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Abstract

This paper studies non-autonomous Lyness type recurrences of the form xn+2 =

(an +xn+1)/xn, where {an} is a k-periodic sequence of positive numbers with primitive

period k. We show that for the cases k ∈ {1, 2, 3, 6} the behavior of the sequence {xn}
is simple (integrable) while for the remaining cases satisfying this behavior can be much

more complicated (chaotic). We also show that the cases where k is a multiple of 5

present some different features.
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1 Introduction and main results

The dynamical study of the Lyness difference equation ([2, 5, 16, 28]) and its generalizations

to higher order Lyness type equations ([4, 7, 8, 18]), or to difference equations with periodic
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coefficients ([11, 17, 22, 23, 25]), has been the focus of an active research activity in the

last two decades. In more recent dates, Lyness type equations have also been approached

using different points of view: from algebraic geometry ([6, 15, 27]) to the theory of discrete

integrable systems ([10, 19, 21, 25, 26]).

This paper deals with the problem of the integrability and non-integrability of non-

autonomous planar Lyness difference equations of the form

xn+2 =
an + xn+1

xn
, (1)

where {an} is a cycle of k positive numbers, i.e. an+k = an for all n ∈ N, being k the

primitive period and we consider positive initial conditions x1 and x2. As we will see,

the behavior of the sequences {xn} can be essentially different according to whether k ∈
{1, 2, 3, 6}, k is a multiple of 5 or it is not.

In this section we summarize our main results on (1) in terms of k. We also give

an account of the tools that we have developed for this study that we believe might be

interesting by themselves. We start by introducing the notations and definitions used in

the paper.

1.1 Notations and definitions

Given a periodic sequence {an} of primitive period k we will say that its rank is m if

Card{a1, a2, . . . , ak} = m ∈ N.

The values a1, . . . , ak will be usually called parameters. In our context the recurrence (1)

is called persistent if for any sequence {xn} there exist two real positive constants c and C,

which depend on the initial conditions, such that for all n, 0 < c < xn < C <∞.
For each k, the composition maps are

Fak,...,a2,a1 := Fak ◦ · · · ◦ Fa2 ◦ Fa1 (2)

where each Fai is defined by

Fai(x, y) =

(
y,
ai + y

x

)

and a1, a2, . . . , ak are the k elements of the cycle. When there is no confusion, for the sake

of shortness, we also will use the notation F[k] := Fak,...,a2,a1 . Note that these maps are

birational maps and are always well-defined in the open invariant set Q+ = {(x, y) : x >

0, y > 0} ⊂ R2. Moreover

(x1, x2)
Fa1−−→ (x2, x3)

Fa2−−→ (x3, x4)
Fa3−−→ (x4, x5)

Fa4−−→ (x5, x6)
Fa5−−→ · · ·
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and in general,

F[k](x1, x2) = (xk+1, xk+2).

There are two concepts coexisting in this context, the non-autonomous invariants and

the first integrals, that we will use in this paper. Given a difference equation of the form (1),

a non-autonomous invariant is a function V (x, y, n), such that

V (xn+1, xn+2, n+ 1) = V (xn, xn+1, n),

for all initial conditions and all n ∈ N. On the other hand, when the difference equation

has k-periodic coefficients a first integral is a function H, which is a first integral for the

discrete dynamical system generated by F[k], that is H(F[k](x, y)) = H(x, y), for all points

in an open set. In terms of the recurrence

H(xn+k, xn+k+1) = H(xn, xn+1),

for all initial conditions (xn, xn+1). We will relate both concepts in Section 3.

Two analytic functions P,Q : U ⊂ C2 → C are said to be coprime if the points of the

set {(x, y) ∈ U : P (x, y) = Q(x, y) = 0} are isolated. A function H = P/Q, with P and Q

coprime, will be called a meromorphic function. A meromorphic first integral of an analytic

map F : U → C2 is a meromorphic function H = P/Q such that

P (F (x, y))Q(x, y) = P (x, y)Q(F (x, y)) for all (x, y) ∈ U .

Observe that from this definition H(F (x, y)) = H(x, y) for all points of U for which both

terms of this last equality are well-defined. When P and Q are polynomials then it is said

that H is a rational first integral. Similarly we can talk about meromorphic or rational

invariants, and in this sense we will talk about rational or meromorphic integrability.

Finally, we will say that a planar map F has structurally stable numerical chaos (SSNC)

when studying numerically several of its orbits, we observe that it presents all the features

of a non-integrable perturbed twist map, that is: many invariant curves and, between them,

couples of orbits of p-periodic points (for several values of p), half of them of elliptic type

and the other half of hyperbolic saddle type. Moreover the separatrices of these hyperbolic

saddles intersect transversally, for instance see [1, Chapter 6].

1.2 Main results

This subsection collects the general outlines of all our results about the recurrence (1), in

terms of k. Figure 1 shows some typical behaviors of the orbits of F[k]. In fact we consider

some maps G[k], which are conjugate to F[k], because the pictures are much more clear. See

Lemma 7 for the definition of G[k].
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Cases k ∈ {1,2,3,6} and other concrete integrable cases. For k ∈ {1, 2, 3} it is

already known that the recurrences (1) are persistent. Moreover, either each sequence {xn}
is periodic, with period a multiple of k or it densely fills at most k disjoint intervals of R+,

see [11]. A key point for the proof is the existence of a rational first integral for F[k]. When

k = 6 we can also prove the existence of a similar first integral (see Corollary 4) and the

persistence of recurrence (1). Moreover we are confident that the same characterization of

the sequences {xn} holds but we have only been able to prove the result when F[6] has a

unique fixed point in the first quadrant, see Lemma 12 and Proposition 17.

It is also satisfied that for any k 6= 5 there are values a1, . . . , ak, with primitive period

k and high rank, satisfying the property that all the sequences {xn} given by (1) are either

periodic, with period a multiple of k, or they densely fill at most k disjoint intervals, see

Theorem 19.

All k k = 5̇ k 6∈ {1, 2, 3, 5, 6, 10}

Figure 1: Different possible behaviors of the orbits of G[k], according to k. Other

behaviors are possible for k being a multiple of 5.

