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1. Statement of the problem

Let F:R"—R" be a €' map and consider the differential system
x=F(x). (D

Assume that p is a critical point of Eq. (1), i.e., F(p)=0. We say that p is a global
attractor of the continuous dynamical system induced by Eq. (1) if ¢(t,x) tends to p
as t tends to infinity for each x € R”, where ¢(f,x) is the solution of Eq. (1) with
d(0,x)=x.

The next conjecture was explicitly stated by Markus and Yamabe (see [15]) in 1960.

MYC (n) (Markus—Yamabe Conjecture). Let F be a ¢' map from R* to itself such
that for any x € R", the Jacobian of F at x has all its eigenvalues with negative real
part. If F(p)=0, then p is a global attractor of x = F(x).

This conjecture was proved for planar polynomial maps in 1988 [16] and for planar
%' maps in 1993 [9, 11} and in 1994 see [10]. In [1, 3] there are examples of smooth
vector fields of R”, n >4 satisfying the hypothesis of the Conjecture which have a
periodic orbit and in [4] there is an example of a polynomial vector fields of R", n >3
satisfying the same hypothesis which has some orbits that scape at infinity. Therefore
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the conjecture is only true for n=2. On the other hand in [6] van den Essen shows
that a conjecture weaker than MYC implies the classical Jacobian Conjecture.

Our aim is to discuss a natural translation of MYC to the dynamics of the iterations
of maps. Let F:R" —R" be a ' map and consider the sequence:

D = pidmy, A9 eR7 (2)

Let p be a fixed point of F, i.e., F(p)= p. We say that p is a global attractor of the
discrete dynamical system (2) if the sequence x!™ tends to p as m tends to infinity
for any x(® € R”. The question is the following:

DMYQ(n) (Discrete Markus—Yamabe Question). Let F be a €' map from R” into
itself such that F(0)=0 and for any x € R", JF(x) has all its eigenvalues with modulus
less than one. Is it true that 0 is a global attractor for the discrete dynamical system
generated by F?

The answer of DMYQ(!) is trivially affirmative. Szlenk worked on this problem
for n=2 and he explained us his result: an example of a rational map F:R? — R?
which gives a negative answer to DMYQ(2). Unfortunately Szlenk suddenly died in
July 1995. We reproduce his example in Section 5 (see Theorem D) and we prove its
properties in the Appendix.

Szlenk’s example is neither a polynomial nor a diffeomorphism. However, it can
be modified slightly in order to obtain a diffeomorphism which also gives a negative
answer to DMYQ(2) (see Theorem E in Section 5).

If we restrict our attention to the family of polynomial maps, we prove that the
answer to the DMYQ(2) is affirmative (see Theorem B in Section 2). A negative
answer to DMYQ(») for n > 4 is given in [7]. Later in [4] there are examples which
give a negative answer for n > 3. So the problem is completely solved.

The paper is organized as follows. In the next section we prove that the answer to the
DMYQ is yes for triangular maps defined on R” (see Theorem A in Section 2) and also
for polynomial maps defined on R?. In Sections 3 and 4 we relate the problem with the
Jacobian Conjecture and with the Markus—Yamabe Conjecture, respectively. Section 5
is devoted to obtaining a diffeomorphism of R? which gives a negative answer to
DMYQ(2). Lastly in the Appendix we present the Slenzk’s example mentioned above.
After this paper was written G. Meisters told us that a question similar to DMYQ was
already stated in La Salle’s book [17] p. 20.

2. The triangular case
We say that F is a triangular map if it takes the form:
F(x)=(F1(x1), Fa(x1,%2), o, Fu(xr, X2, X0 ))-

We say that F is linearly triangularizable if there exists a linear change such that it
makes F' triangular.
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The first result which we obtain is the following:

Theorem A. Let F:R"—=R" be a €' triangular map with all the eigenvalues of
JF(x) with modulus less than one at each x € R". Assume that F(0)=0. Then 0 is a
global attractor for the discrete dynamical system generated by F.

