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AVERAGING APPROACH TO CYCLICITY OF HOPF
BIFURCATION IN PLANAR LINEAR-QUADRATIC
POLYNOMIAL DISCONTINUOUS DIFFERENTIAL SYSTEMS

XINGWU CHEN4, JAUME LLIBRE® AND WEINIAN ZHANG#

ABSTRACT. It is well known that the cyclicity of a Hopf bifurcation in con-
tinuous quadratic polynomial differential systems in R? is 3. In contrast here
we consider discontinuous differential systems in R? defined in two half-planes
separated by a straight line. In one half plane we have a general linear center
at the origin of R?, and in the other a general quadratic polynomial differen-
tial system having a focus or a center at the origin of R2. Using averaging
theory, we prove that the cyclicity of a Hopf bifurcation for such discontinuous
differential systems is at least 5. Our computations show that only one of the
averaged functions of fifth order can produce 5 limit cycles and there are no
more limit cycles up to sixth order averaged function.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

A polynomial differential system in R? is a differential system of the form

(1) j;‘:P(JZ,y), yzQ(x,y),

where P and @) are polynomials in the real variables z and y, and the dot denotes
derivative with respect to an independent variable ¢t. The degree of the polynomial
differential system (1) is the maximum of the degrees of the polynomials P and Q.

A linear differential system or here simply a linear system is a polynomial dif-
ferential system in R? of degree one. Similarly a quadratic differential system or
simply a quadratic system is a polynomial differential system in R? of degree two.

A limit cycle of a differential system is a periodic orbit of that system which is
isolated in the set of all periodic orbits of the system. The study of the limit cycles
of the planar differential systems is one of the main topics of the qualitative theory
of the differential systems in R?, see for instance [9, 18, 22].

A Hopf bifurcation takes place at a singular point p of a differential system when
p changes its stability and one or several limit cycles arise from p. Here the cyclicity
of a Hopf bifurcation at the singular point p inside a family of differential systems
is the maximum number of limit cycles which can bifurcate from p inside the family
considered.
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Bautin in [2] proved that the cyclicity of a Hopf bifurcation in the family of
quadratic systems is three. Since linear systems have no limit cycles, the singular
points of the linear systems cannot exhibit Hopf bifurcations. The maximal cyclicity
of a Hopf bifurcation for the family of polynomial differential systems with a given
degree larger than two is an open problem.

Here we shall consider discontinuous differential systems in R? formed by two
differential systems one in the half-plane y > 0 and the other in the half-plane y < 0.
We can say that the study of the discontinuous differential systems started with
Andronov, Vitt and Khaikin [1] and nowadays continues receiving the attention
of many researchers, because these kind of differential systems are used to model
many phenomena appearing in mechanics, electronics, economy, ..., see for instance
the books of di Bernardo et al. [3], Filippov [14], Kunze [21] and Simpson [27],
the survey of Makarenkov and Lamb [25], and the references cited in these last five
works.

For discontinuous planar differential systems with a single straight line of discon-
tinuity the limit cycles arising from a Hopf bifurcation were investigated in some
papers, see for instance [7, 10, 17]. Our objective is to study the cyclicity of a Hopf
bifurcation of a center-focus singular point of a discontinuous differential system
in R? formed by two differential systems, each of which is defined in a half-plane
separated by a straight line. More precisely, we consider a discontinuous differential
system of form

i\ | X(xy) ify>0,
® <y)_{ X_(z,y) ify<0,

where the vector fields X, (x,y), X_(z,y) have a quadratic center-focus singular
point at the origin of coordinates and a linear center at the origin, respectively, and
have the same rotating direction.

