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1. Introduction and main results

Abel equations of the form

ṙ = dr

ds
= A(s)r3 + B(s)r2, (1)

with A and B either polynomials or trigonometric polynomials are a subject of increasing interest; see
[6–11,16,25]. One of the main reasons is their relation with the center-focus problem and the second
part of the Hilbert Sixteenth problem. Both questions deal with the number of periodic orbits of
planar polynomial systems; see [2,4,15,17,21,24]. In particular, given a < b, the center-focus problem
in this setting reduces to find conditions on A and B such that all the solutions r = r(s, r0), with
initial condition r(a, r0) = r0 and |r0| small enough, satisfy r(a, r0) = r(b, r0). When this happens it is
said that the Abel equation has a center at the origin, r = 0. The case where A and B are trigonometric
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polynomials and a = 0 and b = 2π is the motivating problem and is the only one that we will consider
in this trigonometric setting. On the other hand, when A and B are polynomials the values a and b
can be arbitrarily taken.

A sufficient condition for (1) to have a center at the origin is introduced in [4]. When there exist
C1-functions A1, B1 and u, with u(a) = u(b), such that

Ã(s) :=
s∫

a

A(z)dz = A1
(
u(s)

)
and B̃(s) :=

s∫
a

B(z)dz = B1
(
u(s)

)

it is said that Ã and B̃ form a composition pair. It is well known that the corresponding Abel equation
has a center. From now on, when there is no confusion we will write

∫ s
a A(z)dz simply as

∫ s
a A.

Recently we have proved the following result, where N denotes the set of all non-negative integer
numbers and by N+ the positive ones.

Theorem 1. (See [14].) Let A and B real polynomials or trigonometric polynomials and a < b. Moreover in the
later case a = 0,b = 2π . The following statements are equivalent:

(i) For all i, j ∈ N it holds that
∫ b

a B = ∫ b
a Ãi B̃ j A = 0.

(ii) For all i, j ∈ N it holds that
∫ b

a A = ∫ b
a Ãi B̃ j B = 0.

(iii) The functions Ã and B̃ form a composition pair.
(iv) For all i, j ∈ N it holds that

∫ b
a Ãi B̃ j A = ∫ b

a Ãi B̃ j B = 0.

In [14] it is also shown the equivalence among these conditions and a type of persistence by
perturbations of the center of the associated Abel equation. We notice that in the polynomial case a
stronger result than the equivalence between (i) (or (ii)) with (iv) was already proved in [23]. More
concretely, instead of item (i) it is proved that it suffices for Ã and B̃ to form a composition pair that
the given integrals vanish for all j � 0 and all 0 � i � μa +μb , where μa (resp. μb) is the multiplicity
of a (resp. b) as a zero of B̃ .

The quantities
∫ b

a Ãi B̃ j A and
∫ b

a Ãi B̃ j B , i, j ∈ N are called double moments of A and B . The above
result shows that they provide a way, computing infinitely many double moments, of characterizing
when a couple of functions A and B form a composition pair. It is worth to comment that these
moments have been introduced in [5,13,25] because it has been shown that the cancellation of all
the usual moments:

∫ b
a B̃i A and

∫ b
a Ãi B , i ∈ N, is not enough for characterizing when A and B form a

composition pair; see [13,22].
Notice that, given a and b and fixing the degrees of A and B , the double moments are polynomial

expressions in the coefficients of A and B . In view of Theorem 1, the composition pairs are charac-
terized as the common zeros of these infinitely many polynomials. Using the Hilbert’s basis Theorem
we know that finitely many of them suffice to characterize when Ã and B̃ form a composition pair.
Unfortunately Hilbert’s result is not constructive and in general an explicit bound of the number of
needed polynomials is not known.

The aim of this paper is to give this bound for our particular problem. Concretely, we will provide
an explicit bound of the number of double moments that have to vanish to know when a given a
couple A and B forms a composition pair.