Cases k being a multiple of 5. When k is a multiple of 5 (from now on denoted by

k = 5̇), apart from the behaviors described above there appear others for an open set of

values of aj , j = 1, . . . , k and initial conditions. For instance we can find sequences {xn}
such that

lim inf
n→∞

xn = 0 and lim sup
n→∞

xn = +∞,

and others such that their adherence consists of k points, see Theorem 6. The existence

for k = 5 of values of aj , j = 1, . . . , 5, for which the sequence {xn} has the first behavior

has been already established in previous works, see [7, Example 5.43.1] or [14], but only for

very concrete initial conditions and parameters a1, . . . , a5.

Moreover in this case we can prove that for most values of the parameters the map F[k]

has no meromorphic first integral (see Theorem 20). Furthermore the phase portrait of the
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map F[k] does not always coincide with the ones found in all the rational integrable cases,

see for instance the second picture in Figure 1. In this case, apart of the celebrated Lyness

map F1 which satisfies F 5
1 = F1,1,1,1,1 = Id, there are values of the parameters a1, . . . , ak

such that Fmk

[k] = Id (see Corollary 14) and other for which the number of fixed points of

the maps is a 1-dimensional manifold, or 2, 1, or 0 points, see Lemma 12. Finally, when

k ≥ 15, there are cases presenting SSNC, see Section 6.

Cases k 6∈ {1,2,3,5,6,10}. When k ∈ {4, 7, 11, 15}, for some values of the parameters,

a1, . . . , ak, we have numerically found SSNC, see Section 6. In fact we prove in Lemma 23

that based on these examples we can obtain values a1, . . . , ak, all different, with a similar

behavior for all the remaining values of k. So for all these values of k there are situations

for which the sequence {xn} can have different behaviors to those given in the above situa-

tions. For instance there appear sequences which fill more than k intervals. Some concrete

examples for k = 4 are shown in Section 6.

Observe that as an application of our results we can show an interesting and curious

phenomena that can be understood as a kind of “chaos regularization”: Consider a map

G = F[2], which is a rationally integrable map, and a map H = F[4] which has chaotic

behavior, then both maps G ◦ H and H ◦ G are rationally integrable because are of type

F[6]. Thus G regularizes H.

Finally note that the above results show that the only cases for which recurrence (1)

can have a rational invariant for all values of the parameters a1, . . . , ak are k ∈ {1, 2, 3, 6}.

1.3 Main tools

In this subsection we present several results that we have obtained which we believe that

are interesting by themselves. Other technical results will be given in Section 2.

The first result is a necessary condition for the meromorphic integrability of planar maps

near a fixed point. Our approach follows the guidelines of Poincaré when he studied the

same problem for ordinary differential equations, see [24] and the references there in for the

approach to ordinary differential equations. In Section 5 we will apply the result below to

study the case k = 5̇.

Theorem 1. Let F : C2 → C2 an analytic map defined in U , an open neighborhood of the

origin, such that F (0, 0) = (0, 0) and DF (0, 0) is diagonalizable with eigenvalues λ and µ.

Assume that F has a meromorphic first integral H in U .

(i) If λµ 6= 0 then there exists (p, q) ∈ Z2, (p, q) 6= (0, 0), such that λpµq = 1.

(ii) If λ 6= 0 and µ = 0 then there exists n ∈ N+ such that λn = 1.
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When the map F : U ⊂ R2 → R2 is real valued and of class C2(U) the proof of Theorem 1

can be adapted following the same steps. Taking into account that in this case, when λ ∈ C
is an eigenvalue of DF (0, 0), then λ̄ is also, and we have to deal with the resonant condition

λpλ̄q = 1, we obtain the following result:

Corollary 2. Let F : U ⊂ R2 → R2 be a C2(U) map such that F (0, 0) = (0, 0) ∈ U and

DF (0, 0) is diagonalizable, with eigenvalues λ and µ. Assume that F has a meromorphic

first integral H in U .

(i) If λ, µ ∈ R, λµ 6= 0, then there exists (0, 0) 6= (p, q) ∈ Z2 such that λpµq = 1.

(ii) If 0 6= λ ∈ C \ R (hence µ = λ̄), then either |λ| = 1 or λ = |λ|eiθ and there exists

0 6= n ∈ N such that (eiθ)2n = 1.

(iii) If λ 6= 0 and µ = 0 then there exists a n ∈ N+ such that λn = 1.

The above results will be applied to prove the meromorphic non-integrability of many

cases when k = 5̇, see Theorem 20. On the other hand, next result will be the key point to

prove the existence of rational integrable cases for all k 6= 5, see Theorem 19.

For the recurrence (1) we look for non-autonomous invariants of the form

V (x, y, n) =
Φn(x, y)

xy
(3)

where

Φn(x, y) = An +Bnx+ Cny +Dnx
2 + Fny

2 +Gnx
3 +Hnx

2y + Inxy
2

+Jny
3 +Knx

4 + Lnx
3y +Mnx

2y2 +Nnxy
3 +Ony

4,

with all the sequences of positive numbers. This method is introduced in [17] and the special

form of V is inspired by this paper and the known invariant of the Lyness recurrences, see

[2, 22, 23]. We prove:

Theorem 3. If the recurrence (1) has an invariant of the form (3) then an+6 = an and

Φn(x, y) = anFn+1 + (Fn+2 + an+1Fn+1)x+ (Fn+1 + anFn)y + Fn−3x
2

+ Fny
2 + Fn−2x

2y + Fn−1xy
2, (4)

where {Fn}n satisfies that Fn+6 = Fn and an+1Fn+2 − anFn−3 = 0.

Corollary 4. (i) The non-autonomous k-periodic recurrence (1) has invariants of the form

(3) if and only if k ∈ {1, 2, 3, 6}.
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(ii) The first integrals of the maps F[k], for k ∈ {1, 2, 3, 6}, corresponding to the invari-

ants given in Theorem 3 are:

Va(x, y) =
a+ (a+ 1)x+ (a+ 1)y + x2 + y2 + x2y + xy2

xy
,

Vb,a(x, y) =
ab+ (a+ b2)x+ (b+ a2)y + bx2 + ay2 + ax2y + bxy2

xy
,

Vc,b,a(x, y) =
ac+ (a+ bc)x+ (c+ ab)y + bx2 + by2 + cx2y + axy2

xy
,

Vf,e,d,c,b,a(x, y) =
af + (a+ bf)x+ (f + ae)y + bx2 + ey2 + cx2y + dxy2

xy
.