A subclass of discontinuous differential systems (2) was considered by Coll,
Gasull and Prohens [10] in 2001 with the particular vector fields X_(x,y) = iz
and

Xy(z,y) = (A +14)2 + p20z® + p112Z + po2z’,

written in complex notation where z = x + y 1,

——E+2b7r—Ec+6_3ai
P20 ="7% 32 g
1 5
P11 12+86 bm + i,
37 5  6—3a
=2 g 2o :
Pox = g T ebm— e —

and A, a,b,¢c € R. These authors proved for this subclass of systems that 4 limit
cycles can bifurcate from the center-focus localized at the origin of coordinates. In
2003 Gasull and Torregrosa [15] investigated a particular family of discontinuous
differential systems (2) with X4 (z,y) = iz + h.o.t and X_(x,y) = iz, and con-
structed a bifurcation producing 5 limit cycles from the center-focus O. This result
was obtained by computing Liapunov constants. In 2010 Chen and Du [6] and in
2015 Chen, Romanovski and Zhang [7] studied the cyclicity of a Hopf bifurcation
of a center-focus singular point of a discontinuous differential systems in R? formed
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by two quadratic systems, showing that the cyclicity of that Hopf bifurcation is at
least 5 in the case of weak focus and at least 9 in the case of center.

In this paper we extend the results of [15] to an arbitrary quadratic polynomial
differential system for X (z,y). Thus the main result of this paper is the following.

Theorem 1. For the discontinuous differential systems (2) the cyclicity of the Hopf
bifurcation at the origin is at least 5 using the averaging theory up to fifth order.
Moreover there is no more limit cycles up to sixzth order averaged function.

In the proof of Theorem 1 we obtain several averaged functions of fifth order
coming from the different sets of conditions for doing identically zero the previous
averaged function of less order. Only one of these averaged functions of fifth order
can produce 5 limit cycles, all the others produce less number of limit cycles. The
discontinuous differential systems associated to this averaged function of fifth order
producing 5 limit cycles contains the particular family of discontinuous differential
systems studied by Gasull and Torregrosa [15]. We remark that our result of at least
5 limit cycles given in Theorem 1 is for the full family of discontinuous differential
systems (2), and that it was obtained by the averaging theory, different from the
Liapunov method used in [15]. Moreover, we find that the averaged functions of
sixth order do not provide more than 4 limit cycles.

2. PRELIMILARIES

By [2, 19, 20] the quadratic systems having a center-focus singular point must
be non-degenerate, i.e. the linear part of the vector field Xy (z,y) at such singular
point is non-degenerate. This means that the Jacobian matrix of X (z,y) at that
singular point has eigenvalues ot £i87, where 8% # 0. In the following proposition
we simplify the linear part of the discontinuous differential systems (2).

Proposition 2. There is a time-rescaling and a homeomorphism on R? which
restricted to R?\ {y = 0} is a diffeomorphism such that the linear parts of Xy (x,vy)
and X_(z,y) of the discontinuous differential system (2) are normalized as

(i) ()

respectively.

Proof. We rewrite the vector fields Xy (z,y) of the discontinuous differential system
(2) as

(4) X (z,y) :A+( z ) + hot, X_(z,y) = A~ ( z ) ,

respectively, and assume that A* (resp. A7) has eigenvalues a™+i87" (resp. +i37),
where 8% # 0. Clearly, 4detA* — (trA*)? > 0 and A% # 0, where Ais are the
elements of AT and detA*, trA* are the determinants, traces of A* respectively.
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2 (A2+2 - A1+1)/A5rl (x) )
1 lf ?JZO,
0 {4detA+—(trA+)2} 2 /|AS Y

(2 (Ag — A7) /Ay ><$> £ <0
0 {adeta (a2}t jlag))\w) T

we change the vector fields Xy (x,y) given in (4) into

(6) y+(u,v)=<a: a_f +><Z)+h.o.t, )L(u,v)z(Z O_B _>< )

Further, by (u,v) — (z,y) and time-rescalings ¢t — t/8%, t — ¢/8~ the linear parts
of the vector fields V4 (u,v) given in (6) are changed into the linear parts given in
(3) respectively, where A\; = at/B%. On the other hand, it is easy to check that
the transformation P defined on R? in (5) is a diffeomorphism on R?\ {y = 0} and
a homeomorphism to {y = 0}, i.e. a homeomorphism on R?. This completes the
proof of this proposition. O

By the transformation

SEES

By Proposition 2 we only need to consider the discontinuous differential system
(2) with

Mz —y — Asz? 4 (2X2 + As)zy + Agy?
(7) XJr(xay) = 2 2 )
T4+ Ay + dox® + (2A3+A)xy + (A7 —A2)y
and
_{ v
5) rwn=(70).

