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BIFURCATION DIAGRAMS AND GLOBAL PHASE PORTRAITS

FOR SOME HAMILTONIAN SYSTEMS WITH RATIONAL

POTENTIALS

TING CHEN1,2 AND JAUME LLIBRE2,∗

Abstract. In this paper we study the global dynamical behavior of the Hamil-
tonian system ẋ = Hy(x, y), ẏ = −Hx(x, y) with the rational potential Hamil-
tonian H(x, y) = y2/2 + P (x)/Q(y), where P (x) and Q(y) are polynomials of
degree 1 or 2. First we get the normal forms for these rational Hamiltonian sys-
tems by some linear change of variables. Then we classify all the global phase
portraits of these systems in the Poincaré disk and provide their bifurcation
diagrams.

1. Introduction and statement of the main results

A great deal of work has been done for studying the global dynamics of the
planar polynomial differential systems, for example see [3, 4, 6, 8, 10, 15]. Vulpe
[16] studied the global phase portraits of the quadratic polynomial systems having
a center. In [14] Schlomiuk gave the bifurcation diagrams for the global phase
portraits of these quadratic systems. Artés and Llibre [2] provided the global
phase portraits of all quadratic Hamiltonian systems. The authors of [12] pre-
sented the phase portraits of the quadratic polynomial vector fields having a ratio-
nal first integral of degree 3. Guillamon et al. [11] gave an algorithm to obtain the
phase portraits of the separable Hamiltonian system with the Hamiltonian function
H(x, y) = F (x) + G(y). Colak et al. [5, 7] presented the global phase portraits
in the Poincaré disk of all Hamiltonian linear type centers of polynomial systems
having linear plus cubic homogeneous terms, and gave their bifurcation diagrams.

In this paper we consider the Hamiltonian system

(1) ẋ = Hy(x, y), ẏ = Hx(x, y)

with a rational Hamiltonian function

(2) H = H(x, y) =
y2

2
+ V (x, y) =

y2

2
+
P (x)

Q(y)
,

where P (x) and Q(y) are real polynomials of degree at most 2. We denote by the
set L = {(x, y)|Q(y) = 0} the points where the Hamiltonian vector field are not
defined. The system associated to the Hamiltonian function (2) has the form

(3) ẋ = y − P (x)Q′(y)

Q2(y)
, ẏ = −P

′(x)

Q(y)
,
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where P ′(x) and Q′(y) indicate the derivatives of the polynomials P and Q with
respect to x and y respectively, and the dot denotes derivative with respect to the
time t. Under the time rescaling

(4)
dt

dτ
= Q2(y),

the rational Hamiltonian system (3) becomes the polynomial system

(5) x′ = yQ2(y)− P (x)Q′(y), y′ = −P ′(x)Q(y),

where x′ and y′ denote derivatives of x and y with respect to τ respectively. But
the new system (5) is not Hamiltonian in general, we call it an integrable non-
Hamiltonian system. Thus we can study the phase portraits of the Hamiltonian (3)
analyzing the associated polynomial differential system (5). Mart́ınez and Vidal
[13] classified the phase portraits of the Hamiltonian system (1) with the potential
V (x, y) = P (x)/Q(x). Our main result is the following one.

Theorem 1.1. Given a Hamiltonian (2) with the rational potential V (x, y) = P (x)
Q(y)

where P (x) and Q(y) are polynomials of degree at most 2, after a linear change of
variables and a rescaling of its independent variables, it can be written as one of
the following classes:

(I) H±
11 = y2

2 ± x+b̃

y+B̃
, with b̃ = b/(a

√
|a|) and B̃ = B/

√
|a|, if P (x) = ax + b

and Q(y) = Ay +B with aA 6= 0;

(II) H±
21 = y2

2 ± x2±∆
y+B , with ∆ = c − b2/(4a), if P (x) = ax2 + bx + c and

Q(y) = Ay +B with aA 6= 0;

(III) H12 = y2

2 + x+b̃

y2+B̃y+C̃
, with b̃ = b/(a 3

√
a), B̃ = B/ 3

√
a and C̃ = C/

3
√
a2, if

P (x) = ax+ b and Q(y) = Ay2 + By + C with aA 6= 0;

(IV) H±
22 = y2

2 ± x2+∆

y2+B̃y+C̃
, with ∆ = (c/a − b2/(4a2))/|a|, B̃ = B/

√
|a|, and

C̃ = C/|a|, if P (x) = ax2 + bx+ c and Q(y) = Ay2 +By+C with aA 6= 0.

In each expression the sign “± ” corresponds to “+” for a > 0 and “− ” for a < 0.

In Theorem 1.1 we get that the flow of the Hamiltonian system (3) associated
to the rational Hamiltonians H−

11 and H−
21 are topologically equivalent to the one

of the Hamiltonians H+
11 and H+

21, respectively. For instance, the phase portraits of
the rational Hamiltonian system of H−

11 can be obtained from H+
11 by simply doing

the changes (x, b) → (−x,−b). We will classify the global phase portraits of the
families of the systems of Theorem 1.1 in the Poincaré disk, and will provide the
bifurcation diagrams of these phase portraits.

In order to classify the phase portraits of the polynomial systems (3), the main
step is the characterization of the finite and infinite equilibrium points in the
Poincaré compactification, for more details about the Poincaré compactification
see [9]. The second step for determining the global flow of these polynomial vec-
tor fields is to characterize their separatrices. It is known that the separatrices of
a polynomial differential system are all the infinite orbits, all the finite singular
points, the separatrices of the hyperbolic sectors of the finite and infinite singular
points, and the limit cycles. Since the existence of a first integral prevents the
existence of limit cycles, we do not have to determine the limit cycles of system
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(3). In the Poincaré disk D
2, let Σ be the closed set formed by all the separatrices,

the components of D2 \Σ are called the canonical regions (for more details see [9]).
We denote by S and R the number of separatrices and canonical regions of a given
phase portrait, respectively.

In the phase portraits of the following theorems the straight lines of the set L are
indicated by the dash line “−−− ”. A small circle in the phase portraits denotes
an equilibrium point of the polynomial system (5), but no an equilibrium point of
the rational Hamiltonian system (3), and we called it a virtual equilibrium point or
a virtual singular point.

Theorem 1.2. The global phase portraits of the rational Hamiltonian system (3)

with H±
11 = y2

2 ± x+b
y+B given in statement (I) of Theorem 1.1 are topologically

equivalent to 1.1 of Figure 1.

Theorem 1.3. The global phase portraits of the rational Hamiltonian system (3)

with H±
21 = y2

2 ± x2+∆
y+B given in statement (II) of Theorem 1.1 are topologically

equivalent to the following ones of Figure 1:
1.2 if ∆ = B = 0;
1.3 if ∆ = 0 and B > 0;
1.4 if ∆ = 0 and B < 0;
1.5 if ∆ > 0 and 4B3 + 27∆ > 0;
1.6 if ∆ > 0 and 4B3 + 27∆ = 0;
1.7 if ∆ > 0 and 4B3 + 27∆ < 0;
1.8 if ∆ < 0 and 4B3 + 27∆ < 0;
1.9 if ∆ < 0 and 4B3 + 27∆ = 0;
1.10 if ∆ < 0 and 4B3 + 27∆ > 0.

Moreover the corresponding bifurcation diagram is shown in Figure 4.

Theorem 1.4. The global phase portraits of the rational Hamiltonian system (3)

with H12 = y2

2 + x+b
y2+By+C given in statement (III) of Theorem 1.1 are topologically

equivalent to the following ones of Figure 1:
1.11 if B2 − 4C = 0;
1.12 if B2 − 4C < 0;
1.13 if B2 − 4C > 0.

Moreover the corresponding bifurcation diagram is shown in Figure 5.

Theorem 1.5. The global phase portraits of the rational Hamiltonian system (3)

with H+
22 = y2

2 + x2+∆
y2+By+C given in statement (IV) of Theorem 1.1 are topologically

equivalent to the following ones of Figures 1 and 2:
1.14 if B = C = ∆ = 0;
1.15 if C = B2/4 > 0 and ∆ = 0;
1.16 if C = B2/4 and ∆ > 0;
1.17 if C = B2/4 > 0 and −27B4/8192 < ∆ < 0;
1.18 if C = B2/4 > 0 and ∆ = −27B4/8192;
1.19 if C = B2/4 and ∆ < −27B4/8192;
1.20 if B = 0, C < 0 and 0 < ∆ < C2/2,

or B 6= 0, C < B2/4, 0 < ∆ < F4 and D5 > 0;
1.21 if B 6= 0, C < B2/4, 0 < ∆ < F4 and D5 = 0;
1.22 if B = 0, C < 0 and ∆ ≥ C2/2, or B 6= 0, C < B2/4, ∆ > 0 and D5 < 0;
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(1.2) S=4, R=4;

(1.5) S=3, R=2;

(1.4) S=7, R=5;(1.3) S=6, R=5;

(1.6) S=6, R=3; (1.7) S=8, R=4;

(1.9) S=10, R=6; (1.10) S=12, R=7; (1.11) S=2, R=2;

(1.13) S=2, R=3;

(1.1) S=2, R=2;

(1.12) S=4, R=1;

(1.16) S=4, R=2;(1.14) S=2, R=2; (1.15) S=4, R=3;

(1.19) S=2, R=2; (1.20) S=9, R=5;(1.17) S=7, R=4;

(1.21) S=7, R=4; (1.23) S=9, R=3; (1.24) S=7, R=2.(1.22) S=5, R=3;

(1.8) S=7, R=5;

(1.18) S=5, R=3;

Figure 1. Topological phase portraits of cases 1.1-1.24 in Theo-
rems 1.2-1.5.
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(1.27) S=7, R=6;

(1.30) S=10, R=7;(1.29) S=12, R=8;

(1.28) S=6, R=6;

(1.31) S=7, R=6;

(1.26) S=4, R=5;(1.25) S=5, R=1;

(1.32) S=6, R=6;

(1.33) S=9, R=7; (1.34) S=2, R=2; (1.35) S=5, R=3; (1.36) S=7, R=4;

(1.37) S=12, R=8; (1.38) S=8, R=5; (1.39) S=6, R=4; (1.40) S=3, R=3;

(1.42) S=14, R=6; (1.43) S=12, R=5; (1.44) S=9, R=4;

(1.48) S=11, R=10.(1.47) S=10, R=10;(1.45) S=8, R=9;

(1.41) S=13, R=5;

(1.46) S=9, R=9;

Figure 2. Topological phase portraits of cases 1.25-1.48 in The-
orems 1.5 and 1.6.
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(1.52) S=17, R=12.(1.51) S=20, R=13;(1.50) S=22, R=14;(1.49) S=21, R=13;

Figure 3. Topological phase portraits of cases 1.49-1.52 in The-
orem 1.6.

1.23 if B = 0, C > 0 and ∆ > C2/2, or C > B2/4 > 0, ∆ > F4 and D5 < 0,
or C > B2/4 > 0, F6 < ∆ < 0 and D5 < 0;

1.24 if C > B2/4 > 0, ∆ > F4 and D5 = 0,
or C > B2/4 > 0, F6 < ∆ < 0 and D5 = 0;

1.25 if B = 0, C > 0 and ∆ ≤ C2/2, or C > B2/4 > 0 and ∆ = 0,
or C > B2/4 > 0, ∆ 6= 0 and D5 > 0;

1.26 if B 6= 0 and ∆ = C = 0;
1.27 if C < 0 and ∆ = 0;
1.28 if 0 < C < B2/4 and ∆ = 0;
1.29 if 0 < C < B2/4, F6 < ∆ < 0 and D5 < 0;
1.30 if 0 < C < B2/4, F6 < ∆ < 0 and D5 = 0;
1.31 if B = 0, C < 0 and ∆ < 0, or B 6= 0, C < B2/4 and ∆ < F6,

or B 6= 0, C < B2/4, C 6= 0, F6 ≤ ∆ < 0 and D5 > 0.
See (63), (64) and (69) for the expression of D5, F4 and F6, respectively. Moreover
the corresponding bifurcation diagrams are shown in Figures 6–8.