Remark 5. Our proof of Theorem 3 does not require the sequence of parameters {an} to

be periodic.

Observe that

Va(x, y) + 2 + a =
(x+ 1)(y + 1)(a+ x+ y)

xy

is the usual first integral (invariant) of the map Fa associated to the classical Lyness recur-

rence, see for instance [2]. It is already known, see [11, 22, 23], that in the two and three

periodic cases the functions Vb,a and Vc,b,a are first integrals of the maps Fb,a and Fc,b,a,

respectively. These first integrals play a crucial role for the understanding of the recurrence

(1) when k = 2, 3, see again [11]. To the best of our knowledge the existence of a first

integral for the general non-autonomous 6-periodic case was not known. In Section 4 we

use it to describe the dynamics in this case.

Also observe that, due to the form of the invariants, all the maps F[k], for k ∈ {1, 2, 3, 6},
preserve a foliation of the plane given by biquadratic curves, which are elliptic except for

a finite number of level sets. In fact these maps are particular cases of the celebrated

QRT family of planar maps. Perhaps a further algebraic-geometric approach, like the one

presented in [15], by studying the maps induced by each F[k] on the corresponding elliptic

surface could give more information about the reason why the cases k ∈ {1, 2, 3, 6} are

special.

It is also interesting to notice that other integrable QRT maps with periodic coefficients

have been found recently [25], as well as another major family of maps: the Hirota-Kimura-

Yahagi type ones [20].

As we have already commented, it is known that for very concrete values of a1, . . . , a5

and suitable initial conditions, the behavior of {xn} is different to the ones appearing when

k ∈ {1, 2, 3} and in particular (1) is non-persistent, see [7, Example 5.43.1] or [14]. This

behavior can also be seen considering

Fa,1,1,1,1(x, y) =

(
x,

(x+ a) y

1 + x

)
.
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Since Fa,1,1,1,1(1, y) = (1, (1 + a) y/2) it is clear that for a > 1 the orbits of the points of

the form (1, y) with y 6= 0 are unbounded.

Our next result allows to establish, when k = 5̇, the non-persistence of the recurrence (1)

for many values a1, . . . , ak.

Theorem 6. Consider recurrence (1) for k = 5̇. Set

φi :=
∏

n ≡ i (mod 5)

n = 1, . . . , k

an, for i = 1, 2, . . . , 5.

If for all i = 1, . . . , 5, φi 6= 1 and

min
i=1,...,5

{φi} < 1 < max
i=1,...,5

{φi}, (5)

then (1) is non-persistent. In fact, for an open set of initial conditions, lim infn→∞(xn) = 0

and lim supn→∞(xn) = +∞.

In the above result, the open set of initial conditions for which the result holds is

sometimes the whole first quadrant Q+. For instance, this is the case when k = 5 and

a1 = a, a2 = ac, a3 = c, a4 = 1/a and a5 = 1/(ac), when a > 1 and ac > 1, because

F 1
ac
, 1
a
,c,ac,a(x, y) =

(x
a
,
y

ac

)
, (6)

is a linear map with a stable node at the origin.

The rest of the paper is organized as follows. In Section 2 we introduce some preliminary

results, while in Section 3 we prove the main tools described in Section 1.3. Section 4 is

devoted to the cases for which we find rational integrability, while in Section 5 we prove the

non-integrability results when k is a multiple of five. Finally, in Section 6 we present some

numerical evidence of chaos.

2 Preliminary results

This section contains some technical preliminary results and other known results that we

will use in the proofs given in subsequent sections.

The next result will be useful for our numerical simulations. As we will see, some

new variables allows to “observe” much better the numerical non-integrability studied in

Section 6. Its proof is straightforward.

Lemma 7. The sequence (1) in the variables zn := log(xn) becomes

zn+2 = −zn + log(an + exp(zn+1)),
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and the corresponding maps F[k] are conjugate to G[k], where G[k] = Gak,ak−1...,a2,a1 ,

Ga(x, y) = (y,−x+ log(a+ exp(y)),

and each Ga is defined on the whole plane, R2.

Observe that the maps G[k] are area preserving. In fact, it is easy to see that the maps

F[k] and G[k] satisfy the following properties:

Lemma 8. For every choice of positive numbers a1, . . . , ak,

(i) The map F[k] preserves the measure m(B) =
∫
B

1
xy dx dy or, in other words, it pre-

serves the symplectic form ω := 1
xydx ∧ dy. In consequence, it holds that

µ(F[k](x, y)) = det(DF[k](x, y))µ(x, y),

where µ(x, y) = xy.

(ii) The map G[k] preserves the Lebesgue measure n(B) =
∫
B dx dy. That is, it preserves

the canonical symplectic form dx ∧ dy. Hence, it holds that det(DG[k](x, y)) ≡ 1.

A related issue in connection with the above lemma is the fact ([6, Thm. 1]) that the

group of symplectic birational transformations of the plane (which is the group of birational

transformations of C2 which preserve the differential form ω) is generated by compositions

of the Lyness map F1 (the 5-periodic case of F[1], with a = 1); an scaling; and a map of the

form (x, y) → (xayb, xcyd) where the matrix

(
a b

c d

)
∈ SL(2,Z). This was conjectured

by Usnich in [27] and recently proved by Blanc in the above mentioned reference.

The next result allows to know the dynamics of each F[k] when the map has a smooth first

integral, its applicability to characterize the dynamics of any integrable F[k] is guaranteed

by Lemma 8.