As we shall see in section 2 the quadratic part of the vector field Xy (x,y) consists
of general quadratic polynomials.

It is well known that a periodic orbit of a quadratic system must surround a
focus or a center, see Theorem 6 of Coppel [12], see also Proposition 8.13 of [13].
So, with a translation of this focus or center to the origin, any quadratic system
having having a periodic orbit can be reduced to the form

&= Mz —y+ ar?® + a1zy + apy?,
§ =+ My + baoz? + brizy + boay*.

(9)

Applying the invertible transformation (asg, a11, aoz2, b2, b11,b02) T = A(A2, Az, A4,
A5, A6, A7) | where

0 -1 0 0 0 O
2 0 01 0 O
0 00 0 1 0
A= 1 000 00|
0 2 1 00 0
-1 0 00 01



AVERAGING APPROACH TO CYCLICITY OF HOPF BIFURCATION 5

we rewrite the quadratic system (9) can be written as

=Mz —y— A32® + (2X2 + As)zy + A6y?,

=2+ My + Ax® + 23+ \)ry + (A7 —X2)y?

where A1, ..., A7 are real constants. It is obvious that the 6 coefficients of the qua-
dratic terms of system (10) remain independent of each other. Note that systems

(10) with A7 = 0 are the quadratic systems in the classical Bautin form. But here
we shall work with system (10).

(10)

We are using for the discontinuous differential systems (2) the expression of
X4 (z,y) given in (10) instead of (9) because later on we shall see that there is a
relationship between some coefficients of the averaged functions and the Liapunov
constants of the quadratic system (10), see section 4.

3. PROOF OF THEOREM 1 VIA THE AVERAGING THEORY

We shall write the discontinuous differential system (2) with (7) and (8) in polar
coordinates (r,6) € R xS, where 2 = r cos§ and y = rsin . Then system (2) with
(7) and (8) becomes

11 P\ _ [ Yi(r,0,0) if0 €0,

(11) 6 ) L Y-(r6,)) iffecr2m]

where A = (A1,..,A7) € R7, Y. (r,0,\) = (H(r,0,)),G(r,0, )T, Y_(r,0,\) =
(0,1)T and

H(r,0,\) = M7+ 12(=A3c08% 0 + (3\3 + \5) cos? Osin 0
+(2X3 + Mg + Ag) cos @sin? 6 + (=g + A7) sin® 6),
G(r,0,\) = 1+r(Aacos® + (33 + Ayg) cos? Osin
—(3X\2 + A5 — A7) cos @sin® 6 — \g sin® 6).

Since we want to study the Hopf bifurcation at the origin of the discontinuous
differential system (11), we do the rescaling r — re and take

7
(12) /\z = Z)\ijgj
j=0

for each i = 1,...,7, with A;0 = 0. Then system (11) is reduced to the differential
equation

H(r, 0, ¢€)
F;(0,r,)\) if 6
a3) ﬂ: Qr@ o) Zs r, if 9 € [0, ],
df
0 if € [, 27],

when we take as new independent variable the angle 6. Here every F; is a polynomial
in the variables r, sin 6, cosf and .