Theorem 1.6. The global phase portraits of the rational Hamiltonian system (3)

with H−
22 = y2

2 − x2+∆
y2+By+C given in statement (IV) of Theorem 1.1 are topologically

equivalent to the following ones of Figures 2 and 3:
1.32 if B = C = ∆ = 0;
1.33 if C = B2/4 > 0 and ∆ = 0;
1.34 if C = B2/4 and ∆ > 27B4/8192;
1.35 if C = B2/4 > 0 and ∆ = 27B4/8192;
1.36 if C = B2/4 > 0 and 0 < ∆ < 27B4/8192;
1.37 if C = B2/4 and ∆ < 0;
1.38 if B 6= 0, C < B2/4, C 6= 0, 0 < ∆ < −F6 and D5(−∆, B, C) < 0;
1.39 if B 6= 0, C < B2/4, C 6= 0, 0 < ∆ < −F6 and D5(−∆, B, C) = 0;
1.40 if B = 0, C < 0, and ∆ > 0,

or B 6= 0, C < B2/4, C 6= 0, ∆ > 0 and D5(−∆, B, C) > 0;
1.41 if B = 0, C > 0, and ∆ < −C2/2;
1.42 if C > B2/4 > 0, ∆ < −F4 and D5(−∆, B, C) < 0,

or C > B2/4 > 0, 0 < ∆ < −F6 and D5(−∆, B, C) < 0;
1.43 if C > B2/4 > 0, 0 < ∆ < −F6 and D5(−∆, B, C) = 0,

or C > B2/4 > 0, ∆ < −F4 and D5(−∆, B, C) = 0;
1.44 if B = 0, C > 0 and ∆ ≥ −C2/2, or C > B2/4 > 0 and ∆ = 0,

or C > B2/4 > 0, ∆ 6= 0 and D5(−∆, B, C) > 0;
1.45 if B 6= 0 and C = ∆ = 0;
1.46 if C < 0 and B = ∆ = 0;
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1.47 if B 6= 0, C < 0 and ∆ = 0;
1.48 if 0 < C < B2/4 and ∆ = 0;
1.49 if B = 0, C < 0 and −C2/2 < ∆ < 0;
1.50 if B 6= 0, C < B2/4, −F4 < ∆ < 0 and D5(−∆, B, C) > 0;
1.51 if B 6= 0, C < B2/4, −F4 < ∆ < 0 and D5(−∆, B, C) = 0;
1.52 if B = 0, C < 0 and ∆ ≤ −C2/2,

or B 6= 0, C < B2/4, ∆ < 0 and D5(−∆, B, C) < 0.
See (63), (64) and (69) for the expression of D5, F4 and F6, respectively. Moreover
the corresponding bifurcation diagrams are shown in Figures 9–11.

We will give some preliminary definitions and theorems in the following section.
We prove how to obtain the normal forms given in Theorem 1.1 in Section 3.
We determine the phase portraits of the vector fields (I)–(IV) in Sections 4–7,
respectively, in other words we prove Theorems 1.2–1.5. In a similar way to the
proof of Theorem 1.5 we can obtain the phase portraits of the Hamiltonian H−

22,
but for the sake of simplicity we will not provide the proof of Theorem 1.6 here.

1.4

1.10

1.3

1.6

1.5

B

△

0

△=f1(B)

1.8

1.2

1.7

1.9

Figure 4. The bifurcation diagram of the phase portraits for

H±
21 = y2

2 ± x2+∆
y+B where f1(B) = −4B3/27.

1.12

B

C

0

C=f2(B)

1.13

1.11

Figure 5. The bifurcation diagram of the phase portraits for

H12 = y2

2 + x+b
y2+By+C where f2(B) = B2/4.
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1.25

B

C

0

C=f2(B)

1.26

1.15
1.28 1.28

1.27

1.14 1.26

Figure 6. The bifurcation diagram of the phase portraits for

H+
22 = y2

2 + x2+∆
y2+By+C with ∆ = 0, where f2(B) = B2/4.

1.22

C

△

0

△=f3(C)

1.27

1.16

1.20

1.25

1.31

1.14

1.19

1.23

Figure 7. The bifurcation diagram of the phase portraits for

H+
22 = y2

2 + x2+∆
y2+By+C with B = 0, where f3(C) = C2/2.

1.22

△

F

0

1.24

1.31
1.21

1.20

1.24

1.23

1.161.15

1.25

1.25

1.23

1.25

1.17△1

1.19

1.18

1.29

1.30

△=f7(B,C)
1.26

△=f4(B,C)

△=f5(B,C)

△=f6(B,C)

1.28

C=0
1.27

Figure 8. The bifurcation diagram of the phase portraits for

H+
22 = y2

2 + x2+∆
y2+By+C with B 6= 0, where F = B2 − 4C,

∆1 = −27B4/8192 and f4,5,6,7(B,C) are convenient functions.
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1.44

B

C

0

C=f2(B)

1.45

1.33
1.48 1.48

1.46
1.32 1.45

1.47 1.47

Figure 9. The bifurcation diagram of the phase portraits for

H−
22 = y2

2 − x2+∆
y2+By+C with ∆ = 0, where f2(B) = B2/4.

1.40

C

△

0

△=f8(C)

1.49

1.34

1.46

1.44

1.52

1.32

1.37

1.41

Figure 10. The bifurcation diagram of the phase portraits for

H−
22 = y2

2 − x2+∆
y2+By+C with B = 0, where f8(C) = −C2/2.

1.38

△

F

0

1.44

1.51

1.351.36

1.43

1.42

1.34

1.33 1.44

1.44

1.42

1.43

1.37 △2

1.52

1.50

△=f10(B,C)

1.45

△=f9(B,C)

△=f11(B,C)

△=f12(B,C)

1.39
1.40

1.48

1.47

C=0

Figure 11. The bifurcation diagram of the phase portraits for

H−
22 = y2

2 − x2+∆
y2+By+C with B 6= 0, where F = B2 − 4C, ∆2 =

27B4/8192 and f9,10,11,12(B,C) are convenient functions.

2. Preliminaries

Now we introduce some basic results that we will need for the analysis of the
local phase portraits of the finite and infinite singular points of the polynomial
vector fields.
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2.1. Poincaré compactification. In this subsection we present some preliminar-
ies about the Poincaré disk and the compactification of a polynomial vector field,
for more details see Chapter 5 of [9].

We denote by P (R2) the set of all polynomial vector fields on R
2 of the form

(6) X = (ẋ1, ẋ2) = (X(x1, x2), Y (x1, x2)),

where X(x1, x2) and Y (x1, x2) are real polynomials in the variables x1 and x2 of
degree d. We consider R2 as the plane in R

3 defined by s = (s1, s2, s3) = (x1, x2, 1).
The plane R2 is tangent to the Poincaré sphere S2 = {s ∈ R

3 : ||s|| = 1} at the north
pole. We consider the central projection of R2 onto the sphere S2, that is, for each
point x ∈ R

2 = (x1, x2, 1) ∈ R
3 we take the straight line l through this point and

the origin of R3 and the central projection sends the point x to the two intersection
points of the straight line l with the sphere S

2. Then we obtain a vector field X ′

formed by two copies of X : one on the northern hemisphere {s ∈ S
2 : s3 > 0}, and

the other on the southern hemisphere {s ∈ S
2 : s3 < 0}. Note that the equator

S
1 = {s ∈ S

2 : s3 = 0} corresponds to the infinity of R2. This vector field X ′ on
S
2\S1 can be extended to a vector field p(X) on the whole sphere S2 multiplying the

vector field X ′ by xd3 . The vector field p(X) is called the Poincaré compactification
of the vector field X .

In order to compute the expression of the vector field p(X), we consider the six
local charts given by

(7) Ui = {s ∈ S
2 : si > 0}, Vi = {s ∈ S

2 : si < 0},
for i = 1, 2, 3, and the diffeomorphisms

(8) ϕi(s) : Ui → R
2, ψi(s) : Vi → R

2,

defined as ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n 6= i. We
note that (u, v) will play different roles in every local chart. Then the expression
of p(X) in the local chart U1 is

(9) u̇ = vd
[
− uX

(
1

v
,
u

v

)
+ Y

(
1

v
,
u

v

)]
, v̇ = −vd+1X

(
1

v
,
u

v

)
.

Analogously, the expression of p(X) in the local chart U2 is

(10) u̇ = vd
[
− uX

(
u

v
,
1

v

)
− uY

(
u

v
,
1

v

)]
, v̇ = −vd+1Y

(
u

v
,
1

v

)
,

and in U3 is

(11) u̇ = X(u, v), v̇ = Y (u, v).

The expression of p(X) in the local charts Vi is the same as in Ui multiplied by
(−1)d−1 for i = 1, 2, 3. That is, if s is an equilibrium point, then −s is also an
equilibrium point. Note that the local behavior near −s is the local behavior near
s multiplied by (−1)d−1. Hence it is enough to study the Poincaré compactification
restricted to the northern hemisphere plus S

1 to study the vector field X . For
drawing the phase portraits we will consider the orthogonal projection π(s) =
(s1, s2) of the northern hemisphere onto the closed unit disk D

2 centered at the
origin of coordinates in the plane s3 = 0. D

2 is called the Poincaré disk. Infinite
equilibrium points of X are the equilibrium points of the vector field p(X) which
are on S

1. So for studying the infinite equilibrium points it suffices to look the ones
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at U1|v=0 and at the origin of U2. We compute the finite equilibrium points of X
by the chart U3, which are the equilibrium points of p(X) in S

2 \ S1.

2.2. Some other preliminaries. For proving our main result we need to study
different types of equilibria, where the linearly zero equilibria are studied using the
changes of variables called blow-up’s. For more details about the blow-up’s see [1].

Sometime the explicit expressions of the finite equilibrium points and their eigen-
values in terms of the parameters are complicated, therefore it is hard to analyze
their existence and their local phase portraits. For this reason we will provide an
alternative way for studying the finite equilibria. Firstly we present one way to
determine the real roots of the polynomial

(12) f(x) = a0x
n + a1x

n−1 + · · ·+ an.

We compute the discriminant sequence {D1, D2, · · · , Dn} of the polynomial (12)
(see more details in [17]) and determine the sign list

[sign(D1), sign(D2), · · · , sign(Dn)]

of the discriminant sequence, where the sign function is

(13) sign(x) =






1, if x > 0,

0, if x = 0,

−1, if x < 0.

Then we construct the associated revised sign list [r1, r2, · · · , rn] which will give all
the information about the number of real roots of the polynomial (12). For any
sign list [s1, s2, · · · , sn], the revised sign list [r1, r2, · · · , rn] is obtained as follows:

1. If sk 6= 0 we write rk = sk.
2. If [si, si+1, · · · , si+j ] is a section of the given sign list such that si+1 = · · · =
si+j−1 = 0 with sisi+j 6= 0, we replace the subsection [si+1, si+2, · · · , si+j−1]
with [−si,−si, si, si,−si,−si, si, si,−si, · · · ] keeping the number of terms.

As a result there are no zeros between nonzero elements of the revised sign list.
Thus for instance the revision of the sign list [1,−1, 0, 0, 0, 0, 0, 1,−1, 0, 0] is

[1,−1, 1, 1,−1,−1, 1, 1,−1, 0, 0].

From [17] we have the following theorem.

Theorem 2.1. For a polynomial (12) if the number of the sign changes of the
revised sign list of [r1, r2, · · · , rn] is v, and the number of nonzero members of the
revised sign list is l, then the number of the distinct real roots of (12) equals l− 2v.

When we find the number of finite equilibrium points of a system, we can com-
pute the topological indices of the equilibrium points, both finite and infinite. Here
we will present two important theorems, the Poincaré Formula and the Poincaré–
Hopf Theorem. The former allows to compute the index of an equilibrium point
of a planar vector field. The latter is suitable for the systems in a 2-dimensional
sphere. For more details about these theorems see Chapter 6 of [9].



12 TING CHEN AND JAUME LLIBRE

Theorem 2.2 (Poincaré Formula). Let q be an isolated equilibrium point having
the finite sectorial decomposition property. Let e, h and p denote the number of
elliptic, hyperbolic and parabolic sectors of q, respectively. Then the index of q is
(e− h)/2 + 1.

Corollary 2.3. The index of a node, a center, a saddle and a cusp are 1, 1, −1
and 0, respectively.

Theorem 2.4 (Poincaré–Hopf Theorem). For every vector field on the sphere S
2

with a finite number of equilibrium points, the sum of the indices of all its equilibria
is 2.

We have the following remark.

Remark 2.5. Since the flow of Hamiltonian systems preserves the area, we have
that any finite equilibrium of Hamiltonian systems must be either a center, or a
union of an even number of hyperbolic sectors. In particular, the finite nilpotent
equilibrium points of Hamiltonian planar polynomial vector fields are either saddles,
centers, or cusps, for more details see Theorem 3.5 of [9].

3. Proof of Theorem 1.1

(I) If P (x) = ax+ b, Q(y) = Ay + B and aA 6= 0, we have V (x, y) = ax/A+b/A
y+B/A .

Without loss of generality we can take A = 1, and obtain the rational potential
V (x, y) = ax+b

y+B . By the linear change of variables

X =
x√
|a|
, Y =

y√
|a|
,

the Hamiltonian function (2) will be the form H±
11 = Y 2

2 ± X+b/(a
√

|a|)
Y+B/

√
|a|

.

(II) In the case V (x, y) = ax2+bx+c
Ay+B with aA 6= 0, without loss of generality we

can take A = 1, and have V (x, y) = a(x+b/(2a))2+c−b2/(4a)
y+B . Considering the linear

change of variables

X =
√
|a|(x+

b

2a
), Y = y,

and writing ∆ = c − b2/(4a), the Hamiltonian function (2) has the form H±
21 =√

|a|(Y 2

2 ± X2±∆
Y +B ). Doing the rescaling in time dt = dτ/

√
|a| we get the normalized

Hamiltonian function H±
21 = Y 2

2 ± X2±∆
Y+B .