Theorem 9 ([9]). Let U ⊂ R2 be an open set and let F : U → U be a diffeomorphism such

that it has a smooth regular first integral V : U → R and there exists a smooth function

µ : U → R+ such that for any (x, y) ∈ U , µ(F (x, y)) = det(DF (x, y))µ(x, y). Then the

following holds:

(i) If a level set Γh := {(x, y) ∈ U : V (x, y) = h} is a simple closed curve invariant

under F , then the map F restricted to Γh is conjugate to a rotation.

(ii) If Γh is diffeomorphic to an open interval curve and invariant under F , then the map F

restricted to Γh is conjugate to a translation.
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The next result proves that all the fixed points p of some map F[k], in R2 such that

Faj ,aj−1,...,a1(p), for all j ≤ k, is well defined are resonant. As we will see in Proposition 21,

the hypothesis on the maps Faj ,aj−1,...,a1(p) is unavoidable because for j = 5̇ there appear

some cancelations that make that the maps F[5j] have as fixed point p = (0, 0) and this

point can be of saddle type with arbitrary eigenvalues. In fact this property will be the key

point for our proof of non-existence of meromorphic first integrals for most F[k], k = 5̇, see

Theorem 20.

Proposition 10. Let p ∈ R2 be a fixed point of a composition map F[k] and such that

Faj ,aj−1,...,a1(p) is well defined for all j ≤ k. Then

det (DF[k](p)) = 1. (7)

Proof. From Lemma 8 we know that G[k] is a symplectic map that preserves the canonical

form, hence det(DG[k]) = 1. On the other hand, since F[k] and G[k] are conjugated maps

(Lemma 7), the Jacobian matrices of these maps at their corresponding fixed points have

the same eigenvalues and the result follows.

As a consequence of the above Proposition we have:

Corollary 11. Let p ∈ R2 be a m-periodic point of a composition map F[k] such that

Faj ,aj−1,...,a1(p) is well defined for all j ≤ km. Then

det (DFm[k](p)) = 1.

The following lemma studies the number of fixed points of F[k] for k = 4, 5, 6.

Lemma 12. (i) There is a unique fixed point of Fd,c,b,a in Q+ and it satisfies




x = y2 + (a− c)y − d,
y = x2 + (d− b)x− a.

(ii) There are either 0,1,2 or a continuum of fixed points of Fe,d,c,b,a in Q+ and they satisfy




(b− 1)x+ (1− d)y + (a− e) = 0,

cxy − (e+ x)(a+ y) + bx+ y + a = 0.

(iii) Let Ff,e,d,c,b,a ⊂ Q+ be the set of fixed points of map Ff,e,d,c,b,a and let Sf,e,d,c,b,a ⊂ Q+

be the set of singular points of its first integral Vf,e,d,c,b,a given in Corollary 4. Then

Ff,e,d,c,b,a = Sf,e,d,c,b,a and both sets coincide with the set of points of Q+ satisfying




y2 =
(f + x)(a+ bx)

e+ dx
,

x2 =
(a+ y)(f + ey)

b+ cy
.
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Moreover card(Ff,e,d,c,b,a) ≥ 1.

Proof. (i) The set of fixed points of Fd,c,b,a is exactly the set of points satisfying

Fd(Fc(Fb(Fa(x, y)))) = (x, y),

but it is not easy to handle these two equations. On the other hand, the equivalent condition

Fb(Fa(x, y)) = F−1
c (F−1

d (x, y)),

lead us to the system of the statement. Clearly both parabolas meet at a unique point

in Q+.

(ii) Studying the condition

Fc(Fb(Fa(x, y))) = F−1
d (F−1

e (x, y))

we obtain the system of the statement. The x-coordinate of a fixed point has to satisfy the

quadratic equation

(c− 1)(b− 1)x2 + (2e− 1 + bd+ ac− ec− eb− ad)x+ (e− 1)(e− ad) = 0.

From this equation we easily obtain the result. Notice that simple cases having infinitely

many fixed points appear for instance when b = d = 1 and e = a.

(iii) The two conditions given by

Fc(Fb(Fa(x, y))) = F−1
d (F−1

e (F−1
f (x, y))),

directly lead to the system of the statement. The set of singular points of Vf,e,d,c,b,a is

formed by the points satisfying

{(x, y) ∈ Q+ :
∂

∂x
V (x, y) =

∂

∂y
V (x, y) = 0}.

The two equations describing the above set exactly coincide again with the two equations

given in the statement. So Ff,e,d,c,b,a = Sf,e,d,c,b,a. That card(Ff,e,d,c,b,a) ≥ 1 can be seen

studying the behavior of the functions, (f+x)(a+bx)
e+dx and (a+y)(f+ey)

b+cy , near 0 and +∞.

Finally, we will also use the following results:

Lemma 13. The map F1/a,c,ac,a is conjugate to the Lyness’ map F1/(ac2).

Proof. Observe that F 1
a
,c,ac,a(x, y) =

(
1 + cx

y
,
x

a

)
and F 1

ac2
(u, v) =

(
v,

1
ac2

+ v

u

)
. If we

consider the linear map

ϕ(x, y) =
(y
c
,
x

ac

)
,

it holds that F 1
ac2

= ϕ ◦ F 1
a
,c,ac,a ◦ ϕ−1, as we wanted to prove.
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A nice consequence of the 5-global periodicity of the Lyness map F1(x, y) = (y, (1+y)/x)

and the above lemma is the following result:

Corollary 14. Recurrence (1) with k = 4 and [a1, a2, . . .] = [1/c2, 1/c, c, c2, 1/c2, 1/c, . . .]

is globally 20-periodic, i.e. F 5
c2,c,1/c,1/c2(x, y) = (x, y) for all (x, y) ∈ Q+.

3 Proof of the main tools

This section is devoted to proving Theorems 1, 3 and 6.

Proof of Theorem 1. Write

H(x, y) =
P (x, y)

Q(x, y)
=

Pñ(x, y) +O(ñ+ 1)

Qm̃(x, y) +O(m̃+ 1)
,

where Pñ and Qm̃ are homogeneous polynomials with degrees ñ ≥ 0 and m̃ ≥ 0, respectively,

and O(k) denotes terms of order at least k. Firstly we prove that it is not restrictive to

assume that ñ ≥ m̃ and that if ñ = m̃ then Pñ(x, y)/Qm̃(x, y) is not constant. Notice that

if H is a first integral then 1/H is also. Hence we can assume that ñ ≥ m̃. If ñ = m̃ and

Pñ = ηQñ for some 0 6= η ∈ C, take H̃ = H − η. Clearly H̃ is a new first integral of the

form H̃(x, y) = (O(ñ+ 1))/(Qm̃(x, y) +O(m̃+ 1)), as we wanted to see.