Now the problem of estimating the cyclicity of the Hopf bifurcation at the origin
of system (11) becomes the problem of estimating the cyclicity of the Hopf bifurca-
tion at the origin of system (13), which is written in the normal form for applying
the averaging theory of arbitrary order for studying its periodic orbits.
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The classical averaging theory (see for instance [4, 5, 26]) recently has been
extended for computing periodic orbits of analytical differential equations of one
variable with arbitrary order in the small parameter € by Giné, Grau and Llibre [16].
Later on this theory was extended by Llibre, Novaes and Teixeira [23] to arbitrary
order in ¢ for continuous differential systems in n variables. Using the arguments of
the paper of Llibre, Novaes and Teixeira [24] the formulas obtained for the averaged
functions of arbitrary order in [16] or [23] also work for the discontinuous differential
systems.

Let ¢(+,2) : [0,t.] — R™ be the solution of the unperturbed system, r'(6) = 0
such that ¢(0,z) = z, i.e. ¢(0,z) = z. Using the results and notations of [23, 24]
we have that the averaged function f; : (0,00) — R of order i = 1,2,...,k is

wi(m, 2)

(14) fi(z) =

where w; : R x (0,00) = R for i =1,2,...,k — 1 are defined recurrently by

)

7!

it = A (FiGsptson+

1—1 1 aL l

bj
S5 s e Pt (s, ) [ w9 ) s,
=1 S j=1

where S is the set of all I-tuples of non—negative integers (b1, bs, - -- ,b;) satisfying
by +2bg+ -+ 1oy =1, and L = by + by + --- + b;. Note that in (14) we have
w; (7, z) instead of w;(27, z) because the contribution to the averaged function of
the linear vector field on the half-plane y < 0 is zero, see for more details [24]. In
the subsection 4.1 of [23] are given explicitly all the terms of the function f;(r) for
i=1,...,5.

Theorem A of [23] and [24] say us that if the first averaged function fi(r) # 0,
then each one of its positive simple zeros provides a limit cycle of the discontin-
uous differential equation (13) on the cylinder (0,00) x S!, and consequently also
provides a limit cycle of the discontinuous differential system (2) with (7) and (8)
in R2. Moreover if fi(r) = 0 and fao(r) # 0, then each one of the positive simple
zeros of fa(r) provides a limit cycle of the discontinuous differential equation (13)
on the cylinder (0,00) x S', and consequently also provides a limit cycle of the
discontinuous differential system (2) with (7) and (8) in R%. If fi(r) = fa(r) =0
and f3(r) # 0 the same for the function f5(r), and so on.

In summary, for proving Theorem 1 we must compute the averaged functions
fi(r), and the positive simple zeros of f;(r) when fi(r)=0for k=1,...,71— 1.

Now using the software MATHEMATICA we have computed

fi(r) = Auimr +2(A20 + Aso + 2)\70)7"27

2 T
(15) Ja(r) = Xpamr + 5(/\21 + As1 4 2A71)r? — g(/\30)\50 — A50A60
+2X30A70 + Aa0A70 — 2X60A70)7, -

Of course the above expression for the function fo(r) has been computed when

fi(r) =0.
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Let #Z,(f;) denote the cardinal of Z,(f;), the set of all positive simple zeros
of the averaged function f;(r).

#Z.(f1) | condition for f; =0 | #Z4(f2) | condition for fo =0 | #Z,(f3)
2 3

1 & Cn
012 2
Ci3 3

TABLE 1. The numbers of positive simple zeros of the averaged
function f;(r) for i = 1,2,3.

Lemma 3. The numbers #Z,(f;) for i = 1,2,3 are given in Table 1 under the
conditions C1,C11,Cr2 and Ciy3, which are given in (16), (17), (18) and (19),
respectively.

Proof. Clearly from the expression of the polynomial fi(r) it follows that it can
have at most one positive simple zero, and that there are polynomials f;(r) having
1 positive simple zero.

Note that fi(r) =0 if and only if
(16) )\11 = O7 and )\20 = —)\50 — 2)\70.
These two conditions are denoted by C; in Table 1.

When (16) holds from the expression of the polynomial f5(r) given in (15), we
obtain that fs(r) has at most 2 positive simple zeros, and that there are polynomials
fa(r) with 2 positive simple zeros.