(III) For V (x, y) = ax+b
Ay2+By+C with aA 6= 0, without loss of generality we can

take A = 1, and consequently V (x, y) = ay+b
y2+By+C . Using a suitable change of

variables

X =
x
3
√
a
, Y =

y
3
√
a
,

we have the normalized Hamiltonian function H12 = Y 2

2 + X+b/(a 3
√
a)

Y 2+BY/ 3
√
a+C/

3
√
a2
.
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(IV) Finally in the case V (x, y) = ax2+bx+c
Ay2+By+C , without loss of generality we can

take A = 1, and so V (x, y) = a(x+b/(2a))2+c−b2/(4a)
y2+By+C . Doing the change of variables

X =
x+ b/(2a)√

|a|
, Y =

y√
|a|
,

the normalized Hamiltonian function (2) will be H±
22 = Y 2

2 ± X2+∆

Y 2+BY/
√

|a|+C/|a|
where ∆ = (c/a− b2/(4a2))/|a|. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

The rational Hamiltonian function given in statement (I) of Theorem 1.1 is

H±
11(x, y) =

y2

2
± x+ b

y +B
,

and the associated Hamiltonian system for H+
11 is

(14) ẋ = y − x+ b

(y +B)2
, ẏ = − 1

y +B
.

Note that we can assume B ≥ 0 because system (14) is invariant under the trans-
formation (x, y, t, b, B) → (−x,−y, t,−b,−B).

We apply the rescaling in time dt = (y +B)2dτ , and system (14) becomes

(15) x′ = −x− b + y(y +B)2, y′ = −(y +B).

We study the dynamics of the infinite equilibrium points of system (15) through
the Poincaré compactification. In the local chart U1 system (15) becomes

(16)
u′ =− u4 − 2Bu3v −B2u2v2 −Bv3 + buv3,

v′ =v(v2 + bv3 − u3 − 2Bu2v −B2uv2).

On the infinity, i.e. on v = 0, the origin is the unique equilibrium point, and its
the linear part is identically zero. In order to describe the local phase portrait at
the origin of U1 we do the blow-up (u, v) → (u,w) with w = v/u. Then we have
the system

(17)
u′ =− u3(u + 2Buw +B2uw2 +Bw3 − buw3),

w′ =u2w3(1 +Bw).

Doing a rescaling of the time we eliminate the common factor u2 between u′ and
w′. Then we obtain the system

(18)
u′ =− u(u+ 2Buw +B2uw2 +Bw3 − buw3),

w′ =w3(1 +Bw).

When u = 0 system (18) can have two equilibrium points E1 = (0, 0) and E2 =
(0,−1/B) if B 6= 0.

If B = 0 system (18) has only the equilibrium point E1 on u = 0, which is
linearly zero. We do a second directional blow-up (u,w) → (u, w̃) with w̃ = w/u
and removing the common factor u, then we obtain the system

(19) u′ = −u(1− bu3w̃3), w̃′ = w̃(1 + uw̃2 − bu3w̃3).
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Figure 12. Blow-up at the origin of system (16) in U1 with B = 0.
(a) System (19), (b) System (18), (c) System (17), (d) System (16).
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Figure 13. Blow-up at the origin of system (16) in U1 with B > 0.
(a) System (18), (b) System (16).

When u = 0 the origin is the unique equilibrium point of system (19), and it
is a saddle, with the stable and unstable separatrices on the u-axis and w̃-axis,
respectively (see Figure 12(a)). Going back through the change of variables, taking
into account that both axes are invariant by system (16), we obtain u′|v=0 = −u4
and v′|u=0 = v3 +O(v4). Hence we have that the phase portrait in a neighborhood
of the origin of system (16) consists of two hyperbolic sectors and one parabolic
sector (see Figure 12(d)).

If B > 0 the equilibrium E1 is linearly zero and E2 is a saddle. The local phase
portrait of E1 coincides with the one of the case B = 0, see Figure 12(b). We
superpose the study of the equilibria E1,2 and obtain the local behavior of system
(18), see Figure 13(a). Going back through the change of variables and taking into
account the behavior of the flow of system (16) on the axes, we have u′|u=0 = −Bv3,
u′|v=0 = −u4 and v′|u=0 = v3 + O(v4). Then we obtain that the origin of system
(16) has two hyperbolic and one parabolic sector, see Figure 13(b).

Next we check if the origin of the local chart U2 is an equilibrium point, and we
get

(20) u′ = 1 + 2Bv +B2v2 − bv3 +Buv3, v′ = v3(1 + Bv).

Obviously, the origin of system (20) is not an equilibrium point.

System (15) has two equilibria in the infinite region, one in U1, and its diametri-
cally opposite in V1. The flow in the chart V1 has the same sense as in U1 because
the degree of system (15) is 3. Now we must analyze which of the equilibrium points
of system (15) in the Poincaré disk are or not effectively equilibrium points of the
rational system (14). We observe that the set L = {(x, y)|y +B = 0} corresponds
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to the straight line, which connects the origins in U1 and V1. Therefore there exist
no equilibria at infinity for the rational Hamiltonian system (14).

Having determined the infinite equilibria of system (15) and of the Hamiltonian
system (14), we now analyze their finite equilibrium points. The linear part of
system (15) is

(21) M =

(
−1 3y2 + 4By +B2

0 −1

)
.

System (15) has the unique finite equilibrium point p1 = (−b,−B). From (21)
we get that p1 is a hyperbolic attracting node of system (15). In addition, the
equilibrium point p1 is on the straight line y = −B, i.e. in the set L. Hence it is a
virtual equilibrium point, and system (14) has no finite equilibrium points. Using
the level of energy on the y-axis H+

11|x=0 = y2/2 + b/(y + B) = h it follows that
the integral curves cross the y-axis at most twice. Then the global phase portrait
of the rational Hamiltonian system (14) is given by 1.1 of Figure 1. This concludes
the proof of Theorem 1.2.

5. Proof of Theorem 1.3

Next we study the rational Hamiltonian system H+
21 = y2

2 + x2+∆
y+B , here the

Hamiltonian system of H+
21 is

(22) ẋ = y − x2 +∆

(y +B)2
, ẏ = − 2x

y +B
.

We apply the rescaling dt = (y +B)2dτ , and have the system

(23) x′ = −(x2 +∆) + y(y +B)2, y′ = −2x(y +B),

which is a polynomial system of degree 3.

We analyze the infinity of system (23) through the Poincaré compactification.
The associated system (23) in U1 is

(24)
u′ =− u4 − uv − 2Bu3v − 2Bv2 −B2u2v2 +∆uv3,

v′ =v(v +∆v3 − u3 − 2Bu2v −B2uv2).

Taking v = 0 the origin is the unique equilibrium point which is linearly zero. In
order to understand the local phase portrait of this equilibrium point, we apply
the directional blow-up (u, v) → (u,w) with w = v/u. And after eliminating the
common factor u between u′ and w′ we have

(25)
u′ =− u(u2 + w + 2Bu2w + 2Bw2 +B2u2w2 −∆u2w3),

w′ =2w2(1 +Bw).

For u = 0 system (25) has two possible equilibrium points E1 = (0, 0) and E2 =
(0,−1/B).

When B = 0 the origin of system (25) is the unique equilibrium point on u = 0
and it is linearly zero. Again we do another blow-up (u,w) → (u, w̃) with w̃ = w/u,
remove the common factor u, and obtain the system

(26) u′ = −u(u+ w̃ −∆u4w̃3), w̃′ = w̃(u+ 3w̃ −∆u4w̃3).
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Figure 14. The blow-up at the origin of system (24) in U1 with
B = 0. (a) System (27), (b) System (26), (c) System (25), (d)
System (24).
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Figure 15. The blow-up at the origin of system (24) in U1 with
B 6= 0. (a) Systems (25) and (24) if B < 0, (b) Systems (25) and
(24) if B > 0.

For u = 0 the origin is the unique equilibrium, which is again linearly zero. We
perform the directional blow-up (u, w̃) → (u,W ) withW = w̃/u and get the system

(27)
u′ =− u(1 +W −∆u6W 3),

W ′ =W (1 + u+ 3W + uW −∆u6W 3 −∆u7W 3).

after eliminating the common factor u. For u = 0 system (27) has the origin as
the unique equilibrium point, which is a hyperbolic saddle. Going back through
the change of variables we get that locally E1 has two hyperbolic sectors and one
parabolic sector, see Figure 14(c). Again going back through the change of variables
until system (24) and taking into account the behavior of the flow of system (24)
on the axes, we have u′|v=0 = −u4 and v′|u=0 = v2 + O(v4). Hence we obtain
that the local phase portrait at the origin in U1 has two hyperbolic sectors and two
parabolic sectors see Figure 14(d).

Assume that B 6= 0. The equilibrium point E1 is linearly zero and E2 is a saddle.
Similarly to the above case the local phase portrait of E1 is shown in Figure 14(c).
We superpose the analysis of the equilibria E1,2, see the left of Figures 15(a) and
15(b) when B < 0 and B > 0, respectively. Going back through the change of
variables and taking into account the phase portrait of the flow on the axes, we
obtain that the local phase portrait at the origin of U1 also has two hyperbolic and
two parabolic sectors (see the right of Figures 15(a) and 15(b)).
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Figure 16. The local phase portrait at the origin of systems (23)
and (30). (a) System (23) with B = 0, (b) System (30) with B > 0,
(c) System (30) with B < 0.

Now we check the origin of U2, in which system (23) becomes

(28)
u′ =1 + 2Bv + u2v +B2v2 + 2Bu2v2 −∆v3,

v′ =2uv2(1 +Bv).

The origin of U2 is not the equilibrium point.

Thus the associated polynomial system (23) has two equilibria at infinity, one in
U1 and its diametrically opposite in V1. Note that the degree of system (23) is 3 so
the flow in the chart V1 has the same sense as in U1. The set L = {(x, y)|y+B = 0}
in the Poincaré disk is a straight line connecting the origin in U1 and V1. We remark
that in this case the origins in U1 and V1 are not equilibrium points for the rational
Hamiltonian system (22) because they are in L.

This finishes the study of the infinite equilibrium points of system (23) and of
the rational Hamiltonian system (22), we now focus on the finite region. Since the
level of energy on the x-axis H+

21|y=0 = x2 + ∆/B = h has at most two solutions
for any h ∈ R, the integral curves of systems (22) and (23) cut the x-axis at most
once at each region x > 0 and x < 0 when B 6= 0. And by the level of energy on
the y-axis H+

21|x=0 = y2/2 + ∆/(y + B), the integral curves of systems (22) and
(23) cut the y-axis at most twice. Next we consider the following cases: (i) ∆ = 0,
(ii) ∆ > 0 and (iii) ∆ < 0.

(i.a) If ∆ = 0 and B = 0 system (23) has one finite equilibrium point p1 = (0, 0),
which is linearly zero. Performing the directional blow-up (x, y) → (x,w) with
w = y/x and eliminating the common factor x, system (23) becomes

(29) x′ = x(−1 + w3x), w′ = −w(1 + w3x).

When x = 0 the origin is the unique equilibrium point of system (29), and it is
an attracting node. Going back through the change of variables and taking into
account the behavior of the flow on both axes, we get that locally the origin of
systems (23) consists of one hyperbolic sector, one elliptic sector and two parabolic
sectors (see Figure 16(a)). In fact the equilibrium point p1 is a virtual equilibrium
point of the rational Hamiltonian system (22). Thus there exist no finite equilibria
for system (22). We obtain the phase portrait 1.2 of Figure 1.

(i.b) If B 6= 0 system (23) has two finite equilibrium points p1 = (0, 0) and

p2 = (0,−B). The eigenvalues of the equilibrium point p1 are λ1,2 = ±
√
−2B3.

If B > 0 the equilibrium p1 is a center because system (23) is symmetric with
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the y-axis. The equilibrium point p2 is linearly zero, doing the change of variables
x → x and y → y − B, we translate this equilibrium point to the origin and we
have the system

(30) x′ = −x2 −By2 + y3, y′ = −2xy.

Now we do the blow-up using (x, y) → (x,w) with w = y/x, and eliminate the
common factor x between x′ and w′. Then we have

(31) x′ = x(−1 −Bw2 + w3x), w′ = −w(1 −Bw2 + w3x).

For x = 0 the origin of system (31) is the unique equilibrium and it is an attracting
node. Going back through the change of variables, taking into account the behav-
ior of the flow on the axes of system (30), we have x′|x=0 = −By2 + O(y3) and
x′|y=0 = −x2. Thus we get that the origin of system (30) has two hyperbolic and
two parabolic sectors (see Figure 16(b)). Actually the equilibrium p2 is a virtual
equilibrium point of the associated system (22) because it is in the set L. Therefore
there exists only one finite equilibrium for the rational Hamiltonian system (22).
The phase portrait in this case is topologically equivalent to 1.3 of Figure 1.