It is also clear that in a neighborhood of the origin we can assume that F (x, y) =

(λx+O(2), µy +O(2)).

(i) We start studying the case λµ 6= 0. By imposing that H is a first integral of F in U
we have that

P (F (x, y))Q(x, y) = P (x, y)Q(F (x, y)).

By taking the lower order terms of the above equality we obtain

Pñ(λx, µy)Qm̃(x, y) = Pñ(x, y)Qm̃(λx, µy). (8)

Define

Pn(x, y) =
Pñ(x, y)

gcd(Pñ(x, y), Qm̃(x, y))
, Qm(x, y) =

Qm̃(x, y)

gcd(Pñ(x, y), Qm̃(x, y))
,

where n ≥ m are suitable non-negative integers. By using the homogeneity of Pn and Qm,

equation (8) becomes

µnynPn(λx/(µy), 1)ymQm(x/y, 1) = ynPn(x/y, 1)µmymQm(λx/(µy), 1), (9)

where notice that we have canceled the common factor of Pñ and Qm̃. By introducing the

polynomials in one variable pn(w) = Pn(w, 1), qm(w) = Qm(w, 1), with respective maximum

degrees n and m, and ρ = λ/µ, w = x/y, equation (9) becomes

µn−mpn(ρw)qm(w) = pn(w)qm(ρw), (10)
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where we know that pn and qm are not identically zero and have no common root.

Notice that equality (10) implies that if w = w∗ is a root of pn then ρw∗ is also, and

hence ρlw∗ for any l ∈ N, is a root of pn. Since pn has at most n roots, if w∗ 6= 0 we have

that ρk = 1 for some k ≤ n, proving the theorem, because λkµ−k = 1. A similar reasoning

can be done for qm. Hence it only remains to study the cases

pn(w) = awn̂, 0 ≤ n̂ ≤ n, and qm(w) = bwm̂, 0 ≤ m̂ ≤ m,

for some complex numbers a and b, ab 6= 0. Remember that we know that both polynomials

have no common roots. So, at least one of the two numbers n̂ or m̂ has to be zero. In any

case, the equation (10) becomes

µn−maρn̂wn̂bwm̂ = awn̂bρm̂wm̂,

giving µn−m(λ/µ)n̂−m̂ = λn̂−m̂µn+m̂−m−n̂ = 1, as we wanted to prove.

(ii) When λ 6= 0 and µ = 0 equation (8), after dropping the common factor of Pñ and

Qm̃, becomes

Pn(λx, 0)Qm(x, y) = Pn(x, y)Qm(λx, 0).

Notice that Pn(x, 0) = axn, Qm(x, 0) = bxm, and (a, b) 6= (0, 0), because, otherwise Pn and

Qm would have y as a common factor. Hence

aλnxnQm(x, y) = bλmxmPn(x, y),

and so ab 6= 0. Therefore Pn(x, y) = aλn−mxn−mQm(x, y)/b. Since Pn and Qm have no

common factor, we get that m = 0 and so Qm = b. Hence this last equality becomes

Pn(x, y) = aλnxn. Then axn = P (x, 0) = aλnxn, giving λn = 1, as we wanted to prove.

To illustrate the above result in the next remark we present some examples of maps

having (or not having) meromorphic first integrals.

Remark 15. (i) The linear maps F (x, y) = (λx, µy), with λ and µ satisfying the resonant

condition λpµq = 1 are the simplest maps with meromorphic first integrals H(x, y) = xpyq.

(ii) The map F (x, y) = (x + y(x − y), 0), with an eigenvalue 0, has the first integral

H(x, y) = (x− y + 1)(y + 1).

(iii) For maps with identically zero linear part we can have existence or not of mero-

morphic first integrals. For instance the map F (x, y) = (x2, xy) has the first integral

H(x, y) = x/y. On the other hand, by using the same tools that in our proof of Theorem 1,

we can prove that the map F (x, y) = (x2, y2) has no meromorphic first integral.
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Proof of Theorem 3. The condition that a function V (x, y, n) of the form (3) is a non–

autonomous invariant of the recurrence (1) becomes

V

(
y,
an + y

x
, n+ 1

)
− V (x, y, n) = 0,

for all (x, y) ∈ Q+ and all n ∈ N. Imposing that the each one of the coefficients of the 31

monomials xiyj vanishes identically and playing a little bit with these conditions we obtain

that (4) holds and moreover that

an+1Fn+2 − anFn−3 = 0, (11)

Fn+3 − Fn−3 + an+2Fn+2 − anFn−2 = 0.

From the first equation we get that

an =
Fn+2

Fn−3
an+1 =

Fn+3

Fn−2

Fn+2

Fn−3
an+2.

Plugging this equation in the second one we obtain that

Fn+3 − Fn−3

Fn−3
(Fn−3 − an+2Fn+2) = 0.

Clearly the above equation holds if either {Fn}n is a 6-periodic sequence or Fn−3 =

an+2Fn+2.

In the first situation let us prove that if {Fn}n is a p-periodic sequence, p ∈ {1, 2, 3, 6}
then an also has to be p-periodic. Assume for instance that p = 3, then using (11) we have

an+3

an
=
an+3

an+2

an+2

an+1

an+1

an
=
Fn−1

Fn+4

Fn−2

Fn+3

Fn−3

Fn+2
=
Fn+2

Fn+4

Fn+4

Fn+3

Fn+3

Fn+2
= 1,

as we wanted to see. The other cases follow similarly.

In the second situation we have that Fn−3 = an+2Fn+2. Using this equation and equality

(11) we have that

an+2 =
Fn−3

Fn+2
=
an+1

an
.

which is a well-known 6-periodic recurrence, as we wanted to see. Finally, using (11) six

times we get that Fn+6 = Fn.