Proof. We prove the result by induction. The hypothesis of induction is the following:
Consider £:R™ — R™ a triangular ' map such that

oFy oF, OF

Oxy Ox;y X

Fix xY € R™ and set x**1) = F(x®)). Then there exist ko € N big enough, M € R*
and K €R, 0<K <1, such that

) < MKF foralli=1,2,...,m

<l1,..., <l and F(0)=0.

2

Obviously if we prove the above induction hypothesis the theorem follows.

The proof for the case m =1 is trivial. Assume that it is true for m=s — 1 and we
prove it for m=s.

Fix xR’ By considering F(xl,xz,...,xsﬁl)E(Fl(xl),Fz(xl,xz),...,FS_|(x|,
X2,...,Xxs—1)) and applying the induction hypothesis we have that there exist ko, M
and K such that

x4 < MK* for i=1,2,...,s— 1 and all K € N

It is not restrictive to change x(* by x'*) and assume that

X9 < MKF fori=1,2,....5— L. (3)
Consider
xﬁk):Fs(x("_])):Fs(x(]k_”,xgk—”... (k ”)

=1

% OF, - -
- SR kD D gy
0 ox. 1 2
s

2 Xg—]

< o
+/ I e B LY P TR
0

Ox_y
k—1)
Y OF,
—(1,0,...,0)ds.
+ [ )
Then
’x(k)‘ < |x(k ])|_|_'x(k 1)‘+ +]x(lk_l)|= (4)

where we have used that for any i =1,2,...,5 — 1

OF -
max{’ (J’l, ’y!, ) (yl>y25---3yi—])ER’ ! and wxl(‘O)Syin}O)}

<1.



346 A. Cima et al. | Nonlinear Analysis 35 (1999) 343354

Now, from Egs. (3) and (4) we have:
|x®) < [x*D) 4 (s — DMKA (5)

Denoting (kK — 1)M by C we can write

C
) < O]+ CERT KT e D < IV

Hence, {x*’} is a bounded sequence. Since the same is true for (Y for i=1,

2,...,5— 1 there exists L>0 such that [x\*)| <L for all i=1,2,...,s and for all k€ N.
So, we can define

OF, .
2 Ly2-. v vl €L, z=1,2,...,s}
Xy

D= max{

and assert that D is strictly less than one. It implies that inequality (4) can now be
substituted by

_ k—1) k—1
X0 < DI 4 0 4 )

and inequality (5) by
X)) < D|x%=1| + K 1c.
Hence,

1x®| < DD|x*2| + K20y + K+ 'C

SDk|x§0)$ + C(Kk—l +DKk_2 4+ +Dk—1)
< D¥|x\9| + kC(max(K, D)y ~!
< (max(K,D))*'(D|x®| + kC) = (max(K, D) }*M = MK*

for some M, where max(K,D)<K <1, and the induction is finished. O

The next goal is to show that the answer to DMYQ(2) for polynomial maps is affir-
mative. First of all notice that in the polynomial case the assumption of the existence
of a fixed point can be removed in the hypothesis of DMYQ(#) (this is due to the
fact that injective polynomial maps of R” are also exhaustive).

Notice that for n =2, the results of [9,10] or [11] imply that any map (not necessarily
polynomial) satisfying the assumptions of DMYQ(2) has only one fixed point. To see
this if F is such a map it suffices to consider the map F —/ and conclude that it is
injective.

Lemma 1.1. Let F:R"—R" (resp. F:C"—C") be a polynomial map such that
JF(x) has all its eigenvalues with modulus less than one at each x € R" (resp. x € C").
Then the characteristic polynomial of JF(x) is independent on x.



