# On Coxeter recurrences 

Anna Cima*, Armengol Gasull ${ }^{1}$ and Francesc Mañosas ${ }^{2}$<br>Department de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

(Received 7 January 2011; final version received 11 February 2011)
An interesting family of recurrences of order $n \geq 2$, which are globally $(n+3)$ periodic was introduced by Coxeter in 1971. We prove a surprising property of this family: 'all' the possible geometrical behaviours that linear real $(n+3)$-periodic recurrences can have are present inside the Coxeter recurrences.
2000 Mathematics Subject Classification: 39A05; 39A20; 39B12
Keywords: globally periodic difference equations; recurrences; Coxeter difference equations; linearization

## 1. Introduction and main result

Although recently globally periodic recurrences have attracted the interest of many researchers, see for instance $[1-5,7,8]$ and the references there in, an interesting family introduced by Coxeter in 1971, see [6], is rarely referenced.

For each natural number $n \geq 2$, Coxeter proved that the recurrences

$$
\begin{equation*}
x_{j+n}=1-\frac{x_{j+n-1}}{1-\frac{x_{j+n-2}}{1-\left(\left(x_{j+n-3}\right) /\left(1-\cdots\left(x_{j+1} /\left(1-x_{j}\right)\right)\right)\right)}}:=f_{n}\left(x_{j}, x_{j+1}, \ldots, x_{j+n-1}\right) \tag{1}
\end{equation*}
$$

are globally $(n+3)$-periodic, that is for any admissible set of initial conditions, $x_{j+n+3}=x_{j}$, for all $j \geq 0$. For instance, for $n=2,3$, the recurrences are

$$
x_{j+2}=1-\frac{x_{j+1}}{1-x_{j}}, \quad \text { and } \quad x_{j+3}=1-\frac{x_{j+2}}{1-\frac{x_{j+1}}{1-x_{j}}}=\frac{1-x_{j}-x_{j+1}-x_{j+2}+x_{j} x_{j+2}}{1-x_{j}-x_{j+1}}
$$

respectively. It is easy to see that for $n=2$, in the new variables $u_{j}=x_{j}-1$, it corresponds to the well-known 5-periodic Lyness recurrence

$$
u_{j+2}=\frac{1+u_{j+1}}{u_{j}}
$$

[^0]
[^0]:    *Corresponding author. Email: cima@mat.uab.cat
    ISSN 1023-6198 print/ISSN 1563-5120 online
    (C) 2012 Taylor \& Francis
    http://dx.doi.org/10.1080/10236198.2011.564576
    http://www.tandfonline.com