Before proving Corollary 4, we explain here how non-autonomous invariants and first

integrals are related. Consider a recurrence with k-periodic coefficients and having a non-

autonomous invariant V (x, y, n) that satisfies V (x, y, n) = V (x, y, n+ k). Then H(x, y) :=

V (x, y, 1) is a first integral of F[k]. Conversely, if H(x, y) is a first integral then

V (x, y, n) := H(Fak,ak−1,...,a`(x, y)), where 1 ≤ ` ≤ k, n− ` = k̇
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is a non-autonomous periodic invariant of the recurrence. These relations are used in the

next corollary for constructing the first integrals of F[k], k = 1, 2, 3, 6 using the invariant

found in the above theorem. Notice also that there is another way to relate both concepts.

Indeed, it is possible to replace the non-autonomous k-periodic recurrence by an autonomous

map on an enlarged phase space of dimension R2 × Rk = Rk+2, simply considering the

map (xn, xn+1, a1, a2, ..., ak−1, ak) → (xn+1, xn+2, a2, a3, ..., ak, a1). In this case, any non-

autonomous invariant is just an ordinary first integral for the above map. This approach is

not used in this paper.

Proof of Corollary 4. (i) This result is proved along the proof of Theorem 3, above.

(ii) We only give the details for k = 6. The other cases follow similarly. We introduce

the following notations for the non-autonomous 6-periodic recurrences:

{an} = a1, a2, . . . = a, b, c, d, e, f, a, b, c, d, e, f, a, . . .

{Fn} = F1, F2, . . . = 1, `,m, n, o, p, 1, `,m, n, o, p, 1, . . .

From the relations an+1Fn+2 − anFn−3 = 0, we obtain that

` =
f

e
, m =

a

e
, n =

b

e
, o =

c

e
and p =

d

e
.

Hence, with the notations of Theorem 3 we get that

Φ1(x, y) = a1F2 + (F3 + a2F2)x+ (F2 + a1F1)y + F−2x
2 + F1y

2 + F−1x
2y + F0xy

2

= a`+ (m+ b`)x+ (`+ a)y + nx2 + y2 + ox2y + pxy2

=
af + (a+ bf)x+ (f + ae)y + bx2 + ey2 + cx2y + dxy2

e
.

Hence Vf,e,d,c,b,a(x, y) = eΦ1(x, y)/(xy) is a first integral of F[6], as we wanted to prove.

We first prove Theorem 6 for k = 5.

Proposition 16. Consider recurrence (1) with k = 5 and ai 6= 1, for i = 1, 2, . . . , 5 and

satisfying

min{a1, a2, a3, a4, a5} < 1 < max{a1, a2, a3, a4, a5}. (12)

Then the recurrence (1) is non-persistent. Moreover for an open set of initial conditions

lim infn→∞ xn = 0 and lim supn→∞ xn = +∞.

Proof. A computation shows that F[5](x, y) = (P1(x, y), P2(x, y)) where

P1(x, y) =
x
(
a3xy + a4y

2 + a2x+ (a1a4 + 1)y + a1

)

(a1 + y) (a1 + a2x+ y)
,

P2(x, y) =
yN(x, y)

(a1 + a2x+ y + a3xy) (a1 + a2x+ y)
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and

N(x, y) =a3x
2y + a4xy

2 + a2x
2 + (a1a4 + a2a5 + 1)xy + a5y

2+

a1(1 + a2a5)x+ 2 a1a5y + a1
2a5.

First observe that, contrary to what it happens for F[k], k < 4, F[5] can be extended to a

neighborhood of Q+. Note also that (0, 0) is a fixed point and

DF[5](0, 0) =

(
1
a1

0

0 a5

)
.

So, under our hypotheses, the origin is a hyperbolic fixed point of F[5]. Arguing similarly

with the shifted maps Fa1,a5,a4,a3,a2 , Fa2,a1,a5,a4,a3 , Fa3,a2,a1,a5,a4 , and Fa4,a3,a2,a1,a5 , we obtain

that the origin is also a hyperbolic fixed point for these maps, with Jacobian matrices

(
1
a2

0

0 a1

)
,

(
1
a3

0

0 a2

)
,

(
1
a4

0

0 a3

)
and

(
1
a5

0

0 a4

)
,

respectively.

Condition (12) implies that at least there exist a parameter with a value less than one,

and other grater that one. Since there are no parameters with value equal to one and

the sequence is cyclic we can choose two contiguous parameters and such that ai < 1 and

ai+1 > 1. This implies that the origin is an attractive fixed point for some of the five shifted

maps. For example, suppose that a2 < 1 and a3 > 1, then the origin is an stable node for

Fa2,a1,a5,a4,a3 .

Taking an initial condition (x0, y0), with positive coordinates and in the basin of attrac-

tion of the origin for the corresponding shifted map we obtain that lim infn→∞ xn = 0 for

the solution of equation (1) with initial condition x1 = x0 and x2 = y0.

Recall Faj (x, y) = (y, (aj + y)/x), aj 6= 0. Thus the fact that lim supn→∞ xn =

+∞ follows because if some {(xns , yns)}ns tends to (0, 0) then the second component of

{Faj (xns , yns)}ns tends to +∞.

Proof of Theorem 6. Set F[k] for k = 5m. We can write F[k] = Fa5m,...,a5m−4 ◦ . . . ◦ Fa5,...,a1 ,
so F[k] can be extended to a neighborhood of Q+. Furthermore, observe that

DF[k](0, 0) = DFa5m,...,a5m−4(0, 0) ◦ . . . ◦DFa5,...,a1(0, 0) =

(
1
φ2

0

0 φ1

)
.

Similarly the Jacobian matrices of the shifted maps have the form

(
1

φi+1
0

0 φi

)
.
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Arguing as in Proposition 16, the relation (5) implies that at least there exists a couple

(φi, φi+1) such that one of the values is greater than one and the other less than one. So the

origin is an attractive fixed point for some of the m shifted maps. Now the proof follows

again as in Proposition 16.