A. Cima et al. | Nonlinear Analysis 35 (1999) 343-354 347

Proof. Let P((/) be the characteristic polynomial of JF(x) and let 4,, A5,...,/, be the
roots of P,(2). Then

P(A)=2"—t, 2"+ (=1),

where
n

[j: E Ai.’”i;""ﬁ,-

i< <--<ij

ity iy =1
Since |4;]<1 for all i=1,2,...,n we have that |tj] <k; for all j=1,2,...,n. On the
other hand since the components of F' are polynomials and each #; can be described as
the sum of all the minors of order j which have its diagonal on the principal diagonal
of JF(x), we conclude that #; is a polynomial in x for all j=1,2,...,n. Since the only
bounded polynomials are the constants, the result follows. [

Theorem B. Let F:R*—R? be a polynomial map with all the eigenvalues of JF(x)
with modulus less than one at each x € R%. Then there exists a unique fixed point of
F which is a global attractor for the discrete dynamical system generated by F.

Proof. Set F =(P,(Q). From Lemma 1.1 we know that
_op 00 _0P0OQ P OQ

d = =

t = = =
' ox - dy an T ox dy Oy ox
are constants. Consider G=F — (#;/2)] and set G = (P, Q). Then,

. oP 00 - 0PoQ PO t
= — —_— = d = — — —= =y — —,
i ox Oy 0 an 27 ox oy odyox 4
Since 7, = 0, there exists a polynomial H(x, y) such that
- OH = oH
P =— d =
wn=-% ad Owy=g

Then the hessian of H is f,. If £, #0, by applying the result of [5] we know that up
a complex affine transformation,

H(u,v) =/ —fHuv + h(u)

where # is a polynomial in one variable w.

Assume 7, <0. Then, H(u,v)€R and from the proof of [5] we see that the affine
transformation can be taken with real coefficients. Through this transformation we have
that F(x, y) = (P(x, y), Q(x, ¥)) can be written as (P(u,v), O(u,v)) where

Pu,v)=hku+k, and O(u,v)=kv+ p(u)+ ks

with p a polynomial in one variable. With these coordinates (P,Q) has an unique
fixed point (i, 7). By doing the translation which sends (&, 7) to (0,0) and applying
Theorem 1, the result follows.
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Now assume that {;>0. From the classical result of Jorgens (see [14]), we know
that H(x, y) is quadratic. It implies that F =(P, Q) is a polynomial map of degree one.
For this type of maps the result can be easily proved.

If £,=0 from the proof of Dillen it follows that, up to an affine transformation,
H(u,v)y=kv + h(u), k€R, and the result follows as above. [

3. The Jacobian Conjecture and the fixed point conjecture

In this section we restrict our attention to polynomial maps. Let F:R” —R” be a
polynomial map such that JF(x) has all its eigenvalues with modulus less than one. In
Section 1 we ask for the existence of a fixed point which is a global attractor. Now
we formulate a weaker problem as follows:

FPC (Fixed Point Conjecture). Let I :R" — R” be a polynomial map such that JF(x)
has all its eigenvalues with modulus less than one at each x € R". Then F has a unique
fixed point.

Considering the real and the imaginary part of the components of a complex map
F:C"— " and using standard arguments of linear algebra it is easy to see that this
conjecture can be formulated in the following equivalent form:

FPC (Fixed Point Conjecture). Let F: C" — C" be a polynomial map such that JF(x)
has all its eigenvalues with modulus less than one at each x € C". Then F has a
unique fixed point.

Theorem C shows that this problem is equivalent to the celebrated Jacobian
Conjecture, which can be established as follows.

JC (Jacobian Conjecture). Let F:C" — C" be a polynomial map with det JF(x) e C*
=C\{0} at each x € C". Then F is invertible.

Theorem C.

JC is equivalent to FPC.

Proof. Assume that the JC holds and let F satisfy the hypothesis of FPC for some n.
Consider G(x)=F(x)—x. Then the eigenvalues of JG(x) are the eigenvalues of JF(x)
minus one. Hence by using Lemma 1.1 we have that det JG(x) is constant; from the
hypothesis on F we know that this constant cannot be zero. So, G is invertible and
there exists a unique xo zero of G, which is the unique fixed point of F(x).