Note that fo(r) = 0 if and only if either
A2 =0, Ao1 = —As1 — 2A71, A7 # 0,

(17) Ao = A50A60 — A30A50 — 2A30A70 + 2A60 A 70
A70 ’

or

(18) A2 =0, Aa1 = —As1 — 271, A5 =0, Ayg = 05

or

(19) A2 =0, Ao1 = —As1 — 2A71, A30 = 6o, Ao =0,

denoted by C41,C12,C13 in Table 1, respectively.
When (17) holds, we get
2 T
f3(r) = Aamr 4 = (Aaa + As2 + 2A72)1% — —— (A1 X500
3 870

+A30A51 070 — As1A60A70 — AsoAe1A70 + 2A31 A%
+FA11 A2 — 2061020 — A30A50A71 + AsoAeoA71)r?

2
+ﬁ()\50 + 2X70) (63060 — 3A30 + 450 A70 + 1202 ).

We obtain that f5(r) has at most 3 positive simple zeros, and that there are poly-
nomials f3(r) with 3 positive simple zeros.
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Similarly, when (18) (resp. (19)) holds, we get

2 ™
f3(7‘) = Aiz7r+ g()\zz + M52 + 2)\72)7”2 — g()\30>\51
—X60As1 + 2A71 230 + Ao A7t — 20 A71)7°

(resp.

2
f3(r) = Amr+ g()\zz + sz + 2M70)72 —

2
—Xs50A61 + )\40)\71)7”3 + 5)\50)\%07“

T
8
4.)

(A31A50

Further, we obtain that f3(r) has at most 2 (resp. 3) positive simple zeros, and
that there are polynomials f3(r) with 2 (resp. 3) positive simple zeros.

condition for f3 =0 | #Z,(fs) | condition for fy =0 | #Z:(f5)
Cii1 3 Ciin 3
Cii12 4
Cii2 3 Cii21 4
Cli22 4
Ci13 2 Chi31 4
Cli4 4 Cliia1 4
Ci142 5
Ci21 3 Cro11 3
Cia12 4
Ci213 3
Cia2 2 Cia21 2
C1222 3
Ci223 3
Cho3 3 Ci231 3
Cia32 3
Cia33 2
Ci1 3 Cisn 3
Ciai2 2
Cis13 3
Ci32 3 Ci321 3
Ci322 3
C1323 2
Ci33 3 Ci331 3

TABLE 2. The numbers of positive simple zeros of the averaged

functions fy(r) and f5(r).

O

By the number of # 7 (f;) for i = 1,2, 3 given in Lemma 3 we get the some lower
bounds of the cyclicity of the Hopf bifurcation at the origin of the discontinuous
In order to find a greater bound, we
continues to consider averaged functions of higher orders.

differential system (2) with (7) and (8).
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Lemma 4. The numbers #Z.(f;) for i = 4,5,6 are given in Table 2 under the
conditions 0111, 0112, Cllg, 0114, 01141, 01142, ... which are given m (20), (21),
(22), (23), (24), (25), ..., respectively.

Proof. In Table 2 we list the conditions C1;;’s for f3(r) = 0 and conditions C;;’s
for f4(r) = 0. We explain these conditions firstly. Cj;; denotes the j-th condition
obtained from f3(r) = 0 under the conditions C; and Cy;, where C; and Cy; cause
f1(r) and f2(r) to be identically zero respectively as given in Table 1. For example,
either C111, or Cq12, or Ch13, or C114 holds while solving f5(r) = 0 under C; and
Cy;. Either Cya1, or Clag, or Ci23 holds while solving f3(r) = 0 under C; and Ci2,
and so on. C;;, denotes the k-th obtained from f4(r) = 0 under the conditions C1,
Cy; and Cy;j, where Cq, Cy; and Ch;; cause f1(r), f2(r) and f3(r) to be identically
zero respectively. For example, either C141, or Ci142 holds while solving f4(r) =0
under C1, C11 and Cy14. Either Cha11 or Cha12 or Cho13 holds from solving f4(r) =0
under the conditions Cy, C2 and Cq21, and so on.