Observe the parallelism between the problem that we have solved and the detection of non-
degenerated centers for planar polynomial vector fields of a given degree. Similarly that in our
problem, the centers are characterized by the cancellation of the Lyapunov quantities, which are also
polynomials in the coefficients of the system. Again the Hilbert’s basis Theorem ensures that only
finitely many of them are needed. Nevertheless, even for cubic vector fields this number is nowadays
unknown.
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We state and prove separately our results for the trigonometric and polynomial cases. From now
one, we will write the time s = t in the polynomial case and s = θ in the trigonometric one. Recall
moreover that in this later situation a = 0 and b = 2π .

Let R[x] be the ring of polynomials with real coefficients and given A ∈ R[x] we denote by δA
its degree. Similarly we introduce R[x, y] as the ring of polynomials in two variables, also with real
coefficients. Our first result is:

Theorem 2. Given A, B ∈ R[x] with max(δA, δB) = n the following statements are equivalent:

(i) For all i, j ∈ N satisfying i + j � 2n − 3,
∫ b

a Ãi B̃ j A = ∫ b
a B = 0.

(ii) For all i, j ∈ N satisfying i + j � 2n − 3,
∫ b

a Ãi B̃ j B = ∫ b
a A = 0.

(iii) The polynomials Ã and B̃ form a composition pair.
(iv) For all i, j ∈ N,

∫ b
a Ãi B̃ j A = ∫ b

a Ãi B̃ j B = 0.

All the known centers for Abel equations (1) with A and B polynomials are such that Ã and B̃
form a composition pair. If there were no other type of centers the above result would provide a
finite and explicit number of conditions to solve the center-focus problem in this setting. This would
be very interesting because, similarly that for planar vector fields, given the degrees of A and B and
computing a kind of Lyapunov quantities, see [4], it can be proved that only finitely many polynomials
relations, involving the coefficients of A and B , have to vanish to characterize the centers of (1). As in
the case of planar systems there is no explicit upper bound for this number of conditions.

We will denote by Rt[θ] the ring of trigonometric polynomials with real coefficients. Given
A ∈ Rt[θ] we write δA for the degree of the Fourier series corresponding to A, see also Lemma 10.
When A is not a constant we will say that τ is the minimal period of A, if τ > 0 is the smallest posi-
tive number such that A(θ +τ ) = A(θ) for all θ ∈ R. It is easy to see that τ = 2π/m, for some m ∈ N+ .
Notice that if τ = 2π/m then m is a divisor of δA. Given A, B ∈ Rt[θ], with minimal periods 2π/m1
and 2π/m2, respectively, we will say that A and B have minimal common period 2π/gcd(m1,m2).
We prove:

Theorem 3. Given A, B ∈ Rt[θ] with max(δA, δB) = n and minimal common period 2π/k, k ∈ N+ , the
following statements are equivalent:

(i) For all i, j ∈ N satisfying i + j � 4n/k − 3,
∫ 2π

0 Ãi B̃ j A = ∫ 2π
0 B = 0.

(ii) For all i, j ∈ N satisfying i + j � 4n/k − 3,
∫ 2π

0 Ãi B̃ j B = ∫ 2π
0 A = 0.

(iii) Ã and B̃ form a composition pair.
(iv) There exists 0 �= S ∈ R[x, y] with δS � 2n/k − 1 such that S( Ã, B̃) = 0.
(v) For all i, j ∈ N,

∫ 2π
0 Ãi B̃ j A = ∫ 2π

0 Ãi B̃ j B = 0.

Contrary to what happens for the polynomial case it is well known that there are centers for the
trigonometric Abel equation (1) with Ã and B̃ not forming a composition pair; see for instance [1,3,
13]. In any case, centers of this type are important because they are persistent under some particular
perturbations and so they seem to be the biggest class of centers for trigonometric Abel equations.

This is the first time that an effective method involving finitely many computations is given for
knowing when a couple of trigonometric polynomials or polynomials form a composition pair. This
was not the case using Theorem 1 or the results of [12,23], because infinitely many conditions have
to be checked. Indeed, given a couple A and B either using one of the items (i)–(ii) of Theorem 2 or 3
or item (iv) of Theorem 3 it is easy to check if they form a composition pair. Moreover, notice that
the approach given in item (iv) of Theorem 3 is also new.