Now assume that JC fails for some m. From the Reduction Theorem (see [2]) it
means that there exists n€ N and G :C" — C" noninvertible such that

G(x)=x+ H(x)

with JH(x) a nilpotent matrix at each x € C". Now set g(x) = %G(x) and let y,z€C",
y#z with g(y)=g(z)= p. Denoting by A(x) the expression x + p — g(x), we have
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that A(y)=y and A(z)==z. On the other hand, since JH(x) is a nilpotent matrix at
each x € C", all its eigenvalues are zero. From the definition of 4(x) we obtain

Jh(x)=1—Jg(x)=1 — (3] + $JH(x))= I — 3JH(x)
1

which implies that all the eigenvalues of Jh(x) are 7 at each point x € C". Hence, A(x)
satisfies the hypothesis of FPC and it has two different fixed points. [J

Remember that the results of [9, 10] or [11] imply that FPC for R? is true. From
this fact, and the proof of Theorem C it can be deduced that the JC is true for some
special subcases and it cannot be deduced that it is true for n=2 as can be thought
at a first look.

To end this section we give a conjecture which implies the JC. Firstly we explain
the way we arrive at the conjecture. Notice that the DMYQ has affirmative answer
for triangularizable maps. So we thought that the next step could be to consider it for
maps that take the form F(x)=(f(x),g(x,)) with g:R—R and f:R" - R"~!. We
had some problems to solve DMYQ for this case and we decided to consider the easiest
case in which F is polynomial and all the eigenvalues of JF(x) are zero. That is, we
tried to solve DMYQ for polynomial maps of the form F(x)=(f(x),0) where JF(x)
is nilpotent. At this point we wonder if all polynomial maps with nilpotent Jacobian
can be reduced to that case:

NC (Nilpotent Conjecture). Let F:C" — C" be a polynomial map such that JF is
nilpotent. Then there exists a linear change of coordinates A such that AFA™'(x)=
(f(x),0) where f is a polynomial map of C" into C" .

We have not been able to solve the above conjecture. van den Essen has indepen-

dently arrived at the next result.

Proposition 3.1.
NC implies JC.

Proof. It is known that it suffices to prove JC for maps F such that JFF =1+ N with
N nilpotent and homogeneous of degree 3. Therefore, assuming that NC holds, we
will prove by induction over » next statement: Any map F from C” into C” such that
JF =1+ N with N nilpotent is injective.

For n=1 the above statement is trivial. Suppose that it is true in dimension » and let
F:C"! — C"! be such that JFE =1+ N with N nilpotent. Assuming that NC holds:
the map F, by means a linear change of coordinates, can be written as

F(xlyv-'9xﬂ+])=(x[ +Pl('xl.~'<-sxﬂ+1)sx2 +Pz(xh"-,xn+])a'~'9xn+1)'
To show that this map is injective it suffices to show that for any a € C the map
Fa(X],.”,xn):(xl +P[(X|,...,xn,a),x2
+P2(xla‘-‘sxma)v---axn +P,,(x],...,x,,,a))

is injective. But clearly F, satisfies the induction hypothesis and we are done. [l
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After the first version of this paper was finished van den Essen and Hubbers have
given a counterexample of NC, for all #>2 and F of degree greater or equal than 4;
see [8]. Observe that following the proof of Proposition 3.1 we can prove next result,
which shows that NC is yet an open approach to JC.

Proposition 3.2. NC for polynomial maps of degree less or equal than 3 implies JC.

4. Relation with the Markus—Yamabe conjecture

In this section we relate the MYC(xn) with DMYQ(n). Consider the differential sys-
tem

i=F(x) ©)

and let ¢(z,x) be the solution of Eq. (6) with ¢(0,x)=x.
Assume that ¢(7,x) is defined for some T'>0 and for some x € R”. Then we can
consider the discrete dynamical system given by the flow at time T

¢(T,):V—R"

where V' is a neighbourhood of x.