Under C; and Ciy, fi1(r) = f2(r) = 0 and the expression of f3(r) is as given in
(15). It is easy to check that f3(r) = 0 if and only if either
A1z =0, Aa2 = —As2 — 2A72, As0 = —2A70, A70 # 0,
(20) Ny — A51A60 — A51A30 — 2A30A71 + 2A60A71
41 — )\70 )

or
3/\%0 — 6)\30 /\60

Az =0, Ao2 = =52 — 2A72, As0 = — 370,
(21) 4>\7O
Ny = 0. Agp — A41A70 — As1 60 /-\1-70)\61)\70 - 3)\60>\71’ Nao £ 0;
or
32— 630\
A3 =0, Aaa = —As2 — 272, A50 = ‘mTO?’OGO — 370,
A30 2/\%
22 A 0, dgg= — — ——, A 0
(22) 30 7 0, Aeo 5 " Doy’ 70 # 0,
Ay = — 2(3A30 a1 A70 + 3X3pA71 + 4N A7)
3NZ, + 4N,
or
3A2, — 630\
A3 =0, Aag = —Asa — 2\7a, Agp = 0023070 3.,
470
A30 2)\%0
A 0, A —_ = A 0
(23) 30 7é 9 60 7é 2 3A307 70 7é B

As1 = (6A30X60 61 A70 — 330 A61A70 + 4A30A51 02 — 4A51X60AF,
+4A41 03y + 461 M) — 3A3A71 + 9AZp Ao A7t — BA30AGp A7t
F12X30 A 50 A 71 — 12X60A50A71) / (A70(6A30X60 — 330 + 4A%)));

denoted by C111, C112, C113, C114 in Table 2 | respectively.
Under C114, we compute f4(r) and obtain
fa(r) = Awamr 4 2(Aas + Ass + 2A73)r2/3 4 (—9A50As2A70 + 36A3A32A60A70
—36A25A32 A2 70 + 930 A62A70 — 36A30 60 A62 70 + 36 A3 A2 Ae2A70
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— 1223052050 + 360305260 \50 — 24X30 52 A 20 \20 + 24030 A32 02
—12X20 A2 A3 + 1623002 A3 — 4830 A32 060050 + 2430 A a2 X60 A2,
—16A21 A0 A%y — 24030 A2 A3 + 48X30 A0 A62 A3 + 1641 A51 A7
+16X30 52 A% — 16X52 X605 — 16X3205) 4+ 16X4205, + 16X62A3,

— 1223051 M0 A 71 + 36 X030 A51 AsoA70A71 — 24X30 51 Aeg A0 A71
—12X20 a1 M 20 A 71 + 24230 A a1 A0 A2 A 71 + 80A30A51 ASg A 71 + 4841 Njg A7
—80A51 A0 Moo 71 — 24X50 A 7002, + T2M%0 X 60 7002 — 4830 A2g A70A2,
+96X30 A0 A2 — 9660 N30 A1 + 9NGoA7a — 45X A60 A 72 + T2A30 A2 A 72
—36A30\eo A2 — 48A3 A2 A 72 + 14403 Ao A2 A2 — 96A30 A2 A F A 72
+48X30 A 10 A72 — 48X60 A7 A7) ) /(322020 (3A30 — 6A30N60 — 402))
—(=18X25X60A61 A 70 + 36X30 A2 A1 A 70 — 363051 A20 + 723051 A6 A2
—24A51 M2 NZ0 — 24030 M1 A3 + 24041 A0 A3y + 2406061 A5 + 16A51 0%
+9N30A71 — 3630 A60 71 + 5AAS NG A1 — 3630 A0 A1 — 96AZ AT A7t
+192X30A60 20 A 71 — T2A20A20 A 71 + 48M3o A71)rt /(300%))

—A30(A30 — 2X30h60 — 8A%)(BA3 — 6Az0Ne0 — 4A2)) (3A30 — 3A30A60
—2X2)7r0 /(512X3,).