If B < 0 we have that p1 is a saddle. Similarly to the above case we obtain that
the origin of system (30) consists of two elliptic sectors and two parabolic sectors
(see Figure 16(c)). On the other hand the equilibrium p2 is a virtual equilibrium
point of the Hamiltonian system (22), hence we have the phase portrait 1.4 of
Figure 1.

Next we consider the case ∆ 6= 0, the explicit expressions for the finite equilib-
rium points of system (23) and their eigenvalues in terms of the parameters b and
B are complicated. Hence we need firstly to find the number of finite equilibrium
points for system (23). Using Theorems 2.2 and 2.4 we count the indices of known
equilibrium point, then we can deduce the type of the remaining finite equilibrium
points.

(ii) Assume that ∆ > 0 system (23) has a equilibrium point of the form (0, y) if
y satisfies

(32) y(y +B)2 −∆ = 0.

Let (0, y0) be an equilibrium point of system (23), then the linear part of system
(23) at (0, y0) is

(33) M =

(
0 (B + y0)(B + 3y0)

−2(B + y0) 0

)
.

The equilibrium (0, y0) is linearly zero only if B+ y0 = 0 (i.e ∆ = 0), which cannot
be satisfied. We have that (0, y0) is either elementary or nilpotent, hence it is either
a saddle, or a center, or a cusp. If y0 = −B/3 we obtain that (0, y0) is nilpotent.
Then we substitute y0 = −B/3 into (32) and have 4B3 + 27∆ = 0.

The infinite equilibrium points in the Poincaré sphere are the origin of U1, and
also the corresponding point in V1. The origins of U1 and V1 consist of two hy-
perbolic sectors respectively, by Theorem 2.2, they have index 0. Thus the finite
equilibrium points must have total index 2 in the Poincaré sphere. On the other
hand, it is easy to get that the cubic equation (32) have one, or two, or three real
roots if 4B3∆+ 27∆ > 0, or 4B3∆+ 27∆ = 0, or 4B3∆+ 27∆ < 0, respectively.
Hence we have the following cases.
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l

Figure 17. The straight line through the center intersects the
separatrices four times.

(ii.a) If 4B3 + 27∆ > 0 system (23) has one finite equilibrium point, which is
not in the set L. By Corollary 2.3 and Remark 2.5 this equilibrium point must be
a center so the sum of the indices in the Poincaré sphere is 2. Then we have the
phase portrait 1.5 of Figure 1.

(ii.b) If 4B3 + 27∆ = 0 system (23) has two finite equilibrium points p1 =
(0,−B/3) and p2 = (0,−4B/3), which are not in the set L. The equilibrium p1 is

a nilpotent point, and p2 is a center because its eigenvalues are ±
√
−9∆/2. Then

according with Corollary 2.3 and Remark 2.5, p1 must be one cusp. In addition we
have 0 < −B/3 < −B < −4B/3, then we obtain the phase portrait 1.6 of Figure
1.

(ii.c) If 4B3 + 27∆ < 0 system (23) has three finite equilibrium points, there
must be either just two centers and one saddle. Assume that the saddle is on the
boundary of the period annulus of one center. We claim that this saddle cannot be
on the boundary of the other center. If this were the case a straight line l through
the center passing sufficiently close to the saddle would have four intersection points
with the separatrices which are on the same energy level as the saddle (two with
the boundary of the period annulus of one center and two with the boundary of
the other center), see Figure 17 for an illustration. This means that on the straight
line l, which could be defined by y = kx for some real number k, the equation
H+

21 = h would have four solutions. But this is not possible for the function H+
21.

Therefore the saddle on the boundary of the period annulus of one center has to
be connected with the infinite equilibrium points. From −2(B+ y0)

2(B +3y0) > 0
and B < 0 we have y0 < −B/3, and from −2(B + y0)

2(B + 3y0) < 0 and B < 0
we have −B/3 < y0 < −B or y0 > −B. Then we get that the centers are in the
intervals (−B/3,−B) or (−B,+∞), and the saddle is in the interval (−∞,−B/3).
In fact, by the continuity of the phase portraits, the cusp of the phase portrait 1.6
becomes the saddle of a center-loop. Hence the phase portrait of system (22) is
topologically equivalent to the phase portrait 1.7 of Figure 1.

(iii) Assume that ∆ < 0 then system (23) has two additional finite equilibrium
points p1,2 = (±

√
−∆,−B) different from the equilibria (0, y0), which are an at-

tracting node and a repelling node respectively. Hence each has index 1. So the
known equilibrium points have total index 4. By Theorem 2.4 the finite equilib-
rium points other than p1,2 must have total index −1 in the Poincaré disk. On the
other hand the equilibria p1,2 are in the set L, they are two virtual points of the
Hamiltonian system (22).

(iii.a) If 4B3 +27∆ < 0 system (23) has one finite equilibrium point p3 different
than p1,2, which is not in the straight line y = −B. According to Corollary 2.3
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Figure 18. The straight line through the center intersects the
separatrices four times.

the equilibrium point p3 must be a saddle. Therefore the phase portrait of the
Hamiltonian system (22) in this case is 1.8 of Figure 1.

(iii.b) If 4B3 + 27∆ = 0 system (23) has two finite equilibrium points p3 =
(0,−B/3) and p4 = (0,−4B/3) which are not in set L. The equilibrium p4 is

a saddle because its eigenvalues are ±
√
−9∆/2. The equilibrium point p3 is a

nilpotent point and it must be a cusp due to Corollary 2.3. In addition we have
0 > −B/3 > −B > −4B/3, then the phase portrait in this case is topologically
equivalent to 1.9 of Figure 1.

(iii.c) If 4B3+27∆ > 0 system (23) has other three finite equilibrium points and
they are not in the set L. By Corollary 2.3 and Remark 2.5, the finite equilibrium
points must be two saddles and a center. Suppose first that all of the two saddles
are on the boundary of the period annulus of the center. We could find a straight
line l through the center passing sufficiently close to the two saddles, which would
have at least four intersection points with the separatrices which are on the same
energy level, see Figure 18. Clearly this is not possible for the Hamiltonian H+

21.
From −2(B+y0)

2(B+3y0) > 0 and B > 0 we have y0 < −B or −B < y0 < −B/3,
and from −2(B + y0)

2(B + 3y0) < 0 and B > 0 we have y0 > −B/3. Then we get
that the center is in the interval (−B/3,+∞), and the saddles are in the intervals
(−∞,−B) or (−B,−B/3). Hence the phase portrait of the Hamiltonian system
(22) in this case is topologically equivalent to 1.10 of Figure 1. We conclude the
proof of the theorem.

6. Proof of Theorem 1.4

We analyze the rational Hamiltonian system H12 = y2

2 + x+b
y2+By+C given in

statement (III) of Theorem 1.1, and the Hamiltonian system of H12 is

(34) ẋ = y − (x + b)(2y +B)

(y2 +By + C)2
, ẏ = − 1

y2 +By + C
.

Note that we can assume B ≥ 0 because by the linear change (x, y, t, b, B, C) →
(x,−y,−t, b,−B,C) system (34) is invariant. We will study the global phase por-
traits of system (34) when C = B2/4 and C 6= B2/4 separately.

(i) If C = B2/4 we apply the rescaling of the time dt = (y+B/2)3dτ and system
(34) becomes

(35) x′ = −2(x+ b) + y(y +B/2)3, y′ = −(y +B/2).
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Figure 19. The blow-up at the origin of system (36) in U1 with
B = 0. (a) System (38), (b) System (37), (c) System (36).
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Figure 20. The blow-up at the origin of system (36) in U1 with
B > 0. (a) System (37), (b) System (36).

System (35) in the local chart U1 is

(36)
u′ =− 1

8
(8u5 + 12Bu4v + 6B2u3v2 − 8uv3 +B3u2v3 + 4Bv4 − 16buv4),

v′ =
1

8
v(16v3 + 16bv4 − 8u4 − 12Bu3v − 6B2u2v2 −B3uv3).

For v = 0 the origin is the unique equilibrium, which is linearly zero. In order to
understand the local behavior of this equilibrium point we apply the directional
blow-up (u, v) → (u,w) with w = v/u. And after eliminating the common factor
u3 we have

(37)
u′ =− 1

8
u(8u+ 12Buw+ 6B2uw2 − 8w3 +B3uw3 + 4Bw4 − 16buw4),

w′ =
1

2
w4(2 +Bw).

Assume that B = 0 system (37) has only one equilibrium point E1 = (0, 0) on
u = 0, and it is linearly zero. Again we do another blow-up (u,w) → (u, w̃) with
w̃ = w/u, remove the common factor u, and obtain the system

(38) u′ = −u
8
(8− 8u2w̃3 − 16bu4w̃4), w̃′ =

w̃

8
(8− 16bu4w̃4).

For u = 0 the origin is the unique equilibrium, which is saddle. We recover the
local behavior at the origin of system (36) going back through the blow-up, the
equilibrium E1 of system (37) has two hyperbolic sectors and two parabolic sectors
(see Figure 19(b)), and the origin of U1 consists of two hyperbolic and one attracting
sectors (see Figure 19(c)).
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Figure 21. The phase portrait of system (35).

When B > 0 system (37) has two equilibria E1 and E2 = (0,−2/B) on u = 0.
The equilibrium E1 is linearly zero and E2 is a saddle. Similarly to the above case,
we obtain that E1 consists of two hyperbolic sectors and two parabolic sectors. We
superpose the study of the equilibrium points E1,2 of system (37), see Figure 20(a).
Going back to the origin of U1 and taking into account the behavior of the flow
on the axes, we have u′|u=0 = −Bv4/2, u′|v=0 = −u5 and v′|u=0 = 2v4 + O(v5).
Thus the origin of U1 consists of two hyperbolic sectors and one parabolic sector
(see Figure 20(b)).

In U2 system (35) acquires the form

(39)
u′ =

1

8
(8 + 12Bv + 6B2v2 +B3v3 − 8uv3 − 16bv4 + 4Buv4),

v′ =
1

2
v4(2 +Bv),

the origin is not the equilibrium point in U2.

For the polynomial system (35) we have found two equilibria in the infinite
region, one in U1 and its diametrically opposite in V1, which have the opposite
sense. The set L = {(x, y)|y+B/2 = 0} is a straight line connecting the north and
south poles. In this case the north and south poles are not equilibrium points for
the rational Hamiltonian system (34) because they are in the set L.

To complete the global dynamics associated to H21, we are going to analyze more
properties of the level of energy. Using the energy relationsH21|y=0 = 4(x+b)/B2 =
h and H21|x=0 = y2/2 + b/(y + B/2)2 = h, we have that the integral curves cross
the x-axis at most once when B 6= 0 and cross the y-axis at most twice. Next we
consider the finite equilibria for systems (35) and (34). System (35) has one finite
equilibrium point p1 = (−b,−B/2), which is an attracting node. We get the phase
portrait of system (35), see Figure 21. Going back to the Hamiltonian system (34),
p1 is a virtual equilibrium point and the integral curves of system (34) have the
opposite orientation with respect to system (35) in the region y < −B/2. Therefore
in this case the phase portrait of the Hamiltonian system (34) is topologically
equivalent to 1.11 of Figure 1.

(ii) Now we consider the case C 6= B2/4, and obtain the system

(40) x′ = −(x+ b)(2y +B) + y(y2 +By + C)2, y′ = −(y2 +By + C),
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Figure 22. The blow-up at the origin of system (41) in U1. (a)
System (42) with B2 < 4C, (b) System (41) with B2 < 4C, (c)
System (42) with B > 0 and C = 0, (d) System (41) with B > 0
and C = 0.

doing the rescaling dt = (y2 +By + C)2dτ . In the chart U1 system (40) becomes

(41)

u′ =− u6 − 2Bu5v − (B2 + 2C)u4v2 + u2v3 − 2BCu3v3 + (2b− C2)u2v4

− Cv5 + bBuv5,

v′ =v(−u5 − 2Bu4v − (B2 + 2C)u3v2 + 2uv3 − 2BCu2v3 +Bv4

+ (2b− C2)uv4 + bBv5).

For v = 0 the origin is the unique equilibrium point and it is linearly zero. We need
to do the blow-up to understand the local phase portait in a neighborhood of the
origin of system (41). We do the directional blow-up (u, v) → (u,w) with w = v/u
and have

(42)

u′ =− u(u+ 2Buw +B2uw2 + 2Cuw2 − w3 + 2BCuw3

− 2buw4 + C2uw4 + Cw5 − bBuw5),

w′ =w4(1 +Bw + Cw2),

after eliminating the common factor u4.

If B2 − 4C < 0 the origin E1 is the unique equilibrium point of system (42) on
u = 0, which is linearly zero. We perform the second blow-up (u,w) → (u, w̃) with
w̃ = w/u and eliminate the common factor u4, then we have

(43)

u′ =− u(1 + 2Buw̃ +B2u2w̃2 + 2Cu2w̃2 − u2w̃3 + 2BCu3w̃3

− 2bu4w̃4 + C2u4w̃4 + Cu4w̃5 − bBu5w̃5),

w̃′ =w̃(1 + 2Buw̃ +B2u2w̃2 + 2Cu2w̃2 + 2BCu3w̃3

+Bu3w̃4 − 2bu4w̃4 + C2u4w̃4 + 2Cu4w̃5 − bBu5w̃5).