As we will see, although the proofs for the polynomial and the trigonometrical polynomial cases
share many points there is a main difference between the subfields of quotients associated to both
families of functions, see Theorems 4 and 11. This difference makes the proofs different.
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2. The polynomial case

We will write K to represent either R or C. Then K[x] denotes the set of polynomials with coef-
ficients in K and K(x) its corresponding quotient field. Given p,q ∈ K(x), we denote by K(p) (resp.
K(p,q)) the smallest subfield of K(x) containing p (resp. p and q).

The next result, proved in [13], is a consequence of Lüroth’s Theorem.

Theorem 4. Let L be a subfield of R(x) containing a non-constant polynomial. Then L = R(p) for some
polynomial p. Moreover, if a polynomial m ∈ L then m = f (p) for some polynomial f .

We will say that p,q ∈ K[x] are dependent if there exist u, r, s ∈ K[x] with δu > 1 such that p(x) =
r(u(x)) and q(x) = s(u(x)). We will say that p,q ∈ K[x] are independent if they are not dependent.

In view of the above theorem it is clear that p,q ∈ K[x] are dependent if and only if K(p,q) =
K(u) for some u ∈ K[x] with δu > 1. Reciprocally, p,q ∈ K[x] are independent if and only if K(p,q) =
K(x). Note that this last condition is equivalent to the existence of polynomials R, S ∈ K[x, y] such
that x = R(p(x),q(x))

S(p(x),q(x)) . Then if p,q ∈ R[x] are independent then they are also independent as elements
of C[x].

Lemma 5. Let p,q ∈ R[x] be dependent with max(δp, δq) = n. Then there exists a polynomial 0 �= S ∈ R[x, y]
with δS < n − 1 such that S(p,q) = 0.

Proof. Consider the equation

xS
(

p(x),q(x)
) = R

(
p(x),q(x)

)
,

where the coefficients of the polynomials R, S ∈ R[x, y] are the unknowns and max(δR, δS) < n − 1.
From this equation we obtain a homogeneous linear system of (n − 2)n + 2 equations with (n − 1)n
unknowns. So it has non-trivial solutions. Let R1 and S1 be a non-trivial one. If S1(p,q) �= 0 then
we obtain x = R1(p(x),q(x))

S1(p(x),q(x)) . Therefore R(p,q) = R(x) which implies that p and q are independent, in
contradiction with our hypothesis. So S1(p,q) = 0 as we want to prove. �
Proposition 6. Let p,q ∈ R[x] be independent with max(δp, δq) = n and let 0 �= S ∈ R[x, y] be such that
S(p,q) = 0. Then δS > n − 1.

Proof. First we decompose S(x, y) = ∏k
i=1 Si(x, y), in irreducible factors on C[x, y]. Clearly for some

j ∈ {1, . . . ,k}, S j(p,q) = 0. If we show that δS j = n then the proposition will follow.
To prove this, let V ⊂ C2 be the affine variety associated to S j , that is

V = {
(x, y) ∈ C2: S j(x, y) = 0

}
,

and consider the morphism

φ : C −→ V ,

given by φ(t) = (p(t),q(t)).
We claim that if an irreducible algebraic plane curve is parameterized through a pair of indepen-

dent polynomials, then any regular point on the curve has associated a unique value of the parameter.
To prove the claim, notice first that the morphism φ extends to a morphism φ between the projec-

tive complex line (that we denote by P1) and the closure of φ(C) on the projective complex plane.
Since S j is irreducible, this closure is the projective curve associated to S j that we denote by V .
Therefore we have a morphism of varieties

φ : P1 −→ V .
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Since V has a polynomial parametrization, V is a rational curve having a unique point at infinity, r,
which is the image by φ of r, the infinity point of P1. Let V̂ be the desingularization of V . Since V is
rational and non-singular it follows that V̂ = P1; see for instance [18,20]. By the universal property
of the desingularization we know that there exists a morphism φ̂ :P1 −→ V̂ such that φ = π ◦ φ̂, i.e.
the following diagram

V̂

π

P1

φ̂

φ

V

= P1

commutes, being π the projection between V̂ and V ; see again [18,20]. Thus, if we denote by
r̂ = φ̂(r), we have that r̂ is the only point in P1 verifying that π( r̂ ) = r. Hence φ̂ can be viewed
as a map from P1 to P1 that sends the infinity point of P1 to itself and no other points are sent to
infinity. Thus, it follows that the restriction of φ̂ to the affine local chart, φ̂a , is a polynomial.