We obtain that f4(r) has at most 4 positive simple zeros, and that there are
polynomials f4(r) with 4 positive simple zeros.

Straight computations show that fy(r) = 0 if and only if either

Mg =0, Aoz = —As3 — 2A73, Aeo = Az0 — 2235/ (3A30), Az0 # 0, A7 # 0,

Az2 = (2TA30A62 + 36A30 A 12020 + 48X30 a1 A51 A3 + 24A30 A5 A3) + 32202, A%,
(24) +36)\§0)\41)\70)\71 + 24)\%0)\51)\30)\71 + 96)\30)\41)\%))\71 + 128)\51)\%0)\71
+48)‘§O/\%0)‘$1 + 128/\%0/\31 + 18/\%0/\70)\72 + 48/\30)30/\72)/(27/\30))

A1 = (54A35 61 70 + 36A30 5102 — 36A3, 61 A3y — 32X51 A8 — 27ASo A1
+14403, 020 A 71 — 24030 30 71 — 64285 A71)/ (48\30A3);
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or
Mg =0, Aoz = =53 — 2A\73, Aeo = (Mg — 8)A20)/(2X30),

st = 3(—2X3p 1070 — 10A30 61 A 70 — 16A30 A 01 A3, + 80A30 61 A3,
3N A1 — T2020 020 A 71 + 19203 \71) /(BA3, + 88A3 A2, + 192)%),

As2 = (909 As2A70 — 18790 Au2A70 + 3680 A 41 Ae1 Aro + 180A3, A2, Az
+90A%pAs2 70 — 5280NEA32 A3, — 96AE A2 AZ, — 1056ATAuaA2,
—192A§0é41,\61é§0 — 1442Ag%,\§%ﬁ0 + 5280@50,\622%
+1536)\§0)\41)\61)\‘;0 — 11520)\%0/\%1)\?0 + 88960)\20)\62/\?0

’ —337920/\§0)\32/7\$0 — 675840 Mo Al — 1843203 A A1 AL

(25)  192160A2,A2, AT, + 33792073, A2 AT — 36864030 A32 72,
— 7372830 A 120 + 36864030 Ma222 — 18A% A a1 71
_90)\20)\61 A7 — 240)\%0)\41)\%))\71 + 3120)‘;0)‘61>‘%0)‘71
—9216A3, A1 Mg A1 — 153603, M43 A8 A71 — 19968013, Ag1 A% A7t
—T73728 3011 A30A71 + 36864030 61 A\50 A71 — 144005, 7002,
—T680AG A3 A2, — 61440N3 A3 A2, — 73728002 AT A2,
H+27AL0 75 + 1800A8, 20 A7 + 393608 A% Aza + 31488013, A% Az
+92162$00§\§0)\§0)\724+) 28)84736)\%00)\72) J((AZ + 8X2,) (304,
+88A2) A2, + 19204)2),

A30 # 0, Ao #0,
denoted by Ci141 and Ch142 in Table 2, respectively.

Under C1142, we compute f5(r) and obtain

f5(r) = Aismr+2(Aog + Asa + 2070)72 /3 + f537° + f5ar?
+5A30A70(302 + 20A20) (Mg Aa1 + DA 61 + 8Au1 A2,
— 4061 A2 + 8030 A70A71 )7 /(32(3M3) + 88AZ A%, + 192)4))
—32X3,(3A\3, + 200%,)r8/7,
where f5 3 and f5 4 are rational functions in the \’s, and their numerators have 179
and 49 terms respectively. Clearly f5(r) has at most 5 positive simple zeros and

cannot be identically zero because the coefficient of r® is nonzero. Moreover, by
the Mathematica commander MatrizRank we find that the matrix

Ofsn  Ofsa 0fs1
Ofs2  Ofsz2 0fs5.2
OAis 0o O
Ofss  Ofs6 0fs6

has rank 6, where the f5;’s are the coefficients of r¥’s of f5(r). Here all f5,i’s have
rational forms in (A15, A4, ..., A7a) € R*®. Hence, from Lemma 4.5 of [11] we obtain
that there are polynomials f5(r) having 5 positive simple zeros as given in Table 2.

