More-
over the remaining finite equilibria must have total index −8. By the symmetry
the only possibility is that they are four saddles. We have that the local phase
portraits at all equilibria in the Poincaré disc are topologically equivalent to Figure
9(b), which it is not symmetric with respect to the x-axis or the y-axis. On the
other hand there must be one saddle on the boundary of the period annulus of each
center, creating two center-loops. We assume that these two saddles are p7,8. If
one repelling and one attracting separatrices of the origin connect to the infinite
equilibrium point A1, we obtain the phase portrait 1.24 of Figure 1, and when
a03 = 0.7 and a21 = 2.9198 this phase portrait is achieved. If one repelling and one
attracting separatrices of the origin connect to the infinite equilibrium points A1

and A3 respectively, we have the phase portrait 1.26 of Figure 2, which is realized
when a03 = 1 and a21 = 2.13488.

From the phase portraits 1.24 and 1.26 it follows by the continuity of the phase
portraits with respect to the parameters the existence of the phase portrait 1.25 of
Figure 2, which has one invariant straight line. Indeed, by calculating F3 = G1 =
G2 = 0 from (51) we obtain either a03 = 0.71794.. and a21 = 2.85173.., or a03 = −3
and a21 = 0. But the latter is not satisfied in this subcase.

1.c) When the polynomial f1(u) has two distinct real roots, the RSL of its
discriminant sequence must be either [1,−1,−1,−1], or [1, 1,−1,−1], or [1, 1, 1,−1],

or [1, 1, 0, 0], which just needs either F3 > 0, or a21 = 3/ 3
√
4 and a03 = 3/ 3

√
16.

Then there are four infinite equilibria for systems (33), and all of them are nodes.
Furthermore we have that the sum of the indices of the remaining finite equilibria
on the Poincaré sphere must be −4. By (37) we know that the remaining finite
equilibria are elementary. Then additional to the equilibria p1,2,3, there are either
(i) two saddles p7,8, or (ii) two centers p4,5 and four saddles p6,7,8,9.

In case (i) if the two saddles p7,8 are on the boundary of the period annulus
of the bi-center, creating two center-loops. In this case we deduce that the global
phase portrait is topologically equivalent to 1.21 of Figure 1. If the saddle at the
origin is located on the boundary of the period annulus of p1, by the symmetry it is
also in the boundary of the period annulus of p2. When the saddles p7,8 are outside
the region enclosed by the separatrices of the origin the global phase portraits of
systems (33) are topologically equivalent to 1.2 of Figure 1, which can be realized
when a21 = 2 and a03 = −10.

By the continuity of the phase portraits with respect to parameters a03 and
a21 from the phase portrait 1.2 to 1.21, we obtain the bifurcation curve a03 =
1− a221 − 4

√
1 + a21, on this curve we have the phase portrait 1.27 of Figure 2, i.e.

the saddles at origin and p7,8 are on the invariant straight line x = −
√
1 + a21y.

This phase portrait can be realized when a21 = 2 and a03 = −9.9282. And the
invariant straight line can be obtained from (51).

In case (ii) we have that the local phase portraits at all equilibrium points are
shown in Figure 9(a). If only the two saddles p7,8 and the two centers p1,2 create
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(a) (b)

Figure 15. The local phase portraits at all equilibria of systems
(33) with a03 ̸= 0 and a21 ≥ −1 in case 1.d). (a) Case (i); (b) Case
(ii).

two center-loops, and if the origin p3 is on the boundary of the period annulus of p4,
by the symmetry, the origin also will be on the boundary of the period annulus of
p5. Then it creates one eight–figure loop. Furthermore the origin must be inside the
region enclosed by the separatrices of the saddles p6 and p9. Therefore the phase
portrait is topologically equivalent to 1.28 of Figure 2, and this phase portrait can
be obtained when a03 = 2 and a21 = −0.9. If there are four saddles p6,7,8,9 located
on the boundary of the period annulus of each center, creating four center-loops,
then the phase portrait is topologically equivalent to 1.30 of Figure 2, which can
be realized when a03 = 2 and a21 = −0.8.

From the phase portraits 1.28 and 1.30 it follows by the continuity of the phase
portraits with respect to the parameters the existence of the phase portrait 1.29
of Figure 2, which can be realized when a21 = 1 and a03 = 5.65685. That is, the
saddles p3,6,9 are on one invariant straight line, and the saddles p3,6 are on the
boundary of the period annulus of p4, by the symmetry the saddles p3,9 are on the
boundary of the period annulus of p5. Similarly to subcase 1.a) this phase portrait
can be obtained when a03 = 1− a221 + 4

√
1 + a21 from (51).