Similarly, the restriction of π to C, πa , has polynomial components: πa(t) = ( f (t), g(t)) with
f , g ∈ C[t].

Hence

φ(t) = (
p(t),q(t)

) = πa
(
φ̂a(t)

) = (
f
(
φ̂a(t)

)
, g

(
φ̂a(t)

))
.

Since, by hypothesis, p and q are independent it follows that the degree of the polynomial φ̂a is one.
On the other hand, since π is the projection of the normalized variety V̂ over V , for almost

all x ∈ V we have that π−1(x) is only one point. Thus the topological degree of π is one. So the
topological degree of φ coincides with the topological degree of φ̂ that also coincides with its degree
as polynomial. So we conclude that the topological degree of φ is one and the claim follows.

Lastly note that δS j is equal to the number of intersections of the affine variety V with a generic
straight line ax + by + c = 0. Since the parametrization p(t),q(t) has topological degree one it passes
only one time for almost all points of V . Hence this number is equal to the number of complex values
of t satisfying ap(t) + bq(t) + c = 0 which is also equal to the max(δp, δq) = n. So δS j = n and the
result follows. �
Proposition 7. Let p,q ∈ R[x] be such that max(δp, δq) = n. Then p, q are dependent if and only if there
exists 0 �= S ∈ R[x, y] with δS < n − 1 such that S(p,q) = 0. Moreover if they are independent then there
exist polynomials U , V ∈ R[x, y] with max(δU , δV ) < n − 1 such that x = U (p(x),q(x))

V (p(x),q(x)) .

Proof. The first statement follows from Lemma 5 and Proposition 6.
Now let p,q ∈ R[x] be independent. Arguing as in Lemma 5, consider the linear system determined

by the equality U (p(x),q(x)) = xV (p(x),q(x)) with δU = δV = n − 2, which has non-trivial solutions.
Let U1, V 1 be one of these solutions. From Proposition 6 we know that V 1(x, y) �= 0. Hence

x = U1(p(x),q(x))

V 1(p(x),q(x))

as we wanted to prove. �
Proposition 8. Let A, B in R[x], with max(δA, δB) = n and satisfying

b∫
a

Ãi B̃ j A =
b∫

a

B = 0 for all i, j � 0 such that i + j � 2n − 3.
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Then there exists u ∈ R[x] such that R( Ã, B̃) = R(u) and u(a) = u(b). In particular

b∫
a

Ãi B̃ j A =
b∫

a

B = 0 for all i, j � 0.

Proof. First of all note that integrating by parts we obtain that

b∫
a

Ãi B̃ j B =
b∫

a

A = 0,

for all i, j � 0 satisfying i + j � 2n − 3. By Theorem 4, since Ã, B̃ are polynomials, we have that
R( Ã, B̃) = R(u) with u ∈ R[x]. To prove the implication it suffices to show that u(a) = u(b). Clearly,
u is a non-constant polynomial. We know that

u = P ( Ã, B̃)

Q ( Ã, B̃)
, (2)

for some P , Q ∈ R[x, y]. Moreover Ã = r(u) and B̃ = s(u) for some polynomials r, s with max(δr, δs) �
n + 1. Hence

u = P (r(u), s(u))

Q (r(u), s(u))
,

or equivalently,

x = P (r(x), s(x))

Q (r(x), s(x))
.

Therefore r and s are independent and by Proposition 7 we can choose P and Q such that
max(δP , δQ ) � n − 1.

Derivating (2) we obtain

u′ = (Q ∂1 P − P ∂1 Q )( Ã, B̃)A + (Q ∂2 P − P ∂2 Q )( Ã, B̃)B

Q 2( Ã, B̃)
.