For u = 0 system (43) has the origin as the equilibrium point, and it is a saddle.
Going back through the blow-up until system (41) in U1 and taking into account
the behavior of the flow on the axes, we have that E1 has two hyperbolic sectors
and two parabolic sectors (see Figure 22(a)), and the origin of system (41) consists
of one elliptic, one hyperbolic and two parabolic sectors (see Figure 22(b)). In this
case the separatrix must coincide with the u-axis, because it is invariant for system
(41).

If B > 0 and C = 0 system (42) has two equilibrium points E1 and E2 =
(0,−1/B) on u = 0. Similarly to the above case E1 is linearly zero which consists
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Figure 23. The blow-up at the origin of system (41) in U1. (a)
Systems (42) with B2 > 4C and C 6= 0, (b) System (41) with
B2 > 4C > 0, (c) System (41) with C < 0.

of two hyperbolic sectors and two parabolic sectors, and E2 is a saddle (see Figure
22(c)). Going back through the blow-up and taking into account the behavior of
the flow on the axes, we have u′|v=0 = −u6 and v′|u=0 = Bv5. Then we see that the
origin of U1 in this case has four hyperbolic and two parabolic sectors (see Figure
22(d)).

If B2 > 4C and C 6= 0 system (42) has three equilibrium points E1 and E2,3 =

(0, (−B ±
√
B2 − 4C)/(2C)) on u = 0. The equilibria E2,3 are saddles. Similarly

we obtain that the local behavior of E1,2,3 as it is shown in Figure 23(a). Going
back through the blow-up and taking into account the behavior of the flow on the
axes, we have u′|v=0 = −u6, u′|u=0 = −Cv5 and v′|u=0 = Bv5. Therefore the
origin of U1 has also four hyperbolic and two parabolic sectors (see Figures 23(b)
and 23(c)).

In U2 system (40) acquires the form

(44)
u′ =1 + 2Bv + (B2 + 2C)v2 + 2BCv3 − uv3 + (C2 − 2b)v4 − bBv5 + Cuv5,

v′ =v4(1 +Bv + Cv2),

the origin is not the equilibrium point in U2.

Hence the associated polynomial system (40) has two equilibria in the infinite
region, one in U1 and its diametrically opposite in V1, which have the same sense.
When B2−4C > 0 we observe that the set L = {(x, y)|y2+By+C = 0} corresponds
to a couple of straight lines y = (−B±

√
B2 − 4C)/2, which connect the north and

south poles in the Poincaré disk. Therefore there exist no equilibrium at infinity
for the rational system (34). If B2 − 4C < 0 the set L = {(x, y)|y2 +By + C = 0}
is empty and the rational system (34) has two equilibria in the infinite region.

By the level of energy on the x-axis H12|y=0 = h the integral curves, which have
a point at the x-axis, cross the x-axis exactly once. And by the energy on the
y-axis H12|x=0 = y2/2 + b/(y2 + By + C), we have that the integral curves cross
the y-axis at most twice. Now we study the finite equilibrium points of systems
(34) and (40). If B2 − 4C < 0 they have no equilibria. Therefore we obtain that
the phase portraits of systems (34) and (40) are topologically equivalent to 1.12 of
Figure 1.
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If B2 − 4C > 0 system (40) has two equilibria points p1,2 = (−b, (−B ±√
B2 − 4C)/2), which are an attracting node and a repelling node. The equi-

librium points p1,2 of system (40) are two virtual equilibrium points in the rational
Hamiltonian system (34). Thus there exist no finite equilibria for system (34). The
phase portrait of system (34) is topologically equivalent to 1.13 of Figure 1. Thus
we conclude the proof of Theorem 1.4.

7. Proof of Theorem 1.5

Next we study the Hamiltonian system H+
22 = y2

2 + x2+∆
y2+By+C , and the associated

vector field of H+
22 is

(45) ẋ = y − (x2 +∆)(2y +B)

(y2 +By + C)2
, ẏ = − 2x

y2 +By + C
.

System (45) is invariant under the transformation

(x, y, t,∆, B, C) → (−x,−y, t,∆,−B,C).
Hence we only need to analyze the global phase portraits of system (45) with
B ≥ 0. It is easy to get that system (45) is symmetry with respect to the y-axis,
in particular, it is symmetry with respect to the x-axis when B = 0. We are going
to study the dynamics for system (45) in two cases C = B2/4 and C 6= B2/4.

(i) In the case C = B2/4 we apply the rescaling dt = (y + B)3dτ and have the
system

(46) x′ = −2(x2 +∆) + y(y +B/2)3, y′ = −2x(y +B/2).

Through the local chart we study the infinity of system (46) using the Poincaré
compactification. The associated system (46) in the local chart U1 is

(47)
u′ =− 1

8
(8u5 + 12Bu4v + 6B2u3v2 + 8Bv3 +B3u2v3 − 16∆uv4),

v′ =
1

8
v(16v2 + 16∆v4 − 8u4 − 12Bu3v − 6B2u2v2 −B3uv3).

For v = 0 the origin is the unique equilibrium, which is linearly zero. In order to
understand the local behavior of this equilibrium point, we apply the directional
blow-up (u, v) → (u,w) with w = v/u. And after eliminating the common factor
u2 we have

(48)
u′ =− 1

8
(8u2 + 12Bu2w + 6B2u2w2 + 8Bw3 +B3u2w3 − 16∆u2w4),

w′ =
1

2
w3(2 +Bw).

System (48) can have two possible equilibrium points E1 = (0, 0) and E2 =
(0,−2/B) on the u = 0.

When B = 0 the origin E1 of system (48) is the unique equilibrium point for
u = 0 and it is a linearly zero. Again we do the blow-up (u,w) → (u, w̃) with
w̃ = w/u, and after removing the common factor u3 we obtain the system

(49) u′ = u(−1 + 2∆u4w̃4), w̃′ = w̃(1 + 2w̃2 − 2∆u4w̃4).

For u = 0 system (49) has the origin as the unique equilibrium point, which is a
saddle. We recover the local phase portrait at the origin of system (47) going back
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Figure 24. Blow-up at the origin of system (47) in U1 with B = 0.
(a) System (49), (b) System (48), (c) System (47).
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Figure 25. Blow-up at the origin of system (47) in U1 with B > 0.
(a) System (48), (b) System (47).

through the blow-up. The equilibrium E1 of system (48) consists of two hyperbolic
sectors and one repelling parabolic sector (see Figure 24(b)), the origin of U1 has
four hyperbolic sectors (see Figure 24(c)).

When B > 0 system (48) has two equilibria E1 and E2 on the u = 0. Similarly
to the above case E1 is a linearly zero equilibrium, which has two hyperbolic and
one parabolic sectors. And the equilibrium E2 is a saddle with eigenvalues λ1,2 =
±8/B2. Going back through the blow-up and taking into account the behavior of
the flow on the axes, we have u′|u=0 = Bv3, u′|v=0 = −u3 and v′|u=0 = 2v3+O(v4).
Then we obtain that the origin of system (47) also consists of four hyperbolic sectors
see Figure 25.

We analyze the local chart U2, system (46) in this chart is

(50) u′ =
1

8
(8+ 12Bv+6B2v2 +B3v3 +8Bu2v3 − 16∆v4), v′ = uv3(2+Bv).

The origin is not the equilibrium point of system (50).

For the polynomial system (46) we have found two equilibria in the infinite
region, one in U1 and its diametrically opposite in V1, which have the opposite
sense. We observe that the set L = {(x, y)|y+B/2 = 0} corresponds to y = −B/2,
which is a straight line connecting the north and south poles. Therefore there exist
no equilibria at infinity for the rational Hamiltonian system (45).

Now we study the finite equilibria of systems (45) and (46), and consider the
following subcases (i.a) ∆ = 0, (i.b) ∆ > 0 and (i.c) ∆ < 0.
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Figure 26. Blow-up at the origin of system (46) with ∆ = B = 0.
(a) System (51), (b) System (46).
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Figure 27. The phase portraits of system (46) with ∆ = 0, (a) if
B = 0, (b) if B > 0.

(i.a) If ∆ = B = 0 system (46) has only one finite equilibrium point p1 = (0, 0),
which is in the set L. And it is linearly zero. We preform the directional blow-up
(x, y) → (x,w) with w = y/x and eliminating the common factor x2 we have

(51) x′ = −2 + x2w4, w′ = −xw5.

For x = 0 this system does not have any equilibrium points, therefore we analyze the
vector field in a neighborhood of the origin. Note that x′|w=0 = −2 and w′|x=0 = 0,
then the local phase portrait at the origin of system (51) is given in Figure 26(a).
We reconstruct the flow through the blow-up to get the behavior of the flow close
to the origin of system (46), it has two elliptic sectors and two parabolic sectors,
one attracting and one repelling, Figure 26(b) shows this local phase portrait.

Hence we obtain the phase portrait of system (46), see Figure 27(a). Going
back to the Hamiltonian system (45), p1 is a virtual equilibrium point. By the
rescaling time dt = x3dτ the integral curves of system (45) has the opposite sense
with respect to the ones of system (46) in the region y < 0. Thus we have the phase
portrait 1.14 of Figure 1.

If ∆ = 0 and B > 0 system (46) has two finite equilibria p1 = (0, 0) and
p2 = (0,−B/2), where p2 is in the set L and it is linearly zero. The eigenvalues of

p1 are ±B2
√
2i/2 and system (46) is symmetry with respect to the y-axis, hence p1

is a center. We translate the equilibrium point p2 to the origin though the change
of variables (x, y) → (u, v −B/2), and we have the system

(52) u′ = −1

2
(4u2 +Bv3 − 2v4), v′ = −2uv.



28 TING CHEN AND JAUME LLIBRE

C

D

(a)

E

G

(b)

Figure 28. Blow-up at the origin of system (52). (a) System (53),
(b) System (52).

Applying the directional blow-up (u, v) → (u,w) with w = v/u and eliminating the
common factor u2 we have

(53) u′ = −1

2
(4 +Bw3u− 2w4u2), w′ =

1

2
w4(B − 2wu).

System (53) does not have any equilibrium points on u = 0, hence we analyze
the vector fields in a neighborhood of the origin. Note that u′|w=0 = −2 and
w′|u=0 = Bw4/2 > 0, then the local phase portrait at the origin of system (53)
is given in Figure 28(a). We reconstruct the flow through the blow-up to get the
local phase portrait of the flow at the origin of system (52). It has one elliptic, one
hyperbolic and two parabolic sectors, see Figure 28(b).

In this subcase we have the phase portrait of system (46), as it is shown in Figure
27(b). Going back to the Hamiltonian system (45), p2 is a virtual equilibrium
point and the integral curves of system (45) have the opposite sense with respect
to the ones of system (46) in the region y < −B/2. Hence the phase portrait is
topologically equivalent to 1.15 of Figure 1.

(i.b) If ∆ > 0 system (46) has an equilibrium point of the form (0, y) if y satisfies

(54) 8y4 + 12By3 + 6B2y2 +B3y − 16∆ = 0.

Let (0, y0) be an equilibrium point of system (46), which is not in the set L. Then
the linear part of (46) at (0, y0) is

(55) M =

(
0 1

8 (B + 2y0)
2(B + 8y0)

−(B + 2y0) 0

)
.

The equilibrium point (0, y0) is linearly zero only if y0 + B/2 = 0, then we have
∆ = 0 from (46), which cannot be satisfied. It is a nilpotent point only if y0 =
−B/8, we substitute this condition into (54) and obtain 8192∆+ 27B4 = 0, which
also cannot be satisfied. Hence we have that (0, y0) is an elementary equilibrium,
and it is either a saddle or a center.

Now we analyze the number roots of equation (54) and compute the discriminant
sequence [D1, D2, D3, D4] where

D1 =256, D2 = 3072B2, D3 = 1572864∆B2,

D4 =− 4194304∆2(8192∆+ 27B4).

Observe that we have D1 > 0, and D4 < 0 because ∆ > 0, hence the sign list of this
discriminant sequence is determined only by the signs of B. It is given in Theorem
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Figure 29. The phase portraits of system (46), (a) if ∆ > 0,
(b) if B > 0 and −27B4/8192 < ∆ < 0 , (c) if B > 0 and
∆ = −27B4/8192, (d) if ∆ < −27B4/8192.

2.1 that the possible revised sign lists that we need to study are [1, 1, 1,−1] and
[1,−1,−1,−1], which correspond to B > 0 and B = 0 respectively. From Theorem
2.1 we have that equation (54) has two real distinct roots, accordingly system (46)
has two finite equilibrium points, which are not in the L.