4 Rational integrability and associated dynamics

As we have already explained in Subsection 1.2 the cases k = 1, 2, 3 are very similar and

totally understood. From Corollary 4 we can prove in the next proposition a similar result

when k = 6. Before stating the result we introduce the following notation:

Pf,e,d,c,b,a := {(a, b, c, d, e, f) ∈ (R+)6 : system (13) has a unique solution in Q+}





y2 =
(f + x)(a+ bx)

dx+ e
,

x2 =
(a+ y)(f + ey)

b+ cy
.

(13)

Proposition 17. For k = 6 the recurrence (1) is persistent. Moreover if (f, e, d, c, b, a) ∈
Pf,e,d,c,b,a, any sequence {xn} generated by (1) is either periodic, with period a multiple of

6, or it densely fills at most 6 disjoint intervals of R+.

Proof. We follow the same steps as in the proof of [11, Thm. 1]. To prove the persistence

of (1), it suffices to show that each level curve {(x, y) : Vf,e,d,c,b,a(x, y) = h} ∩ Q+ is

bounded. Since
af

xy
+
a+ bf

y
+
f + ae

x
+
bx

y
+
ey

x
+ cx+ dy = h,

we know that
f + ae

h
≤ x ≤ h

c
and

a+ bf

h
≤ y ≤ h

d

and the persistence follows.

By Lemma 12.(iii), under our hypotheses, the set of fixed points of F[6] and the set of

singular points of V[6] coincide and consists of a single point. Following again the same

guidelines of the proof of [11, Thm. 1], which in turn is based on [3, Prop. 2.1], we prove

that all the level curves of V[6] in Q+, apart from the fixed point, are diffeomorphic to circles.

Hence by using Lemma 8 and Theorem 9.(i) the proposition follows.

Remark 18. We believe that Pf,e,d,c,b,a is the whole of (R+)6 but we have not been able to

prove this equality. In any case it is easy to find sufficient conditions to ensure that some
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(a, b, c, d, e, f) belongs to Pf,e,d,c,b,a. For instance, since

∂

∂x

(
(f + x)(a+ bx)

e+ dx

)
=
bdx2 + 2bex+ ae+ bef − adf

(e+ dx)2
,

∂

∂y

(
(a+ y)(f + ey)

b+ cy

)
=
cey2 + 2bey + bf + abe− acf

(b+ cy)2
,

when both numerators have no positive real roots the point (a, b, c, d, e, f) is in the set,

because the functions that we have derived are both increasing and so the curves defined by

system (13) cut in a single point.

Next result collects our integrability results for any k 6= 5.

Theorem 19. (i) For any k ≥ 15, there exist sequences {an} of prime period k and

rank k such that F[k] = Fak,...,a2,a1 is rationally integrable and the corresponding re-

currence (1) is persistent.

(ii) For any k < 15, k 6= 5, there exist sequences {an} of prime period k with the ranks as

in Table 1, such that F[k] is rationally integrable and the corresponding recurrence (1)

is persistent.

(iii) Moreover it is possible to take in all the above cases parameters a1, a2, . . . ak such that

each sequence {xn} is either periodic, with period a multiple of k, or it densely fills at

most k disjoint intervals of R+.

k 1 2 3 4 5 6 7 8 9 10 ≤ k ≤ 14 k≥ 15

Rank 1 2 3 4 - 6 3 4 5 k − 5 k

Table 1. Possible ranks for integrable F[k].

Proof. We start by introducing some notation. Given ai and ci positive, we consider the

sets Si :=
{

1
aici

, 1
ai
, ci, aici, ai

}
. Assume that ai and ci are such that Card(Si) = 5 and

consider

Φi(x, y) = F 1
aici

, 1
ai
,ci,aici,ai

(x, y) =

(
x

ai
,
y

aici

)
,

where we have used expression (6). Notice that 1 /∈ Si. Given any natural number m ≥ 1,

we also consider m sets S1, S2, . . . , Sm, and define Φ[m] = Φm ◦ Φm−1 · · · ◦ Φ1. Then

Φ[m](x, y) =




x
m∏
i=1

ai

,
y

m∏
i=1

aici


 .
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When m = 0 we consider Φ[0](x, y) = (x, y). Finally, choosing the values of the parameters

such that
m∏
i=1

ai = 1 and
m∏
i=1

ci = 1, we obtain that for all m ≥ 3, Φ[m](x, y) = (x, y). More-

over, for these values of m, the parameters ai and ci can be chosen such that Card(∪mi=0Si) =

5m. Observe also that when m = 1 it is not possible to choose a1 = 1 and c1 = 1. When

m = 2 it is again possible but with Card(∪2
i=0Si) = 5.

Now we can start the proof of the theorem. First we study the cases k ≤ 4 and k ≥ 15.

Consider k = 5m+ ` with ` ∈ {0, 1, 2, 3, 4} and m = 0 or m ≥ 3.

Now, taking

Ψ(x, y) :=





(x, y) for ` = 0,

Fa(x, y) for ` = 1,

Fb,a(x, y) for ` = 2,

Fc,b,a(x, y) for ` = 3,

F 1
a
,c,ac,a(x, y) for ` = 4,

(14)

with suitable values of a, b and c, we obtain that the orbits of

F[k](x, y) := Ψ ◦ Φ[m](x, y) = Ψ(x, y)

are like the ones of Ψ and the rank({an}) = k. Then by using the known results for k = 1, 2, 3

and Lemma 13 the result follows for k ≥ 15 and k ≤ 4.

When k = 6 the result is proved in Proposition 17. Finally for 7 ≤ k ≤ 14 we consider

k = 7, Fb,a,1,1,1,1,1 with Rank 3,

k = 8, Fc,b,a,1,1,1,1,1 with Rank 4,

k = 9, F1/c,c,ac,a,1,1,1,1,1 with Rank 5,

and Ψ ◦ Fāc̄,ā,1/c̄,1/(āc̄),1/ā,1/(āc̄),1/ā,c̄,āc̄,ā = Ψ for 10 ≤ k ≤ 14, with ā and c̄ suitably chosen.

All these F[k] have rank k − 5, as we wanted to prove.

