Some properties of the \boldsymbol{k}-dimensional Lyness' map

Anna Cima ${ }^{1}$, Armengol Gasull ${ }^{1}$ and Víctor Mañosa ${ }^{2}$
${ }^{1}$ Dept. de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{2}$ Dept. de Matemàtica Aplicada III (MA3), Control, Dynamics and Applications Group (CoDALab) Universitat Politècnica de Catalunya (UPC) Colom 1, 08222 Terrassa, Spain
E-mail: cima@mat.uab.cat, gasull@mat.uab.cat and victor.manosa@upc.edu

Received 28 January 2008, in final form 20 May 2008
Published 19 June 2008
Online at stacks.iop.org/JPhysA/41/285205

Abstract

This paper is devoted to study some properties of the k-dimensional Lyness’ map $F\left(x_{1}, \ldots, x_{k}\right)=\left(x_{2}, \ldots, x_{k},\left(a+\sum_{i=2}^{k} x_{i}\right) / x_{1}\right)$. Our main result presents a rational vector field that gives a Lie symmetry for F. This vector field is used, for $k \leqslant 5$, to give information about the nature of the invariant sets under F. When k is odd, we also present a new (as far as we know) first integral for $F \circ F$ which allows us to deduce in a very simple way several properties of the dynamical system generated by F. In particular for this case we prove that, except on a given codimension one algebraic set, none of the positive initial conditions can be a periodic point of odd period.

PACS numbers: 02.30.Ik, 05.45.-a
Mathematics Subject Classification: 39A20, 37E35
(Some figures in this article are in colour only in the electronic version)

1. Introduction and main results

Discrete integrable systems are the focus of current intensive research (see [14, 18, 23, 26, 34, 35] and references therein) since they appear as fundamental mathematical tools in numerical analysis and in some areas of physics and theoretical biology such as statistical mechanics [28, 36], discrete quantum theory [5, 6], solitons in cellular automata [22, 27, 33] and population dynamics [32] among other topics.

There are some well-known planar integrable maps like the Lyness and McMillan ones, generalized by the celebrated QRT maps [29, 30], and recently a list of third-order integrable difference equation (including the third-order Lyness one) has attracted the researchers attention [18, 26, 31]. In this context, the second- and the third-order Lyness' difference equations
$y_{n+2}=\frac{a+y_{n+1}}{y_{n}} \quad$ and $\quad y_{n+3}=\frac{a+y_{n+1}+y_{n+2}}{y_{n}}, \quad$ with $\quad a \geqslant 0$