Since Ã and B̃ are polynomial functions of u we have that

Q 2( Ã, B̃) = Q 2(r(u), s(u)
) = N ′(u),

for some polynomial N . Thus

N ′(u)u′ = Q 2( Ã, B̃)u′ = (Q ∂1 P − P∂1 Q )( Ã, B̃)A + (Q ∂2 P − P∂2 Q )( Ã, B̃)B.

Integrating both sides of this equality on [a,b] and using that all the double moments of order
at most 2n − 3 vanish we obtain that N(u(b)) − N(u(a)) = 0. If u(a) = u(b) we are done. Assume, to
arrive a contradiction, that u(a) �= u(b) and denote by I the interval with extremes these two values.
Since N ′(u) = Q 2( Ã, B̃) � 0 we have that N ′(x) � 0 for all x in I . Therefore N is increasing on I and
N(u(b)) �= N(u(a)), given the desired contradiction. �



Author's personal copy

A. Cima et al. / J. Differential Equations 255 (2013) 339–350 345

Proof of Theorem 2. (i) ⇒ (ii) ⇒ (iii). These implications are given in Proposition 8.
(iii) ⇒ (iv). It follows by direct computations.
(iv) ⇒ (i). This implication is obvious. �

3. The trigonometric case

We will denote by Rt(θ) the quotient field of Rt[θ]. In fact Rt[θ] = R[sin θ, cos θ], Rt(θ) =
R(sin θ, cos θ) and it is well known that Rt(θ) is isomorphic to R(x) by means of the map Φ :
Rt(θ) −→ R(x) defined by

Φ(sin θ) = 2x

1 + x2
and Φ(cos θ) = 1 − x2

1 + x2
. (3)

In particular, this morphism satisfies that

Φ

(
tan

(
θ

2

))
= Φ

(
sin θ

1 + cos θ

)
= x.

Next lemma characterizes the image by Φ of the set of trigonometric polynomials.

Lemma 9. (See [13].) It holds that

Φ
(
Rt[θ]) =

⋃
m�0

{
r(x)

(1 + x2)m
: r ∈ R[x] and δr � 2m

}
.

Recall that the degree of a trigonometric polynomial has been introduced as the degree of its
Fourier series. Next result gives an equivalent interpretation of the degree.

Lemma 10. Set p ∈ Rt[θ] with δp = n. Then

Φ
(

p(θ)
) = r(x)

(1 + x2)n
with gcd

(
r(x),

(
1 + x2)) = 1.

Proof. The Fourier series of p is

p(θ) =
n∑

k=−n

akekθ i, a−k = ak ∈ C and an �= 0.

Equivalently,

Φ
(

p(θ)
) =

n∑
k=1

ak

(
1 − x2

1 + x2
− 2x

1 + x2
i

)k

+ a0 +
n∑

k=1

ak

(
1 − x2

1 + x2
+ 2x

1 + x2
i

)k

=
∑n

k=1 ak(1 − x2 − 2xi)k(1 + x2)n−k + a0(1 + x2)n

(1 + x2)n

+
∑n

k=1 ak(1 − x2 + 2xi)k(1 + x2)n−k

(1 + x2)n
=: r(x)

(1 + x2)n
.
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To end the proof we need to show that gcd(r(x), (1 + x2)) = 1. This follows because r(i) =
4nan �= 0. �

We also will use the following characterization of some subfields of R(θ).

Theorem 11. (See [14,19].) Let L be a subfield of Rt(θ) containing a non-constant trigonometric polynomial.
Then either L = R(tan(kθ/2)) for some k ∈ N+ or L = R(p(θ)) for some trigonometric polynomial p. More-
over, when L = R(p(θ)), if q ∈ L is a trigonometric polynomial then q(θ) = f (p(θ)) for some polynomial
f ∈ R[x].

Any p ∈ Rt[θ] can be thought as a real periodic function. Its minimal period is a real number
2π/k, for some k ∈ N+ , and then p can be written as a real polynomial in sin(kθ), cos(kθ). Notice
that k divides δp. From now on for k ∈ N+ we will denote by Rt[kθ] the set of real trigonometric
polynomials in kθ that is R[cos(kθ), sin(kθ)]. Also we denote by Rt(kθ) its quotient field. Clearly
Rt(kθ) = R(tan(kθ/2)).