Lemma 4.1. Let F be a €' map from R" 1o itself and let ¢(t,x) be the solution of

x=F(x) with ¢(0,x)=x. Then the following hold.

(1) If for all x e R" JF(x) has all its eigenvalues with negative real part, then given
U a bounded open subset of R" there is T >0 such that for all t€(0,T) the
Jacobian of ¢(t, ): U — R" has all its eigenvalues with modulus less than one at
any point of U.

(ii) Assume that (d/dx)¢(t,x) has all its eigenvalues with modulus less than one for
t€(0,t). Then JF(x) has all its eigenvalues with nonpositive real parts.

Proof. Since ¢(¢,x) is the solution of X = F(x) with ¢(0,x)==x we have that
d
SO =F($(10)).

Taking the derivatives with respect to x and evaluating in ¢ =0 we can write
d /d
I (a;(fb(t,x))

This last equality can be rewritten as

f;((;’)(t,x)) -1
t

=JF(x).
=0

lim
t—0

=JF(x), N

where I means the scalar identity matrix. From the above relation it is clear that for
each y e ¥I(U) (¢!(U) means the topological closure of U) there exists a neighbour-
hood of y, U, and a positive real number 7, such that for each z € U, the matrix
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(d/dx)é(t,x)(z) has all its eigenvalues with real part less than one (resp. greater than
one), for each 1 €(0,7,) (resp. t€(—T,,0}). Since ¢ is continuous and ¢(0,x)=x,
there exist W, neighbourhood of y and a positive real number Yy with y, < T, such that
¢(t,z)e U, for all z€ W, and for all t€(~7,,7,).

Let ze W, and 1 €(0,7,). Since ¢(—t, ¢(2,x))=x, by the chain rule

d d
o PEXND()) 6 x)x) =1

Let A=a + bi be an eigenvalue of (d/dx)@(s,x)(z). Then A~' =(a — bi)/(a® + b?) is
an eigenvalue of (d/dx)¢(—#,x)P(¢,2)). Since z, ¢(t,z) € U, and ¢ € (0,7,) we obtain
Rei<1 and ReA™'>1. This clearly implies that |1| =a? + 5% <1.

We have seen that for each y € €/(U) there exists W, neighbourhood of y and a
positive number 7y, such that (d/dx)¢(s,x)(z) has its eigenvalues with modulus less
than one for each z € W, and for all € (0, yy). Let W,,,..., W, be a finite cover of
€I(U) and T =min{y,,...,7,,}. Clearly 7>0 and (i) follows.

To prove (ii) it is enough to consider equality (7). [

The set of the values of ¢ for which part (1) of the above lemma holds cannot be
extended to R*, because of the known following lemma and the counterexamples with
periodic orbits; see [3].

Lemma 4.2 (Hartman [13]). Assume that system (1) has a periodic orbit of period T.
Then the flow at time T has an eigenvalue equal to one.

If the answer to the DMYQ for flows (which are special cases of diffeomorphisms)
was affirmative, then we could conclude that system (6) has a global attractor under
the hypotheses that for any x € R", ¢(z,x) is defined for some />0 and ¢(z,-) has
eigenvalues with modulus less than one. Observe that these last hypotheses are stronger
than the Markus—Yamabe ones.

5. The answer to DMYQ(n) for diffeomorphisms

In this section we obtain a rational diffeomorphism of R” (n >2) which satisfies
the hypothesis of DMYQ and has a periodic orbit. This example is a modification of
Szlenk’s example which is described in the following theorem that will be proved in
the Appendix.

Theorem D (Szlenk). Let F:R? —R? be defined by

ky? kx® 2
= —_ h k 1,""“ .
F(x,y) ( T T2 Whereke 7

The map F satisfies the following properties:
(1) Set p=(x,y)€R? and let A be an eigenvalue of JF(p). If xy=0 then 1=0.
Otherwise 1. ¢ R and |1 <+/3k/2.
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(2) FA1/VE—1,0)=(1/vk = 1,0).

