THE GENESIS OF MARKUS YAMABE COUNTEREXAMPLES*

ANNA CIMA

Departament de Matemàtica Aplicada II, E.T.S. d'Enginyers Industrials de Terrassa, Universitat Politécnica de Catalunya, Colom 11, 08222 Terrassa, Barcelona, Spain E-mail: cima@ma2.upc.es

and

ARMENGOL GASULL and FRANCESC MAÑOSAS

Departament de Matemàtiques, Edifici C
Universitat Autònoma de Barcelona,
08193 Bellaterra, Barcelona, Spain.
E-mails: gasull@mat.uab.es and manyosas@mat.uab.es

ABSTRACT

In a recent paper (see 3) it is presented a polynomial counterexample to the Markus Yamabe Conjecture in dimension $n \geq 3$. In the present work we explain the ideas to obtain this counterexample and we give a more general family of them. We also construct some polynomial maps which give a negative answer to the discrete version of the Markus Yamabe Conjecture.

1. Introduction

Let $F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a C^1 map and consider the differential system

$$\dot{x} = F(x). \tag{1}$$

Assume that p is a critical point of (1), i. e., F(p) = 0. We say that p is a global attractor of the continuous dynamical system (1) if $\phi(t,x)$ tends to p as t tends to infinity for each $x \in \mathbb{R}^n$, where $\phi(t,x)$ is the solution of (1) with $\phi(0,x) = x$.

The next conjecture was explicitely stated by Markus and Yamabe (see 9) in 1960.

 $\mathbf{MYC}(\mathbf{n})$ (Markus-Yamabe Conjecture) Let F be a C^1 vector field defined on \mathbb{R}^n such that for any $x \in \mathbb{R}^n$, the jacobian of F at x has all its

^{*}Partially suported by the DGICYT grant number PB90-0695.