Given two trigonometric polynomials p,q we will say that they form a composition pair if R(p,q) =
R(u) for some trigonometric polynomial u. In view of Theorem 11 then there exist p̂, q̂ ∈ R[x] such
that p(θ) = p̂(u(θ)) and q(θ) = q̂(u(θ)).

We will say that p,q ∈ Rt[θ] are k-independent if R(p(θ),q(θ)) = R(tan(kθ/2)). When p,q ∈ Rt[θ]
are 1-independent we simply say that they are independent. Notice that in this case R(Φ(p),Φ(q)) =
R(x), where Φ is given in (3).

Observe that given a pair of polynomials then either they form a composition pair or they are
k-independent for some k � 1.

From these definitions and the previous theorem we obtain next result.

Lemma 12. The following assertions hold:

(i) Rt[θ] ∩ R(tan(kθ/2)) = Rt[kθ].
(ii) If p1, p2 ∈ Rt[θ] have minimal common period 2π/k, there exist p̂1, p̂2 ∈ Rt[θ] such that the minimal

common period of p̂1, p̂2 is 2π , p̂i(kθ) = pi(θ) and δ( p̂i) = δpi/k for i = 1,2. Moreover, p1 and p2 form
a composition pair if and only if the same holds for p̂1, p̂2 . Equivalently, p1 and p2 are k-independent if
and only if p̂1, p̂2 are independent.

Proof. Set p ∈ Rt[θ] ∩ R(tan(kθ/2)). Then p is a rational function in tan(kθ/2) that implies that its
minimal period is 2π/(sk), for some s ∈ N+ . Therefore p ∈ Rt[skθ] ⊂ Rt[kθ]. This proves the first
assertion.

Set p1, p2 ∈ Rt[θ] with minimal common period 2π/k. Both polynomials can be written as Fourier
polynomials in kθ . For instance, p1(θ) = ∑n

j=0 a j cos( jkθ) + b j sin( jkθ). Thus we can take p̂1(θ) =∑n
j=0 a j cos( jθ) + b j sin( jθ) and similarly for p2.
If p1 and p2 are k-independent, there exist R, S ∈ R[x, y] such that

tan

(
kθ

2

)
= R(p1(θ), p2(θ))

S(p1(θ), p2(θ))
= R( p̂1(kθ), p̂2(kθ))

S( p̂1(kθ), p̂2(kθ))
.

Therefore p̂1, p̂2 are independent.
Conversely, if p1 and p2 form a composition pair, R(p1, p2) = R(u) for some u ∈ Rt[kθ]. Let û ∈

Rt[θ] such that u(θ) = û(kθ). Thus R( p̂1, p̂2) = R( û ) and the result follows. �
Proposition 13. Let p,q ∈ Rt[θ] be independent with max(δp, δq) = n and let 0 �= S ∈ R[x, y] be such that
S(p,q) = 0. Then δS > 2n − 1.

Proof. Arguing as in the proof of Proposition 6 it suffices to prove that δS = 2n assuming that S is
irreducible. Following also that proof we can suppose that the following diagram commutes
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V̂

π

P1

φ̂

φ

V

= P1

where V ⊂ C2 is the affine variety associated to S , that is

V = {
(x, y) ∈ C2: S(x, y) = 0

}
,

the morphism φ : C −→ V is given by

φ(t) =
(

r(t)

(1 + t2)n
,

s(t)

(1 + t2)n

)
, where

r(t)

(1 + t2)n
= Φ

(
p(θ)

)
and

s(t)

(1 + t2)n
= Φ

(
q(θ)

)
,

and φ, φ̂, V and V̂ are defined as in that proof and Φ is given in (3). Notice that again V̂ admits a
rational parametrization and is non-singular. Therefore V̂ =P1. Since the maps φ̂ and π are rational
maps we obtain

(
r(t)

(1 + t2)n
,

s(t)

(1 + t2)n

)
= φ(t) = πa

(
φ̂a(t)

) = (
f
(
φ̂a(t)

)
, g

(
φ̂a(t)

))
, (4)

for some rational maps f , g ∈ R(t). Here φ̂a and πa are the expressions of φ̂ and π in the corre-
sponding affine charts.