(3) F is injective.
Let G,:R" — R" be defined by

kx3 kx?
- T3 T A T2
I +x7+x5 1 +x7 + x3

Ga(x1,X2,X3, ..., Xp) = ( —axz,cx3,...,cx,,>

where |c|<1 and k€ (1,2/V3).

Theorem E. For a small enough, the map G, is a global diffeomorphism from R”
into itself which satisfies the following properties:

(1) For all x€R* and for all ). eigenvalue of (DG,)(x), |A|<1.

(2) G4(0)=0 and there exists p€R", p+#0 which satisfies G3(p)= p.

Proof. Clearly we can assume that n=2. Note that G,=F — al where F is as in
Theorem D.

Since JF has at each point eigenvalues with modulus less than ( V3/2)k, it follows
that for a small enough JG, has at each point eigenvalues with modulus less than
one. Note that since JF has all eigenvalues different from @, JG, has at any point
eigenvalues different from zero. So G, is a local diffeomorphism at every point of RZ.
In order to see that G, is a global diffeomorphism we will apply Hadamard’s Theorem
[12] which asserts that a smooth map from R” to itself is a global diffeomorphism if
and only if it is a local diffeomorphism at each point of R” and it is proper (i.e. the
preimage of a compact set is also a compact set). To see that G, is proper it suffices
to show that

lim  |Gu(x, y)| = oc.

|x, yl—o0
Easy computations show that

K2r5(cos® 0 + sin® 0) + a?r(1 + #2)? — kar* sin40(1 + r?)/2

2 _
|Ga(st’)I = (1+ r2)2

where » and 6 denote the usual polar coordinates associated to (x,y). Using that
cos® 0 + sin® 0> 1/4,5in40 <1 and 1 + r> <2r? for r big enough we get

r kar*
L A S . AN
|Ga(x>y)| = 4(1 +r2)2 +ar 2(1 +7'2)
>k2r6 g @
“Terd @ 2
= (k/4 — a)*r?

and hence lim,_, s Gq(x, ¥) = oc. Therefore G, is a global diffeomorphism for all a # 0.



A. Cima et al. | Nonlinear Analysis 35 (1999) 343-354 353

Set p=(1/v/k — 1,0). Easy computations show that

_ (G-t 0

Therefore the eigenvalues of JF4(p) are of modulus different from one and so the
periodic orbit is hyperbolic. Hence the periodic orbit remains by small perturbations
of the map. Hence for a small enough G, has also a four periodic orbit. This ends the
proof of the theorem.
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Appendix (W. Szlenk)

This appendix is devoted to proving Theorem D which is due to W. Szlenk. This
theorem gives an example of a global smooth homeomorphism (not diffeomorphism)
which gives a negative answer to DMYQ(2).

Proof of Theorem D. We only prove (1). The proof of (2) and (3) are simple com-

probations. By easy computations we get

3K Y2 (% + 32+ 3)
(] +x2 + y2 )3

—2kxy(x* — y*)
(T+x24 127

detJF(x, y)= and wJF(x,y)=

where #r(-) denotes the trace operator. Using polar coordinates we obtain
3k2 sin® 6 cos? Or*(r2 + 3)
(1+r2)

3k sin® 20(r° + 3r) PG
A3 32+ 1) 4 T

det JF(r,0) =

On the other hand we obtain that A(x, y), the discriminant of the characteristic
polynomial of JF(x, y), satisfies

Ax, y) =t JF(x, y) — 4det JF(x, y)
_ _4](2)(2})22x4 +8x2)2 + 2y + 1222 + 1237 +9 _

0.
(14 x2 4 p2)? -
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If x-y =0 then det JF(x, y)=0 and tr JF(x, y)=0 and hence 2=0. Otherwise A(x, y)
<0 and hence the eigenvalues of JF(x, y) are not real. Therefore, in this case

2
|A|=/detJF(x, y) < 3k k\/—

2
Thus (1) follows. O
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