We continue determining the finite equilibria of systems (46) and (45). The
infinite equilibrium points in the Poincaré sphere are the origin in U1, and also
the corresponding point in V1. The origins of U1 and V1 consist of four hyperbolic
sectors, hence they have index −2 by Theorem 2.2. Thus, in the Poincaré disk,
the finite equilibrium points must have total index 2. Note that the two remaining
finite equilibrium points are p1,2, in particularly p1,2 = (0,± 4

√
2∆) when B = 0. By

Corollary 2.3 and Remark 2.5 the equilibria p1,2 must be centers. In this subcase
we have the phase portrait of system (46), see Figure 29(a). Going back to the
Hamiltonian system (45), the integral curves of system (45) have the opposite
sense with respect to the ones of system (46) in the region y < −B/2. Hence
in this subcase we have the phase portrait 1.16 of Figure 1.

(i.c) Assume that ∆ < 0 system (46) has two additional finite equilibria p1,2 =

(±
√
−∆,−B/2) in the set L, which are distinct to the points from (54). The

equilibrium points p1,2 are an attracting node and a repelling node, hence each has
index 1. So the known equilibrium points have total index 2. By Theorem 2.4 the
remaining finite equilibrium points must have total index 0. We will determine the
cases in which (54) has two, one or zero distinct real roots. These roots correspond
the equilibria of systems (45) and (46), which are not in the set L.

According with Theorem 2.1 equation (54) has two distinct real roots if and
only if the revised sign list of its discriminant sequence is [1, 1,−1,−1] because we
have D3 ≤ 0. Hence we have B > 0 and −27B4/8192 < ∆ < 0. Then system
(46) has two additional finite equilibrium points p3,4 if and only if B > 0 and
−27B4/8192 < ∆ < 0. From Corollary 2.3 the equilibria p3,4 must be a saddle and
a center so that they have total index 0. By −(B+ y0)

3(B+8y0)/8 > 0 and B > 0
we have −B/2 < y0 < −B/8, and from −(B + y0)

3(B + 8y0)/8 < 0 and B > 0
we have y0 > −B/8 or y0 < −B/2. Then we get that the center is in the interval
(−B/8,+∞) or (−∞,−B/2), and the saddle is in the interval (−B/2,−B/8). In
this subcase we have the phase portrait of system (46), see Figure 29(b). Going
back to the Hamiltonian system (45), p1,2 are two virtual equilibrium points and
the integral curves of system (45) have the opposite sense with respect to the ones



30 TING CHEN AND JAUME LLIBRE

H

I
~

(a)

J

K

(b)

L

M

(c)

Figure 30. Blow-up at the origin of system (57) in U1 with C >
B2/4. (a) System (59), (b) System (58), (c) System (57).

of system (46) in the region y < −B/2. Hence the phase portrait of system (45) is
topologically equivalent to 1.17 of Figure 1.

Similarly equation (54) has one distinct real root if and only if the revised sign
list is [1, 1,−1, 0], i.e B > 0 and ∆ = −27B4/8192. This root corresponds to an
equilibrium of systems (45) and (46). By Corollary 2.3 this equilibrium must be a
cusp. Hence we have the phase portrait of system (46), see Figure 29(c). Going
back to the Hamiltonian system (45) we have that the phase portrait is topologically
equivalent to 1.18 of Figure 1.

When ∆ < −27B4/8192 we have that the revised sign list is [1, 1,−1, 1] or
[1,−1,−1, 1]. Thus system (46) has no finite equilibrium points which are not in
the set L. Hence we have the phase portrait of system (46), see Figure 29(d).
Similarly to the above case we go back to the Hamiltonian system (45), and have
the phase portrait 1.19 of Figure 1.

(ii) Next we consider the case C 6= B2/4, then system (45) becomes

(56) x′ = −(x2 +∆)(2y +B) + y(y2 +By + C)2, y′ = −2x(y2 +By + C),

after the rescaling time dt = (y2 +By+C)2dτ . And system (56) in the chart U1 is

(57)

u′ =− u6 − 2Bu5v −B2u4v2 − 2Cu4v2 −Buv3 − 2BCu3v3 − 2Cv4

+ 2∆u2v4 − C2u2v4 +∆Buv5,

v′ =v(−u5 − 2Bu4v + 2uv2 −B2u3v2 − 2Cu3v2 +Bv3 − 2BCu2v3

+ 2∆uv4 − C2uv4 +∆Bv5).

For v = 0 the origin is the unique equilibrium and it is linearly zero. Doing the
directional blow-up (u, v) → (u,w) with w = v/u and eliminating the common
factor u3, system (57) becomes

(58)

u′ =− u(u2 + 2Bu2w +B2u2w2 + 2Cu2w2 +Bw3 + 2BCu2w3 + 2Cw4

− 2∆u2w4 + C2u2w4 −∆Bu2w5),

v′ =2w3(1 +Bw + Cw2).

When C > B2/4 the equilibrium point E1 = (0, 0) of system (58) is the unique
equilibrium point on u = 0 and it is linearly zero. We do another blow-up (u,w) →
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Figure 31. Blow-up at the origin of system (57) in U1 with C = 0
and B > 0. (a) System (58), (b) System (57).

(u, w̃) with w̃ = w/u, removing the common factor u2, we have

(59)

u′ =u(−1− 2Buw̃ −B2u2w̃2 − 2Cu2w̃2 −Buw̃3 − 2BCu3w̃3 − 2Cu2w̃4

+ 2∆u4w̃4 − C2u4w̃4 +∆Bu5w̃5),

w̃′ =w̃(1 + 2Buw̃ + 2w̃2 +B2u2w̃2 + 2Cu2w̃2 + 3Buw̃3 + 2BCu3w̃3

+ 4Cu2w̃4 − 2∆u4w̃4 + C2u4w̃4 −∆Bu5w̃5).

For u = 0 the origin is the unique equilibrium point of system (59), which is a
saddle. We recover the local phase portrait at the origin of system (58) going back
through the blow-up, the equilibrium E1 of system (58) consists of four hyperbolic
sectors, as it is shown in Figure 30(b). Again going back through the blow-up
until system (57) and taking into account the flow on the axes, we obtain that the
origin of U1 has two hyperbolic sectors see Figure 30(c), and the u-axis contains
two separatrices because it is invariant for system (57).

If C = 0 and B > 0 system (58) has two equilibria E1 and E2 = (0,−1/B)
on u = 0. From system (58) it is easy to get that E2 is a saddle. Similarly to
the above case we obtain that in a neighborhood of the equilibrium E1 has four
hyperbolic sectors doing a blow-up. In Figure 31(a) we superpose the study of the
two equilibria E1,2 obtained by the blow-up at the origin of system (57). Going
back through this blow-up and taking into the behavior of the flow on both axes,
we obtain that the local phase portrait at the origin of system (58) consists of six
hyperbolic sectors, see Figure 31(b).

Similarly, if C < B2/4 and C 6= 0 system (58) has three equilibria E1 and

E3,4 = (0, (−B ±
√
B2 − 4C)/(2C)) on u = 0. Proceeding analogously as in the

above study we obtain that the local phase portrait at the origin of systems (58)
consists of six hyperbolic sectors see Figures 32(b) and 32(c) when C > 0 and
C < 0.

In the local chart U2 system (56) becomes

(60)

u′ =1 + 2Bv +B2v2 + 2Cv2 + 2BCv3 +Bu2v3 − 2∆v4 + C2v4

+ 2Cu2v4 −∆Bv5,

v′ =2uv3(1 +Bv + Cv2),

the origin is not the equilibrium point of system (60).
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Figure 32. Blow-up at the origin of system (57) in U1 with C <
B2/4. (a) System (58), (b) System (57) with 0 < C, (c) System
(57) with C < 0.

For the polynomial system (56) we have found two equilibria at infinity, one
in U1 and its diametrically opposite in V1, which have the same sense. When
B2 − 4C > 0 we observe that the set L = {(x, y)|y2 +By +C = 0} corresponds to

two straight lines y1,2 = (−B ±
√
B2 − 4C)/2, which connect the north and south

poles. Therefore there exist no equilibria at infinity for the rational Hamiltonian
system (45). If B2 − 4C < 0 the set L = {(x, y)|y2 +By+C = 0} is empty, system
(45) has two equilibria in the infinite region.

This finishes the study of the infinite equilibrium points of system (56) and of
the rational Hamiltonian system (45), we now focus on the finite region in three
subcases: ∆ > 0, ∆ = 0 and ∆ < 0.

(ii.a) If ∆ > 0 system (56) has an equilibrium point of the form (0, y) if y satisfies
g(y) = 0 where

(61) g(y) = y5 + 2By4 + (2C +B2)y3 + 2BCy2 + (C2 − 2∆)y −∆B.

Let (0, y0) be an equilibrium point of system (56), then the linear part of (56) at
(0, y0) is

(62)

(
0 F2

−2F1 0

)
,

where F1 = y20 +By0 + C and

F2 = 5y40 + 8By30 + (3B2 + 6C)y20 + 4BCy0 − 2∆+ C2.

Since ∆ > 0 and C 6= B2/4 we have F1 6= 0 from (56). Hence the equilibrium
(0, y0) is either elementary or nilpotent, that is, it is either a saddle or a center or
a cusp, and it is not in the set L.

Now we will analyze the number of real roots of (61). The roots correspond
the equilibrium points for systems (56) and (45). The elements of the discriminant
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sequence of (61) are

(63)

D1 =5, D2 = 2(3B2 − 10C),

D3 =4(12∆B2 − 40∆C +B2C2 − 4C3),

D4 =− 2∆(1280∆2 − 45∆B4 + 326∆B2C − 512∆C2

− 4B4C2 + 32B2C3 − 64C4),

D5 =D5(∆, B, C) = −∆2(8192∆3 − 837∆2B4 + 108∆B8 + 6528∆2B2C

− 1404∆B6C − 12288∆2C2 + 6432∆B4C2 − 11712∆B2C3 + 16B6C3

+ 6144∆C4 − 192B4C4 + 768B2C5 − 1024C6).

(ii.a.1) On the basis of Theorem 2.1 we obtain that the polynomial (54) has five
distinct real roots if and only if the revised sign list of its discriminant sequence
is [1, 1, 1, 1, 1]. Hence we have Di > 0 for i = 1, 2, · · · , 5. In this subcase we
have assumed B ≥ 0, ∆ > 0 and C 6= B2/4. From D2 > 0 and D3 > 0 we
get that it needs to satisfy either C < B2/4, or B2/4 < C < 3B2/10 and ∆ >
C2(4C − B2)/(4(3B2 − 10C)) > 0. Letting F3 = C2(4C − B2)/(4(3B2 − 10C)).
And from D4 > 0 we get 0 < ∆ < F4 where

(64)
F4 =

45B4 − 326B2C + 512C2

2560
+

3
√
F5

2560
,

F5 =225B8 − 3260B6C + 19204B4C2 − 55296B2C3 + 65536C4.

Actually F4 > 0 and F5 > 0, because we have

(45B4 − 326B2C + 512C2)2 − 9F5 = −20480(B2 − 4C)2C2 ≤ 0

and F4|C=0 = 9B4/256 > 0. On the other hand, we have F3 > F4 in the case
B2/4 < C < 3B2/10, hence it just needs to prove

2560C2(4C −B2)− 4(3B2 − 10C)(45B4 − 326B2C + 512C2 + 3
√
F5)

=− 12(45B6 − 476B4C + 1812B2C2 − 2560C3 + (3B2 − 10C)
√
F5) > 0.

In fact we have

(45B6 − 476B4C + 1812B2C2 − 2560C3)2 − (3B2 − 10C)2F5

=− 1280B2(B2 − 6C)2(B2 − 4C)C2 > 0

and

45B6 − 476B4C + 1812B2C2 − 2560C3 < 0.

Then we have C < B2/4 and 0 < ∆ < F4 from D1,2,3,4 > 0. Furthermore (61) has
five real roots if and only if B = 0, C < 0 and 0 < ∆ < C2/2, or B > 0, C < B2/4,
0 < ∆ < F4 and D5 > 0. Accordingly system (56) has five finite equilibrium points,
which are not in the set L.
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Now we analyze the location of the five distinct real roots. Let g(x) be a poly-
nomial of degree d(g(x)) = n, and we define the following polynomials

(65)

g0(x) := g(x),

g1(x) := g′(x),

g0(x) =: g1(x)q1(x)− λ2g2(x),

g1(x) =: g2(x)q2(x)− λ3g3(x),

· · ·
gm−2(x) =: gm−1(x)qm−1(x) − λmgm(x),

gm−1(x) =: gm(x)qm(x),

where λi > 0, d(gi(x)) < d(gi−1(x)) and d(gm(x)) = 0.

Theorem 7.1 (Sturm Theorem). Assume that g0(x), g1(x),· · · , gm(x) are as the
polynomials (65) where g(a)g(b) 6= 0. For each x ∈ R, V (x) denotes the number
of the sign changes of the sequence {g0(x), g1(x), · · · , gm(x)}. We have that the
number of real roots of g(x) in (a, b) is V (a)− V (b).

