On Poncelet's maps

Anna Cima ${ }^{\text {a }}$, Armengol Gasull ${ }^{\text {a,* }}$, Víctor Mañosa ${ }^{\text {b }}$
${ }^{\text {a }}$ Dept. de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{\mathrm{b}}$ Dept. de Matemàtica Aplicada III (MA3), Control, Dynamics and Applications Group (CoDALab), Universitat Politècnica de Catalunya (UPC), Colom 1, 08222 Terrassa, Spain

ARTICLE INFO

Article history:
Received 4 August 2009
Received in revised form 17 June 2010
Accepted 17 June 2010
Keywords:
Poncelet's problem
Circle maps
Rotation number
Devil's staircase

Abstract

Given two ellipses, one surrounding the other one, Poncelet introduced a map P from the exterior one to itself by using the tangent lines to the interior ellipse. This procedure can be extended to any two smooth, nested and convex ovals and we call these types of maps, Poncelet's maps. We recall what he proved around 1814 in the dynamical systems language: In the two ellipses' case and when the rotation number of P is rational there exists an $n \in \mathbb{N}$ such that $P^{n}=\mathrm{Id}$, or in other words, Poncelet's map is conjugate to a rational rotation. In this paper we study general Poncelet's maps and give several examples of algebraic ovals where the corresponding Poncelet's map has a rational rotation number and is not conjugate to a rotation. Finally, we also provide a new proof of Poncelet's result based on dynamical and computational tools.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let γ and Γ be two $\mathcal{C}^{r}, r \geq 1$, simple, closed and nested curves, each one of them being the boundary of a convex set. Furthermore we assume for instance that Γ surrounds γ.

Given any $p \in \Gamma$ there are exactly two points q_{1}, q_{2} in γ such that the lines $p q_{1}, p q_{2}$ are tangent to γ. We define Poncelet's map, $P: \Gamma \rightarrow \Gamma$, associated to the pair γ, Γ as

$$
P(p)=P_{\gamma, \Gamma}(p)=\overline{p q_{1}} \cap \Gamma
$$

where $p \in \Gamma, \overline{p q_{1}} \cap \Gamma$ is the first point in the set $\left\{\overline{p q_{1}} \cap \Gamma, \overline{p q_{2}} \cap \Gamma\right\}$ that we find when, starting from p, we follow Γ counterclockwise, see Fig. 1. Notice that $P^{-1}(p)=\overline{p q_{2}} \cap \Gamma$.

The implicit function theorem together with the geometrical interpretation of the construction of P imply that it is a \mathcal{C}^{r} diffeomorphism from Γ into itself. So P can be seen as a \mathcal{C}^{r} diffeomorphism of the circle and has associated a rotation number

$$
\rho=\rho(P)=\rho(\gamma, \Gamma) \in(0,1 / 2)
$$

See for instance [1,2] for the definition of rotation number. Notice that usually a rotation number is in $(0,1)$. Our choice of q_{1} for Poncelet's map implies that indeed $\rho<1 / 2$. A well known result of Denjoy states that if Φ is any diffeomorphism of the circle of class at least \mathcal{C}^{2} and such that $\rho(\Phi) \notin \mathbb{Q}$ then Φ is conjugate to a rotation of angle $2 \pi \rho(\Phi)$, see $[3, \mathrm{p} .107]$ or [4, p. 45] for instance. So this is the situation for Poncelet's map P when $\rho(P) \notin \mathbb{Q}$ and $r \geq 2$.

With the above notation the celebrated Poncelet's Theorem asserts that if γ and Γ are ellipses, with arbitrary relative positions, and $\rho=\rho(\gamma, \Gamma) \in \mathbb{Q}$ then Poncelet's map is also conjugate to the rotation of angle $2 \pi \rho$ in \mathbb{S}^{1}. In geometrical

[^0]
[^0]: * Corresponding author. Tel.: +34 93 5812909; fax: +34 935812790.

 E-mail addresses: cima@mat.uab.cat (A. Cima), gasull@mat.uab.cat (A. Gasull), victor.manosa@upc.edu (V. Mañosa).