1.d) When the polynomial f1(u) has one real root, the RSL of its discriminant
sequence must be either [1, 0, 0, 0], or [1, 1,−1, 0], or [1,−1,−1, 0], which needs
a03 ≤ Root[29 + 19a03 + 2a203 + a303, 1] = −1.58141.. and a21 = Root[F3, 1]. From
F3 = 0 we obtain that systems (33) have one degenerate infinite equilibrium point
in U1. The phase portrait of this infinite equilibrium point consists of either (i) two
hyperbolic sectors, or (ii) two parabolic sectors and two elliptic sectors because we
have u̇|v=0 = 1 +O(u) and v̇|u=0 = 0 from (38).

Assume (i). By Theorem 2.3 the sum of the indices of the known equilibria of
(33) is 2 on the Poincaré sphere. Thus the finite equilibrium points of systems (33)
different from p1,2,3 can be either (i.a) no equilibrium points, or (i.b) two centers
and two saddles, but the latter cannot occur. Indeed, when F3 = 0 the polynomial
(49) simplifies to

(52) −1− a21 + F1y
2 + F2y

4,

where F1,2 are shown in (35). If we replace y2 by z we get the quadratic polynomial

(53) −1− a21 + F1z + F2z
2.



28 TING CHEN, SHIMIN LI AND JAUME LLIBRE

Hence (52) has four real roots when (53) has two positive roots. Then we can use
Descartes’ rule of signs for studying the number of positive roots of (53) given in
the following theorem.

Theorem 4.6. The number of positive roots of a real polynomial (46) is either the
number of sign differences between consecutive nonzero coefficients, or less than it
by a multiple of 2.

When (53) has two positive roots there must be two changes of sign between
the coefficients of (53). Assume that a21 > −1 we have −1 − a21 < 0. Then the
coefficients of z and z2 must be positive and negative, respectively. Hence it must
satisfy with F1 > 0 and F2 < 0, i.e. 0 < a03 < 3/ 3

√
16 and a21 = Root[F3, 2], which

is in contradiction with this case. Therefore systems (33) have at most two finite
equilibria different from p1,2,3.

Consider case (i.a). We obtain that the local phase portraits at all equilibria
in the Poincaré disc are shown in Figure 15(a). If the origin is on the boundary
of the period annulus of p1, by the symmetry it is also on the boundary of the
period annulus of p2, creating one eight–figure loop. Then in this case the phase
portrait is topologically equivalent to 1.12 of Figure 1, which can be realized when
a03 = −10 and a21 = 1.98273. If the origin is not on the boundary of the period
annulus of the bi-center at p1,2, the separatrices of p3 must connect to some infinite
equilibrium points. And the bi-center at p1,2 must be inside the region enclosed by
the separatrices of the origin, then we have the phase portrait 1.31 of Figure 2. In
fact we can obtain that p3 and the infinite equilibria are on the invariant straight
line x = −y, see (51). This phase portrait can be realized when a03 = −3 and
a21 = 0.

Assume (ii). Then the sum of the indices of the remaining finite equilibria
must be −4 on the Poincaré sphere. Hence systems (33) have two saddles p7,8
different from p1,2,3. The local phase portraits of systems (33) at these equilibria
in Poincaré disc are shown in Figure 15(b). We claim that the saddles p7,8 neither
are connected with the origin, nor are outside the region enclosed by the boundary
of the period annulus of p3, as it is shown in the first three pictures of Figure 16.
The first two pictures of Figure 16 cannot occur, otherwise there would have six
intersection points with the separatrices of p7,8 on a straight line l through p3. That
is, there would be six points on l with same energy level, but it is not possible for a
quartic Hamiltonian H(x, y). In the third picture of Figure 16 the flow at infinity
is clockwise, in contradiction with the fact that u̇|u=0,v=0 = 1 > 0 at the origin of
the chart U1. Then the phase portrait in Poincaé disc is topologically equivalent
to 1.32 of Figure 2. This phase portrait can be realized by taking a03 = −2 and
a21 = −0.61752.

