pp. 1575-1595

GLOBAL LINEARIZATION OF PERIODIC DIFFERENCE EQUATIONS

ANNA CIMA, ARMENGOL GASULL AND FRANCESC MAÑOSAS

Dept. de Matemàtiques, Universitat Autònoma de Barcelona Edifici C, 08193 Bellaterra, Barcelona, Spain

ABSTRACT. We deal with *m*-periodic, *n*-th order difference equations and study whether they can be globally linearized. We give an affirmative answer when m = n + 1 and for most of the known examples appearing in the literature. Our main tool is a refinement of the Montgomery-Bochner Theorem.

1. Introduction. In this paper we investigate the linearization of periodic difference equations defined on an open subset of \mathbb{R} . A difference equation or a recurrence of order n on \mathbb{R} of class \mathcal{C}^k $(k \in \mathbb{N} \cup \{0\} \cup \{\infty\} \cup \{\omega\})$ is an equation of the form:

$$x_{j+n} = f(x_j, x_{j+1}, \dots, x_{j+n-1})$$
(1)

where $x_i \in \mathbb{R}$ for all $i \in \mathbb{N}$, and f is a \mathcal{C}^k map from an open subset of \mathbb{R}^n into \mathbb{R} .

The study of the dynamics of the recurrence (1) is given by the dynamics of the associated map $F: U \to U$, where U is an open subset of \mathbb{R}^n , not necessarily connected, and F is given by

$$F(x_1, \dots, x_n) = (x_2, \dots, x_n, f(x_1, \dots, x_n)).$$
(2)

We will say that equation (1) is *m*-periodic if $F^m = \text{Id}$ and *m* is the smallest natural with this property. Clearly, in this case, $m \ge n$ and the only possibility for m = n is when $f(x_1, \ldots, x_n) = x_1$.

Recall that it is said that a map $F: U \to U$, \mathcal{C}^k -linearizes on an open set $U \subset \mathbb{R}^n$ if there exists a \mathcal{C}^k -homeomorphism, $\psi: U \to \psi(U) \subset \mathbb{R}^n$, for which $G := \psi \circ F \circ \psi^{-1}$ is the restriction of a linear map to $\psi(U)$. The map ψ is called a *linearization of* F on U. When the map F is of the form (2) and the linearized map G is as well of the form (2) then we will say that the associated recurrence (1) linearizes in the corresponding domain.

Notice that real periodic difference equations are a particular case of periodic maps on subsets of \mathbb{R}^n . These maps have been largely studied. In order to have a better understanding of our goal when we restrict our interest to maps of the form (2), first we give a brief summary of some of the most relevant results on general periodic maps on \mathbb{R}^n .

It is a well-known result that every periodic \mathcal{C}^k map on \mathbb{R} is either the identity, or 2-periodic and that in this later case it \mathcal{C}^k -linearizes (notice that in this situation this is equivalent to say that it is \mathcal{C}^k -conjugated to $-\mathrm{Id}$), see for instance [18]. From

²⁰⁰⁰ Mathematics Subject Classification. Primary: 39A05; Secondary: 39A20, 39B12.

Key words and phrases. Periodic maps, periodic difference equations, recurrences, linearization. The first and second authors are partially supported by a MCYT/FEDER grant number MTM2008-03437. The third author by a MCYT/FEDER grant number MTM2008-01486. All are also supported by a CIRIT grant number 2009SGR 410.