Using the above Sturm criterion we take the polynomial g0(y) = g(y) from (61),
and from (65) we obtain

g1(y) =5y4 + 8By3 + 3(B2 + 2C)y2 + 4BCy − 2∆+ C2,

g2(y) =(6B2 − 20C)y3 + (6B3 − 18BC)y2 + (40∆+ 8B2C − 20C2)y

+ 21∆B + 2BC2,

g3(y) =(24∆B2 − 80∆C + 2B2C2 − 8C3)y2 + (27∆B3 − 98∆BC + 2B3C2

− 8BC3)y + 9∆B4 − 39∆B2C + 16∆C2 + 2B2C3 − 8C4,

g4(y) =(−1280∆2 + 45∆B4 − 326∆B2C + 512∆C2 + 4B4C2 − 32B2C3

+ 64C4)y − 672∆2B − 9∆B5 + 87∆B3C − 240∆BC2,

g5(y) =8192∆3 − 837∆2B4 + 108∆B8 + 6528∆2B2C − 1404∆B6C

− 12288∆2C2 + 6432∆B4C2 − 11712∆B2C3 + 16B6C3 + 6144∆C4

− 192B4C4 + 768B2C5 − 1024C6.

We have that under conditions C < B2/4, 0 < ∆ < F4 and D5 > 0 the polynomial

Table 1

y −∞ −B−
√
B2−4C
2

−B+
√
B2−4C
2 ∞

sign(g0(y)) − + − +

sign(g1(y)) + − − +

sign(g2(y)) − − + +

sign(g3(y)) + + + +

sign(g4(y)) − − + +

sign(g5(y)) + + + +

V (y) 5 4 1 0
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g0(y) has five real roots, so V (−∞) and V (+∞) are determined as in Table 1. We

also compute V ((−B+
√
B2 − 4C)/2) and V ((−B−

√
B2 − 4C)/2). Then we have

V ((−B +
√
B2 − 4C)/2)− V (∞) = 1,

V ((−B −
√
B2 − 4C)/2)− V ((−B +

√
B2 − 4C)/2) = 3,

V (−∞)− V ((−B −
√
B2 − 4C)/2) = 1.

Hence polynomial (61) has one, three and one real roots in the intervals ((−B +√
B2 − 4C)/2,∞), ((−B −

√
B2 − 4C)/2, (−B +

√
B2 − 4C)/2) and (−∞, (−B −√

B2 − 4C)/2), respectively.

Next we will analyze the local phase portraits of the finite equilibria. For this
we first study the infinite equilibrium points. The infinite equilibrium points in
the Poincaré sphere are the origin of U1, and also the corresponding origin of V1.
The origins of U1 and V1 consist of six hyperbolic sectors when C < B2/4, hence,
by Theorem 2.2, they have index −4. In the Poincaré disk the finite equilibrium
points must have total index 3. Thus the finite equilibrium points must be four
centers and one saddle. The only possible phase portrait of system (45) in this case
is topologically equivalent to 1.20 of Figure 1.

(ii.a.2) Now we study the case when (61) has four distinct real roots. According
to Theorem 2.1 the unique revised sign list of the discriminant sequence must be
[1, 1, 1, 1, 0], which needs D1,2,3,4 > 0 and D5 = 0. From the above case (ii.a.1) it
is easy to get that B > 0, C < B2/4, 0 < ∆ < F4 and D5 = 0. In the Poincaré
disk the total index at the finite equilibria must be 3. Hence the finite equilibrium
points must have three centers and one cusp. The phase portrait of system (45) is
topologically equivalent to 1.21 of Figure 1.

(ii.a.3) We will analyze the case when (61) has three distinct real roots. From
Theorem 2.1 the revised sign list must be either [1, 1, 1, 0, 0], or [1, 1, 1, 1,−1], or
[1, 1, 1,−1,−1], or [1, 1,−1,−1,−1], or [1,−1,−1,−1,−1].

Assume that the revised sign list is [1, 1, 1, 0, 0], it needs D1,2,3 > 0 and D4 =
D5 = 0. Then we obtain that B = 0, C < 0 and ∆ = C2/2.

If the revised sign lists are [1, 1, 1, 1,−1] and [1, 1, 1,−1,−1], the associated dis-
criminant sequence of the former is [1, 1, 1, 1,−1], and the later is [1, 1, 1,−1,−1]
or [1, 1, 1, 0,−1]. Hence it just needs D1,2,3 > 0 and D5 < 0. Then we have B = 0,
C < 0, ∆ > C2/2, or B > 0, C < B2/4, ∆ > 0 and D5 < 0, or B2/4 < C < 3B2/10
and ∆ > F3.

If the revised sign list is [1, 1,−1,−1,−1] the associated discriminant sequences
are [1, 1,−1,−1,−1], [1, 1, 0,−1,−1] and [1, 1, 0, 0,−1]. From the first two discrim-
inant sequences, we have that B2/4 < C < 3B2/10, F4 < ∆ ≤ F3 and D5 < 0. In
addition we compute the resultant of D3 and D4 with respect to B and obtain

Resultant[D3, D4, B] = 5308416∆4(10∆ + C2)2(16∆ + C2)4 6= 0.

Hence we have that the discriminant sequence [1, 1, 0, 0,−1] cannot be satisfied.

Similarly, if the revised sign list is [1,−1,−1,−1,−1], we have that B = 0, C > 0
and ∆ > C2/2, or B > 0, C ≥ 3B2/10, ∆ > F4 and D5 < 0.
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From the above analyzing we have B = 0, C < 0 and ∆ ≥ C2/2, or B = 0,
C > 0 and ∆ > C2/2, or B > 0, C < B2/4, ∆ > 0 and D5 < 0, or C > B2/4 > 0,
∆ > F4 and D5 < 0 when systems (45) and (56) have three equilibria which are not
in the set L. If C < B2/4 the origins of U1 and V1 consist of six hyperbolic sectors,
which have index −4. In the Poincaré disk the finite equilibrium points must have
total index 3. Therefore the three finite equilibrium points must be centers. In this
subcase we have the phase portrait 1.22 of Figure 1.

When C > B2/4 the origins of U1 and V1 consist of two hyperbolic sectors
which have index 0 by Theorem 2.2. Thus in the Poincaré disk the remaining finite
equilibria must have total index 1. Hence the three finite equilibrium points must
be two centers and one saddle. Then we have that phase portrait is topologically
equivalent to 1.23 of Figure 1.

(ii.a.4) Assume that (61) has two distinct real roots, the revised sign list of the
discriminant sequence must be [1, 1, 0, 0, 0] or [1, 1, 1,−1, 0] or [1, 1,−1,−1, 0] or
[1,−1,−1,−1, 0].

If the revised sign list is [1, 1, 0, 0, 0], it needs D3 = D4 = D5 = 0 which cannot
be satisfied. Because we have the resultants

Resultant[D3, D4, C] =− 21233664∆6B4(576∆+B4)2,

Resultant[D3, D5, C] =− 12230590464∆10(35184372088832∆5

+ 1745904205824∆4B4 + 25686712320∆3B8

+ 108235835∆2B12 + 350104∆B16 + 432B20).

Clearly the equations D3 = D4 = D5 = 0 have no common solutions in the case
∆ > 0. On the other hand, there is no solutions with the parameters for the revised
sign list [1, 1, 1,−1, 0].

If the revised sign list is [1, 1,−1,−1, 0], its discriminant sequence is [1, 1,−1,−1, 0]
or [1, 1, 0,−1, 0]. It just needs D2 > 0, D3 ≤ 0, D4 < 0 and D5 = 0. Hence we have
B2/4 < C < 3B2/10, F4 < ∆ ≤ F3 and D5 = 0.

Assume that the revised sign list is [1,−1,−1,−1, 0], whose discriminant se-
quence is [1, 0, 0,−1, 0] or [1, 0,−1,−1, 0] or [1,−1,−1,−1, 0]. From the equations
D2 = D3 = 0 we haveB = C = 0, which cannot be satisfied. IfD2 ≤ 0 andD3,4 < 0
we have either B = 0, C > 0 and ∆ > C2/2, or B > 0, C ≥ 3B2/10 and ∆ > F4. If
B = 0, C > 0 and ∆ > C2/2, then we have D5 = −1024∆2(2∆− C2)3 < 0, which
also cannot be satisfied with D5 = 0. Hence we have C ≥ 3B2/10 > 0, ∆ > F4 and
D5 = 0.

In short systems (45) and (56) have two equilibria, which are not in the set
L, if and only if C > B2/4 > 0, ∆ > F4 and D5 = 0. In this subcase the
origins of U1 and V1 consist of two hyperbolic sectors which have index 0. In the
Poincaré sphere the finite equilibrium points must have total index 2. Hence the
finite equilibrium points must be one center and one cusp. The phase portrait is
topologically equivalent to 1.24 of Figure 1.

(ii.a.5) Now we study the case when the polynomial (61) has one distinct real
root. For the sake of simplicity, we obtain the possible revised sign lists and their
associated discriminant sequences as it is shown in the Table 2. We denote by RSL
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and DS the revised sign lists and the discriminant sequences in the following tables.
In summary systems (45) and (56) have one equilibria, which is not in the set L, if
and only if B = 0, C > 0 and 0 < ∆ ≤ C2/2, or C > B2/4 > 0, ∆ > 0 and D5 > 0.

Table 2. The conditions of the revised sign lists.

RSL DS Conditions
[1,−1, 1, 1, 1] [1,−1, 1, 1, 1] no solutions;

[1,−1, 0, 1, 1] no solutions;

[1,−1, 0, 0, 1] no solutions;

[1, 0, 1, 1, 1] no solutions;

[1, 1,−1, 1, 1] [1, 1,−1, 1, 1] B2

4 < C < 3B2

10 , 0 < ∆ < F4;

[1, 1, 0, 1, 1] no solutions;

[1, 1,−1, 0, 1] B2

4 < C < 3B2

10 , ∆ = F4;

[1, 1, 1,−1, 1] [1, 1, 1,−1, 1] no solutions;

[1, 1, 1, 0, 1] no solutions;

[1,−1,−1, 1, 1] [1,−1,−1, 1, 1] C > 3B2

10 , 0 < ∆ < F4;

[1, 0,−1, 1, 1] C = 3B2

10 > 0, 0 < ∆ < (3
√
129−21)B4

8000 ;

[1, 0,−1, 0, 1] C = 3B2

10 > 0, ∆ = (3
√
129−21)B4

8000 ;

[1, 0, 0, 1, 1] no solutions;

[1, 0, 0, 0, 1] no solutions;

[1,−1,−1, 0, 1] C > 3B2

10 > 0, ∆ = F4;

[1, 1,−1,−1, 1] [1, 1,−1,−1, 1] B2

4 < C < 3B2

10 , ∆ > F4, D5 > 0;

[1, 1, 0,−1, 1] no solutions;

[1, 1, 0, 0, 1] no solutions;

[1,−1,−1,−1, 1] [1,−1,−1,−1, 1] C > 3B2

10 > 0, ∆ > F4, D5 > 0;

[1, 0,−1,−1, 1] C = 3B2

10 > 0, ∆ > (3
√
129−21)B4

8000 ,
D5 > 0;

[1, 0, 0,−1, 1] no solutions.

[1, 1,−1, 0, 0] [1, 1,−1, 0, 0] no solutions;

[1,−1,−1, 0, 0] [1,−1,−1, 0, 0] B = 0, C > 0, ∆ = C2/2;

[1, 0,−1, 0, 0] no solutions.

The origins of U1 and V1 have two hyperbolic sectors, by Theorem 2.2, have
index 0. In the Poincaré sphere, the finite equilibrium points must have total index
2. Thus the finite equilibrium point must be a center. In this subcase we have the
phase portrait 1.25 of Figure 1.

(ii.a.6) Now we study the case when equation (54) has no real roots. Similarly
to the above case we have the revised sign lists [1,−1, 0, 0, 0], [1,−1, 1, 1, 0] and
[1, 1,−1, 1, 0].
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Figure 33. Blow-up at the origin of systems (56) and (67) with
∆ = C = 0. (a) Systems (66) and (56), (b) Systems (68) and (67).

From the case (ii.a.4) we have [1,−1, 0, 0, 0] can not be satisfy. If the revised
sign list is [1,−1, 1, 1, 0], the associated discriminant sequences are [1,−1, 1, 1, 0],
[1, 0, 1, 1, 0] and [1,−1, 0, 1, 0], it needs D2 ≤ 0 and D3 ≥ 0. From D2 ≤ 0 we get
that C ≥ 3B2/10, then have D3 ≤ D3|B2=10C/3 = −8C3/3 < 0. Hence this case
cannot be satisfied.

And it is easy to check that there is no solutions for revised sign list [1, 1,−1, 1, 0].
Hence systems (45) and (56) have at least one equilibrium point, which is not in
the set L, in the case C 6= B2/4 and ∆ > 0.