Recall that by definition of the independence of p and q,

R(t) = R
(

r(t)

(1 + t2)n
,

s(t)

(1 + t2)n

)
,

and by (4), R(t) ⊂ R( φ̂a(t)). As a consequence, φ̂a(t) is a Möbius map, i.e. φ̂a(t) = v(t)
w(t) with v, w ∈

R[t], gcd(v, w) = 1 and max(δv, δw) = 1. So the topological degree of φ̂a(t) is one.
On the other hand since π is the projection of the normalized variety V̂ over V for almost all

x ∈ V we have that π−1(x) is only one point. Thus the topological degree of π is one. So we conclude
that the topological degree of φ is one. The same argument used in the proof of Proposition 6 let us
to say that the topological degree of φ(t) is also one.

Lastly note that δS is equal to the number of intersections of the affine variety V with a generic
straight line ax + by + c = 0. Since the parametrization φ(t) = (

r(t)
(1+t2)n ,

s(t)
(1+t2)n ) has topological degree

one it passes only one time for almost all points of V . Therefore this number is equal to the number
of complex values of t satisfying a r(t)

(1+t2)n + b s(t)
(1+t2)n + c = 0 which is 2n. So δS = 2n as we wanted to

prove. �
Proposition 14. Let p,q ∈ Rt[θ] be such that max(δp, δq) = n. If they are k-independent then there exist
polynomials R, S ∈ R[x, y] with max(δR, δS) � 2n/k − 1 such that

tan

(
kθ

2

)
= R(p(θ),q(θ))

S(p(θ),q(θ))
.
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Proof. We prove first the case k = 1, i.e. when p and q are independent. Set r(t)
(1+t2)n = Φ(p(θ)) and

s(t)
(1+t2)n = Φ(q(θ)), where Φ is given in (3), and consider the equation

R

(
r(t)

(1 + t2)n
,

s(t)

(1 + t2)n

)
= t S

(
r(t)

(1 + t2)n
,

s(t)

(1 + t2)n

)

where R, S ∈ R[x, y] and max(δR, δS) = 2n − 1. Thus, we obtain a homogeneous linear system of
equations with unknowns the coefficients of R and S . This system has 4n2 − 2n + 1 equations and
4n2 + 2n unknowns so it has non-trivial solutions. If R and S is a non-trivial one the result follows
from Proposition 13 because δS < 2n implies S(p,q) �= 0.

Consider now the case k > 1. First of all note that if p,q ∈ Rt[θ] are k-independent then p,q ∈
Rt [kθ], that is they are polynomials in cos(kθ) and sin(kθ). This follows from the fact that since
p,q ∈ R(tan kθ/2) they are 2π/k-periodic trigonometric polynomials.

By Lemma 12 we can write p(θ) = p̂(kθ) and q(θ) = q̂(kθ), with δ p̂ = δp/k and δ̂q = δq/k. More-
over p̂ and q̂ are independent and max(δ p̂, δ̃q) = n/k. Then the result follows by using that it holds
the case k = 1. �
Proposition 15. Let p1, p2 ∈ Rt[θ] with max(δp1, δp2) = n and minimal common period 2π/k. Then p1 , p2
form a composition pair if and only if there exists 0 �= S ∈ R[x, y] with δS < 2n/k such that S(p1, p2) = 0.

Proof. Let p̂1, p̂2 be the trigonometric polynomials given by Lemma 12 such that p̂i(kθ) = pi(θ) and
δ p̂i = n/k, i = 1,2.