1.e) The polynomial f1(u) has no real roots if and only if either S2 > 0, S3 ≤ 0
and S4 > 0, or S2 ≤ 0 and S4 > 0, i.e. a03 < Root[29 + 19a03 + 2a203 + a303, 1]
and −1 ≤ a21 < Root[F3, 1]. By Theorem 2.3, on the Poincaré sphere the known
equilibrium points of (33) have total index 2. Then the sum of indices of the
remaining finite equilibria must be 0. Thus we have the following possibilities: (i)
no equilibrium points, (ii) two cusps, (iii) two centers and two saddles.
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(a) (b) (c) (d)

(e) (f)

Figure 16. The possible phase portraits for the separatrices con-
figurations of two saddles.

Case (i) can occur and we get that the phase portrait in the Poincaré disc is
topologically equivalent to 1.13 of Figure 1, which can be realized when a21 = −0.7
and a03 = −3.

Consider case (iii), then the two additional saddles cannot be outside the region
enclosed by the separatrices of the saddle p3 and they cannot be connected with p3.
That is, the forth and fifth phase portraits of Figure 16 are not possible because
a straight line through p3 would intersect the separatrices of these two saddles six
times. For the sixth picture of Figure 16 the flow at infinity is clockwise and this is
not possible. Indeed, we have u̇|u=0,v=0 = 1 > 0 at the origin of the chart U1. Then
we deduce that the phase portrait of systems (33) is topologically equivalent to 1.33
of Figure 2, which is achieved when a21 = −0.7 and a03 = −2. And it has two
eight–figure loops due to the centers p1,2 and the four remaining finite equilibrium
points.

By the analysis of (37) when a03 = −9/4 and a21 = −1 systems (33) have two

nilpotent equilibria (3
√
3/31,±2

√
3/31), which are two cusps. Then we will obtain

the phase portrait in case (ii). Since there is no more equilibrium points these cusps
must be on the boundary of the period annulus of each center. Hence we have that
the phase portrait in the Poincaé disc is topologically equivalent to 1.34 of Figure
2.

2) Assume that a21 < −1. The polynomial f1(u) has at most two distinct
real roots because there are no parameters such that the RSL of its discriminant
sequence is either [1, 1, 1, 1], or [1, 1, 1, 0]. Since a03 = −9/4 and a21 = −1 are not
in this case, the remaining finite equilibria are elementary, i.e. they are saddles or
centers.

Similarly to the analysis of case 1.c) the polynomial f1(u) has two distinct real
roots if and only if S4 < 0, i.e. either Root[29 + 19a03 + 2a203 + a303, 1] < a03 < 0
and Root[F3, 1] < a21 < −1, or a03 > 0 and a02 < −1. Then there are four infinite
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equilibria for systems (33), which are nodes. Hence on the Poincaré sphere the sum
of the indices of the remaining finite equilibria must be −8. Thus there are four
saddles additional to the equilibria p1,2,3. Since the Hamiltonian H(x, y) has the
same non-zero value at no more than two equilibria, there are at most two saddles
on the boundary of the period annulus of p3. And by the symmetry the only way to
have two centers and the two other saddles is to have two center-loops. Therefore
the global phase portrait in the Poincaé disc is topologically equivalent to 1.22 of
Figure 1.

Similarly to cases 1.d) and 1.e) we have the phase portrait 1.35 when Root[29+
19a03 + 2a203 + a303, 1] < a03 < 0 and a21 = Root[F3, 1], and the phase portrait
1.14 or 1.36 when a03 < 0 and a21 ≤ Root[F3, 1]. On the other hand the phase
portraits 1.14, or 1.35, or 1.36 can be realized when a03 = −10 and a21 = −2, or
a03 = −0.9491 and a21 = −2, or a03 = −2 and a21 = −2, respectively.

Then, all results for the isolated equilibrium points of the phase portraits 1.24-
1.36 are listed in Table 6.

Table 6. The isolated equilibrium points corresponding to the
topological phase portraits 1.24-1.36.

Phase portraits Isolated finite equilibria Isolated infinite equilibria
1.24,1.25,1.26 2 C, 5 S 2 attracting N, 2 repelling N, 2 E

1.27 2 C, 3 S 2 attracting N, 2 repelling N

1.28,1.29,1.30 4 C, 5 S 2 attracting N, 2 repelling N

1.31 2 C, 1 S 2 H

1.32 2 C, 3 S 2 E

1.33 4 C, 3 S 0

1.34 2 C, 1 S, 2 cusp 0

1.35 3 C, 4 S 2 E

1.36 5 C, 4 S 0

Thus we have obtained all the phase portraits of the Z2-equivariant cubic Hamil-
tonian systems (3) with a linear type bi-center, which are provided in Theorem 1.1.
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