5 Meromorphic non-integrability for the case k = 5̇

Our main result is the following theorem:

Theorem 20. For k = 5̇ and most values of {an} the map F[k] has no meromorphic first

integral.

Its proof is a consequence of the following result:

Proposition 21. For k = 5̇ let φi, i = 1, . . . , 5 be as in Theorem 6,

φi =
∏

n ≡ i (mod 5)

n = 1, . . . , k

an.
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Then if {φ2, φ3, φ4, φ5} 6⊂ {φr1, r ∈ Q} the map F[k] has no meromorphic first integral.

Proof. For simplicity, we prove result for the case k = 5, being the proof in the general case

similar. Note that the above condition reads as

{b, c, d, e} 6⊂ {ar, r ∈ Q}. (15)

If F[5] = Fe,d,c,b,a has a meromorphic first integral, the same holds for all the other maps

Fa,e,d,c,b, Fb,a,e,d,c, Fc,b,a,e,d, and Fd,c,b,a,e. These five maps have the origin (0, 0) as a fixed

point and are analytic in its neighborhood (see the proof of Proposition 16). Moreover

the corresponding couples of eigenvalues of their linear parts at zero are 1/a, e; 1/b, a;

1/c, b; 1/d, c and 1/e, d, respectively. Hence, applying Theorem 1, we obtain the following

necessary conditions for the existence of a meromorphic first integral

a n1em1 = a n2bm2 = b n3cm3 = c n4dm4 = d n5em5 = 1,

for some ni,mi ∈ Z, i = 1, . . . , 5. From these equalities we get that {b, c, d, e} ⊂ {ar, r ∈ Q}.
So the result follows.

A simple corollary of the above result is:

Corollary 22. The map Fe,d,c,b,1 has a meromorphic first integral if and only if b = c =

d = e = 1.

Of course, all the known rationally integrable cases, like F[5] = F 5
a , F[10] = F 5

ba, F[15] =

F 3
c,b,a and F[20] = F 5

1/a,c,ac,a satisfy {φ2, φ3, φ4, φ5} ⊂ {φr1, r ∈ Q}.

6 Numerical evidences of chaos

Our simulations show that there are examples of maps F[k] exhibiting SSNC when k ∈
{4, 7, 8, 11, 15}. These behaviors can be seen by plotting some orbits of the corresponding

conjugated maps G[k] for the k-periodic sequences of parameters 2, 2, . . . , 2, 3. More vi-

sual examples can be obtained by studying the maps Gδ,7,4,2, G1,δ,1,δ,7,4,2, Gδ/2,1,δ,1,δ,7,4,2,

and G1,δ,2,δ/2,1,δ,1,δ,7,4,2 and G7,4,2,δ,1,δ,2,δ/2,1,δ,δ,δ,7,4,2 with δ = 0.001. See some pictures in

Figures 1 and 2.

In fact we prove:

Lemma 23. If there exist maps of the form F[4],F[7] and F[11] exhibiting SSNC then, for

any k ≥ 7, k 6∈ {10, 15} there exist maps of the form F[k] with rank({an}) = k having also

SSNC.
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Figure 2: Some orbits of G0.001,7,4,2 and a zoom with much more orbits.

Proof. For m ≥ 0, the maps

F[5m+11] := Fm1,1,1,1,1 ◦ F[11] = F[11],

F[5m+7] := Fm1,1,1,1,1 ◦ F[7] = F[7],

F[5m+8] := Fm1,1,1,1,1 ◦ F[4] ◦ F[4] = F[4] ◦ F[4],

F[5m+4] := Fm1,1,1,1,1 ◦ F[4] = F[4],

F[5m+20] := Fm1,1,1,1,1 ◦ F 5
[4] = F 5

[4],

will also have SSNC. Note that, since 20 ≡ 0, 11 ≡ 1, 7 ≡ 2, 8 ≡ 3 and 4 ≡ 4 (mod 5), the

above maps cover all the values of k given in the statement. Since one of the features of

these maps is the existence of transversal homoclinic points, which is a structurally stable

property, we can perturb each of the corresponding aj by aj + εj , with all the εj sufficiently

small, to obtain k-periodic sequences of parameters having SSNC and rank({an}) = k, as

we wanted to prove.

We have (only numerically) shown the existence of SSNC for k ∈ {4, 7, 11, 15}, but note

that the above lemma allows to reduce all the other cases to these four ones.

Although the complicated behavior of the maps, as in Figure 2, leads one to believe

that even there may be no upper bound for the number of intervals given by the adherence

of a sequence (formed by the sequence itself and its accumulation points), we only present

here some simple examples. Concretely, for k = 4 we give a map F[k] and two sets of initial
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conditions such that the adherence of the sequences {xn} generated by (1) consists of more

than k intervals.

We have that for a = 2, b = 4, c = 7 and d = 0.001,

• the sequence starting at 13.35, 7.27 is formed by 20 intervals;

• the sequence starting at 14.8, 8.25 is formed by 7 intervals.

For instance, this last assertion can be seen by making the phase portraits of the orbit of

G0.01,7,4,2 starting at (14.8, 8.25), which is formed by 5 islands, together with their images

through G2, G4,2 and G7,4,2 and their projections in the x-axis, see Figure 3. The property

of the existence of sequences {xn} generated by (1) such that their adherence consists of

more that k intervals should be true for all the values of k given in Lemma 23. We also want

to comment that, for these values of k, the initial conditions lying on the stable manifolds

of the q-periodic saddle points of G[k], also have a curious behavior: the adherence of {xn}
is the sequence itself together with q more points, corresponding to the saddle points. In

general q also is greater than k. On the other hand, the most complicated orbits, that

is the ones between two big invariant curves, whose adherence seems to fill a region of

positive measure give rise to a single interval when we consider their projections given by

the sequence {xn}.

A final remark

After the first version of this paper was finished, one of the authors (A. Cima) and S. Zafar

have obtained a proof of the non rational integrability of generic maps F[4] by computing

its dynamical degree, [13].
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Figure 3. Case k = 4. An orbit of G[4], their images through Gai,ai−1,...,a1 , i = 1, 2, 3,

and the projection corresponding to {xn}.
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