By the continuity of the phase portraits from 1.20 to 1.22, we use the bifur-
cation curve ∆ = f4(B,C) to describe the phase portrait 1.21. In addition, by
the condition D5|C=B2/4 = −∆4(8192∆ + 27B4), we obtain the coordinates of

the intersection point (∆, B2 − 4C) = (0, 0) between the curve ∆ = f4(B,C) and
B2− 4C = 0. Hence we have the phase portraits 1.20 and 1.22 when ∆ > f4(B,C)
and 0 < ∆ < f4(B,C), respectively. Similarly we obtain the bifurcation curve ∆ =
f5(B,C) to describe the phase portrait 1.24. And in the intervals 0 < ∆ < f5(B,C)
and ∆ > f5(B,C), it provides the phase portraits 1.23 and 1.25, respectively, as it
is shown in Figure 8.

Now we study the dynamics of system (56) in the case (ii.b), i.e. ∆ = 0.

(ii.b.1) If C > B2/4 system (56) has one equilibrium point p1 = (0, 0), which is
a center. In this subcase we have that the phase portrait is topologically equivalent
to 1.25 of Figure 2.

(ii.b.2) If C = 0 and B 6= 0 system (56) has two equilibrium points p1 = (0, 0)
and p2 = (0,−B), which are in the set L and are linearly zero. To understand the
local phase portrait of the origin we need to do the blow-up (x, y) → (x,w) with
w = y/x, and we get the system

(66)
x′ =x(−B − 2wx+B2w3x+ 2Bw4x2 + w5x3),

w′ =− w(B +B2w3x+ 2Bw4x2 + w5x3),

after eliminating the common factor x between x′ and w′. When x = 0 system (66)
has one equilibrium located at the origin, which is an attracting node. Going back
through the change of variables to the origin of system (56) and taking into account
the behavior of the flow on the axes, it has one hyperbolic sector, one elliptic sector
and two parabolic sectors, see Figure 33(a).
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Figure 34. Blow-up at p2 of system (56) with ∆ = 0 and 0 < C < B2/4.

To determine the local behavior of p2, we translate this equilibrium point to the
origin doing the change of variables x→ x and y → y −B, we have the system

(67) x′ = Bx2 − 2x2y −B3y2 + 3B2y3 − 3By4 + y5, y′ = 2x(B − y)y.

Now we do the blow-up (x, y) → (x,w) with w = y/x, and eliminating the common
factor x between x′ and w′ we have

(68)
x′ =− x(−B +B3w2 + 2wx− 3B2w3x+ 3Bw4x2 − w5x3),

w′ =− w(−B −B3w2 + 3B2w3x− 3Bw4x2 + w5x3).

The origin of system (68) is a repelling node. Going back through the change
of variables we get that the origin of system (67) consists of two elliptic and two
parabolic sectors (see Figure 33(b)). Going back to the associated Hamiltonian
system (45) the equilibrium points p1,2 are two virtual equilibrium points. Therefore
the phase portrait in this case is topologically equivalent to 1.26 of Figure 2.

(ii.b.3) If C < B2/4 and C 6= 0 system (56) has three equilibrium points p1 =

(0, 0) and p2,3 = (0, (−B ±
√
B2 − 4C)/2). The equilibrium points p2,3 are in

the set L and they are linearly zero. The local phase portrait of p2 consists of
two elliptic sectors and two parabolic sectors, or two hyperbolic sectors and two
parabolic sectors when C < 0 or C > 0 respectively (see Figures 33(b) and 34).
The local phase portrait of p3 consists of two elliptic and two parabolic sectors, see
Figure 33(b). On the other hand, the equilibrium point p1 is a saddle and a center
when C < 0 and C > 0, respectively. Going back to the Hamiltonian system (45)
the equilibrium points p2,3 are two virtual equilibrium points. Hence we have the
phase portraits 1.27 and 1.28 of Figure 2 when C < 0 and 0 < C < B2/4.

(ii.c) Finally we study the dynamics of system (56) in the case ∆ < 0. Similarly
to the case (ii.a), we know that the equilibrium point (0, y0) of system (56) is either
a saddle or a center or a cusp. And system (56) has possible four equilibrium points

p1,2 =(
√
−∆, (−B ±

√
B2 − 4C)/2),

p3,4 =(−
√
−∆, (−B ±

√
B2 − 4C)/2),

which are in the set L. The equilibrium points p1,4 are attracting nodes, p2,3 are
repelling nodes. Now we consider the finite equilibria which are not in the set L.

Assume that B ≥ 0, ∆ < 0 and C 6= B2/4, from D2 > 0 and D3 > 0 we have
C < B2/4, C 6= 0 and F3 < ∆ < 0. From D4 = 0 we obtain ∆ = 0 or ∆ = F4 or
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∆ = F6 where

(69) F6 =
45B4 − 326B2C + 512C2

2560
− 3

√
F5

2560
.

Here we have F6 < F3 < 0 < F4. Because D4|∆=0 = 0 and

D4

∣∣∣∣
∆=F3

= −9B2(B2 − 6C)2(B2 − 4C)2C4

8(3B2 − 10C)3
< 0,

we get D4 < 0. Therefore the polynomial (61) has at most three distinct roots.
Similarly to the case (ii.a) the polynomial (61) has at least one distinct root.

(ii.c.1) If (61) has three distinct roots, the revised sign list must be [1, 1, 1, 0, 0], or
[1, 1, 1, 1,−1], or [1, 1, 1,−1,−1], or [1, 1,−1,−1,−1], or [1,−1,−1,−1,−1]. From
the above analysis we have that the revised sign list can not be [1, 1, 1, 0, 0] and
[1, 1, 1, 1,−1], because we have D4 < 0 from D2 > 0 and D3 > 0. From Table 3 we
have that systems (45) and (56) have three equilibria, which are not in the set L,
if and only if B > 0, 0 < C, C 6= B2/4, F6 < ∆ < 0 and D5 < 0.

Table 3. The conditions of the revised sign lists.

RSL DS Conditions

[1, 1, 1,−1,−1] [1, 1, 1,−1,−1] 0 < C < B2

4 , F3 < ∆ < 0, D5 < 0;

[1, 1, 1, 0,−1] no solutions;

[1, 1,−1,−1,−1] [1, 1,−1,−1,−1] B > 0, 0 < C < B2

4 , C 6= B2

6 ,
F6 < ∆ < F3, D5 < 0, or
B2

4 < C < 3B2

10 , F6 < ∆ < 0, D5 < 0;

[1, 1, 0,−1,−1] B > 0, 0 < C < B2

4 , C 6= B2

6 ,
∆ = F3, D5 < 0;

[1, 1, 0, 0,−1] no solutions;

[1,−1,−1,−1,−1] [1,−1,−1,−1,−1] C > 3B2

10 > 0, F6 < ∆ < 0, D5 < 0;

[1, 0,−1,−1,−1] C = 3B2

10 > 0, D5 < 0,

− (3
√
129+21)B4

8000 < ∆ < 0;

[1, 0, 0,−1,−1] no solutions.

Assume that B2/4 < C then the origins of U1 and V1 consist of two hyperbolic
sectors which have index 0 by Theorem 2.2. Thus, in the Poincaré disk, the finite
equilibrium points must have total index 1. Hence the finite equilibrium points
must be two centers and one saddle. The phase portrait is topologically equivalent
to 1.23 of Figure 1.

The origins of U1 and V1 have six hyperbolic sectors when C < B2/4, hence, by
Theorem 2.2, have index −4. And the known equilibrium points p1,2,3,4 have total
index 4. Thus the remaining finite equilibrium points must have total index -1 in
Poincaré disk. Then the remaining finite equilibrium points must be one center
and two saddles. Going back to the Hamiltonian system (45), the equilibria p1,2,3,4
are four virtual equilibrium points, therefore we obtain that the phase portrait of
system (45) is topologically equivalent to 1.29 of Figure 2.
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Table 4. The conditions of the revised sign lists.

RSL DS Conditions

[1,−1, 1, 1, 1] [1,−1, 1, 1, 1] C > 3B2

10 , ∆ < F3;

[1,−1, 0, 1, 1] C > 3B2

10 > 0, ∆ = F3;

[1,−1, 0, 0, 1] B = 0, C > 0, ∆ = −C2

10 ;

[1, 0, 1, 1, 1] no solutions;

[1, 1,−1, 1, 1] [1, 1,−1, 1, 1] C < 3B2

10 , ∆ < F6;

[1, 1, 0, 1, 1] no solutions;

[1, 1,−1, 0, 1] B > 0, C < 3B2

10 , C 6= 0, C 6= B2

6 ,

∆ = F6;

[1, 1, 1,−1, 1] [1, 1, 1,−1, 1] C < B2

4 , F3 < ∆ < 0, C 6= 0, D5 > 0;

[1, 1, 1, 0, 1] no solutions;

[1,−1,−1, 1, 1] [1,−1,−1, 1, 1] C > 3B2

10 > 0, F3 < ∆ < F6;

[1,−1,−1, 0, 1] C > 3B2

10 > 0, ∆ = F6, C 6= 5B2

16 ;

[1, 0,−1, 1, 1] C = 3B2

10 > 0, ∆ < − (3
√
129+21)B4

8000 ;

[1, 0,−1, 0, 1] C = 3B2

10 > 0, ∆ = − (3
√
129+21)B4

8000 ;

[1, 0, 0, 1, 1] no solutions;

[1, 0, 0, 0, 1] no solutions;

[1, 1,−1,−1, 1] [1, 1,−1,−1, 1] either B > 0, C < B2

4 , C 6= 0, C 6= B2

6 ,

F6 < ∆ < F3, D5 > 0, or

B2

4 < C < 3B2

10 , F6 < ∆ < 0, D5 > 0;

[1, 1, 0,−1, 1] B > 0, C < B2

4 , C 6= B2

6 , C 6= 0,
∆ = F3, D5 > 0;

[1, 1, 0, 0, 1] either B = 0, C < 0, ∆ = −C2

10 ,

or B > 0, C = B2

6 , ∆ = F3 = F6;

[1,−1,−1,−1, 1] [1,−1,−1,−1, 1] C > 3B2

10 , F6 < ∆ < 0, D5 > 0;

[1, 0,−1,−1, 1] C = 3B2

10 > 0, − (3
√
129+21)B4

8000 < ∆ < 0,

D5 > 0;

[1, 0, 0,−1, 1] no solutions;

[1, 1,−1, 0, 0] [1, 1,−1, 0, 0] no solutions;

[1,−1,−1, 0, 0] [1,−1,−1, 0, 0] C = 5B2

16 > 0, ∆ = F6;

[1, 0,−1, 0, 0] no solutions.

(ii.c.2) If the polynomial (61) has two distinct roots, the revise sign list must be
[1, 1, 1,−1, 0] or [1, 1,−1,−1, 0] or [1,−1,−1,−1, 0]. Similarly to the case (ii.c.1)
we obtain that the condition is B > 0, 0 < C, C 6= B2/4, F6 < ∆ < 0 and D5 = 0.
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When B2/4 < C the phase portrait of system (45) is topologically equivalent to
1.24 of Figure 1. If C < B2/4 system (56) has more four equilibrium points p1,2,3,4,
which have total index 4. Hence the remaining finite equilibrium points must be
one cusp and one saddle so that their index is -1. Going back to system (45), the
equilibrium points p1,2,3,4 are four virtual equilibria. Hence the phase portrait is
topologically equivalent to 1.30 of Figure 2.

(ii.c.3) If the polynomial (61) has one distinct root, we obtain the revise sign
lists as it is shown in Table 4. Then we have B = 0, C 6= 0 and ∆ < 0, or B > 0,
C < B2/4 and ∆ < F6, or B > 0, C < B2/4, C 6= 0, F6 ≤ ∆ < 0 and D5 > 0, or
C > B2/4 > 0, ∆ < 0 and D5 > 0.

When B2/4 < C the phase portrait of system (45) is topologically equivalent to
1.25 of Figure 1. If C < B2/4 the known infinite and finite equilibrium points have
total index 4. Hence the remaining finite equilibrium points must be one saddle so
that it has index -1. Going back to the Hamiltonian system (45) we have the phase
portrait 1.31 of Figure 2.

In the case ∆ < 0, for the sake of simplicity, we obtain the bifurcation curve ∆ =
f6(B,C) which provides the phase portrait 1.24. By D5|C=B2/4 = −∆4(8192∆ +

27B4) = 0, we obtain the coordinates of the intersection points (∆, B2 − 4C) =
(0, 0) and (∆, B2 − 4C) = (−27B4/8192, 0) between the curve ∆ = f6(B,C) and
B2 − 4C = 0. Therefore we have the intervals f6(B,C) < ∆ < 0 and ∆ < f6(B,C)
which describe the phase portraits 1.23 and 1.25, respectively. Similarly we have
the bifurcation curve ∆ = f7(B,C) which provides the phase portrait 1.30. And
in the intervals f7(B,C) < ∆ < 0 and ∆ < f7(B,C), we have the phase portraits
1.29 and 1.31 respectively, as it is shown in Figure 8. Therefore we have concluded
the proof of Theorem 1.5.
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