If p1 and p2 do not form a composition pair then they are k-independent and, by Lemma 12,
p̂1 and p̂2 are independent. By Lemma 13 it follows that S( p̂1, p̂2) �= 0 for all S ∈ R[x, y] with δS <

2n/k. Thus we get S(p1(θ), p2(θ)) = S( p̂1(kθ), p̂2(kθ)) �≡ 0 for all S ∈ R[x, y] with δS < 2n/k.
Conversely, if p1 and p2 form a composition pair, again by Lemma 12, p̂1 and p̂2 form also a

composition pair. Arguing as in the proof of Proposition 14 we consider the equation

R
(
Φ

(
p̂1(θ)

)
,Φ

(
p̂2(θ)

)) = t S
(
Φ

(
p̂1(θ)

)
,Φ

(
p̂2(θ)

))
,

where R, S ∈ R[x, y], max(δR, δS) = 2n/k − 1 and Φ is given in (3). Thus we obtain a linear system
with non-trivial solutions. Let R , S be a non-trivial solution. We claim that S( p̂1, p̂2) = 0. If not, we
will have

R(Φ( p̂1(θ)),Φ( p̂2(θ)))

S(Φ( p̂1(θ)),Φ( p̂2(θ)))
= t,

that implies

R( p̂1(θ), p̂2(θ))

S( p̂1(θ), p̂2(θ))
= tan

(
θ

2

)
.

This last equality contradicts the fact that p̂1 and p̂2 form a composition pair. So S( p̂1, p̂2) = 0.
Therefore S(p1(θ), p2(θ)) = S( p̂1(kθ), p̂2(kθ)) = 0 and the proof follows. �
Proposition 16. Let A, B be in Rt[θ] with max(δA, δB) = n and minimal common period 2π/k, k ∈ N+ .
Assume that

2π∫
0

Ãi B̃ j A =
2π∫
0

B = 0 for all i, j � 0 satisfying i + j � 4n/k − 3.
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Then Ã and B̃ form a composition pair. In particular

2π∫
0

Ãi B̃ j A =
2π∫
0

Ãi B̃ j B = 0 for all i, j � 0.

Proof. First of all note that integrating by parts we obtain

2π∫
0

Ãi B̃ j B =
2π∫
0

A = 0 for all i, j � 0 satisfying i + j � 4n/k − 3.

Consider the field L := R( Ã, B̃). Since
∫ 2π

0 A = ∫ 2π
0 B = 0, the functions Ã and B̃ are trigonometric

polynomials. Therefore we can apply Theorem 11 and L = R(p), with p either a trigonometric poly-
nomial or p = tan(kθ/2) for some k > 0. Notice that if we prove that the second possibility does not
occur then we are done.

Assume that the second possibility happens. Then

P ( Ã(θ), B̃(θ))

Q ( Ã(θ), B̃(θ))
= tan

(
kθ

2

)
,

for some P , Q ∈ R[x, y] and k ∈ N+ . By Proposition 14 we can choose P , Q such that max(δP , δQ ) �
2n/k − 1. Derivating with respect to θ we get

(Q ∂1 P − P∂1 Q )( Ã(θ), B̃(θ))A(θ) + (Q ∂2 P − P∂2 Q )( Ã(θ), B̃(θ))B(θ)

Q 2( Ã(θ), B̃(θ))

= k

2

(
1 + tan2

(
kθ

2

))
.

So

(Q ∂1 P − P∂1 Q )
(

Ã(θ), B̃(θ)
)

A(θ) + (Q ∂2 P − P∂2 Q )
(

Ã(θ), B̃(θ)
)

B(θ)

= k

2

(
P 2 + Q 2)( Ã(θ), B̃(θ)

)
.

Note that the integral in the interval [0,2π ] of the left side of this equality is zero by our hypothe-
ses, because it is the sum of a finite number of integrals of monomials of the form Ãi B̃ j A or Ãi B̃ j B
with i + j � 2(2n/k − 1) − 1. On the other hand the right side of the equality is a positive continuous
function. This gives the desired contradiction. �
Proof of Theorem 3. (i) ⇒ (ii) ⇒ (iii). These two implications follow from Proposition 16.

(iii) ⇒ (iv). It is proved in Proposition 15.
(iv) ⇒ (v). Using again Proposition 15 we get that (iv) ⇒ (iii) and the proof that (iii) ⇒ (v) follows

by simple computations.
(iv) ⇒ (v). This last implication is obvious. �
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