Similarly, for other cases we obtain the upper bounds of the number of positive
simple zeros for f4(r) and f5(r) respectively and list them in Table 2. O
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conditionforfy =0 | conditionforfs =0 | #2Z1(fs)
Ciin Ciiin 3
Cii112 4
Ci112 Ci1121 4
Cli21 Cii211 4
Clia2 Cr1221 4
C1131 Cii311 4
Clria Cria11 4
Cia11 Ci2111 3
Cia112 3
Ci2113 3
Cia12 Ci2121 3
Ci2122 3
C12123 4
Cia213 Ci2131 3
Ci2132 4
C12133 3
Cla21 Ci2211 2
Ci2212 3
C12213 3
Cla22 C12221 3
C12222 3
C12223 2
Cla23 C12231 3
C12232 4
C12233 3
C1231 Cra311 2
Cia2312 3
C12313 3
C1232 Ci2321 3
C12322 3
C12323 2
C1233 Ci2331 3
Ci311 Ci3111 3
Ci3112 3
Ci3113 2
C13121 Ci3121 3
Ci313 C13131 3
C13132 3
C13133 2
Ci321 Ciso11 3
C13212 3
C13213 2
C1322 C13221 3
C13222 3
C13223 2
C1323 C13231 3
C1331 C13311 4

TABLE 3. The number of positive simple zeros

function fs(r)

of the averaged
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Proof of Theorem 1. By Proposition 2, we only need to consider (2) with (7) and
(8). The result of the Hopf cyclicity of at least 5 follows immediately from Lemma 4.
In order to consider if the cyclicity of the Hopf bifurcation at the origin of (2) with
(7) and (8) can be greater than 5, we continue to consider the number of positive
simple zeros of the averaged function fg(r) when f1(r) = ... = f5(r) = 0. Using the
same method as in the proof of Lemma 4, we give the number #Z, (fs) in Table
3 according with the different conditions satisfied by the parameters. Since the
maximum number of positive simple zeros of the averaged function fs(r) is at most
4 as it follows from Table 3, and this number is smaller than the maximum number
(5) obtained for the number of positive simple zeros of the averaged function f5(r),
we do not provide here the details for obtaining the results described in Table 3. [

From Theorem 1 we see that, in order to find a greater lower bound of the
cyclicity of the Hopf bifurcation at the origin of the discontinuous differential system
(2) than 5, it is necessary to consider some averaged functions f;(r)’s of higher
orders than 6, but when we compute all averaged functions of order 6 we do not
find more limit cycles that the ones found with averaged functions of order 5. This
is the reason for which we stop the computations at order 6.

4. AVERAGED FUNCTIONS AND LIAPUNOV CONSTANTS

From [2] we know the Liapunov constants of the quadratic system (10) with
A7 =0 are
Vi= A,
Vs = —Xs5(A3 — X¢),
Vs = AaAa(Ag — A6)(As + 5(A3 — X)),
Vz = =X2Aa(A3 — X6)* (A6 (A3 — 2X6) — A3).

We remark that the coefficients of odd powers in r, of the averaged functions f;
and fo given in (15) and of the averaged functions f3 coming from the conditions
(18) and (19) for A7 = 0, are the first and the second Liapunov constants of the
quadratic systems. This relationship between the coefficients of odd powers in r of
the averaged functions and the Liapunov constants also occurs with other averaged
functions of higher orders, and does not happen when A7 is nonzero, for instance
see the averaged function f3 coming from condition (17).
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