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Abstract We characterize the zero–Hopf bifurcation
at the singular points of a parameter codimension four
hyperchaotic Lorenz system. Using averaging theory,
we find sufficient conditions so that at the bifurcation
points two periodic solutions emerge and describe the
stability of these orbits.
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1 Introduction

In 1963, Edward Lorenz [19] introduced a system of
ordinary differential equations in R

3 soon to became
famous for exhibiting chaotic solutions for certain pa-
rameter values and initial conditions. More precisely,
the Lorenz system displays a set of chaotic solutions,
which when plotted, looks as a butterfly or figure eight

L. Cid-Montiel · C. Stoica (B)
Department of Mathematics, Wilfrid Laurier University,
Waterloo, N2L 3C5, Ontario, Canada
e-mail: cstoica@wlu.ca

L. Cid-Montiel
e-mail: cidx7550@mylaurier.ca

J. Llibre
Departament de Matemàtiques, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, Catalonia,
Spain
e-mail: jllibre@mat.uab.cat

(the Lorenz attractor). The origins of this system lies
in atmospheric modeling. However, the Lorenz equa-
tions also appear in the modeling of lasers; see [11]
and for dynamos see [15].

Recently, a so-called hyperchaotic Lorentz system
was introduced; see for instance [1, 6, 10, 13, 14,
25, 27–33] and the references therein. (MathSciNet
presently lists 24 papers on hyperchaotic Lorenz sys-
tems.) We remark that not all these hyperchaotic
Lorenz systems coincide, as they can vary in one or
two terms. A precise definition of a hyperchaotic sys-
tem comprises (1) an autonomous differential equa-
tions system with a phase space of dimension at least
four, (2) a dissipative structure, and (3) at least two
unstable directions, out of which at least one is due
to a nonlinearity. Since it generates multiple positive
Lyapunov exponents, the dynamics of hyperchaotic
systems is hard to predict and control. Consequently,
such systems are of use in secure communication, and
thus received a great deal of attention mainly in engi-
neering (circuit and communications systems; see, for
instance [24], and references therein).

In this paper, we approach a hyperchaotic system
from a dynamical systems point of view. More pre-
cisely, we investigate a 4-dimensional zero–Hopf equi-
librium (that is, an isolated equilibrium with a double
zero eigenvalue and a pair of purely imaginary eigen-
values), and the birth of periodic solutions as parame-
ters vary.

There are several works studying the unfolding
of the 3-dimensional zero–Hopf equilibria. Recall
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