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Abstract

Smooth non-autonomous T -periodic differential equations x′(t) = f(t, x(t)) defined

in R×Kn, where K is R or C and n ≥ 2 can have periodic solutions with any arbitrary

period S. We show that this is not the case when n = 1. We prove that in the real C1-

setting the period of a non-constant periodic solution of the scalar differential equation

is a divisor of the period of the equation, that is T/S ∈ N. Moreover, we characterize the

structure of the set of the periods of all the periodic solutions of a given equation. We

also prove similar results in the one-dimensional holomorphic setting. In this situation

the period of any non-constant periodic solution is commensurable with the period of

the equation, that is T/S ∈ Q.
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1 Introduction and main results

Consider a non-autonomous differential equation

x′(t) = f(t, x(t)), (1)

where f is of class C1 in R×Kn and K is R or C. It is said that (1) is a T -periodic differential

equation if it exists some T > 0 such that f(t + T, x) = f(t, x) for all (t, x) ∈ R × Kn and

T is the minimum number with this property. Similarly, a function ϕ(t), t ∈ R is said to

be S-periodic if there exits S > 0 such that ϕ(t + S) = ϕ(t), for all t ∈ R, and S is the

minimum number with this property. A solution of (1) which is periodic will be named a

periodic solution. By convenience we will say that the constant functions have period 0.

For simplicity we will use the following notations: when y ∈ R+, y/0 = ∞ and y/∞ = 0.

Moreover we denote by N the set of positive natural numbers.
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Given a T -periodic differential equation, we study the relation between T and the periods

of its periodic solutions. Our first result is:

Theorem 1. Consider a T -periodic C1-differential equation x′ = f(t, x), defined on R×Kn.

Let S be the period of one of its periodic solutions. Then the following holds:

(i) When n = 1 and K = R then T/S ∈ N ∪ {∞}. Moreover, for each k ∈ N ∪ {∞} there

is an f and an S-periodic solution of the corresponding differential equation such that

T/S = k.

(ii) When n = 1, K = C and z → f(t, z) is holomorphic then T/S ∈ Q+∪{∞}. Moreover,

for each q ∈ Q+ ∪ {∞} there is an f and an S-periodic solution of the corresponding

differential equation such that T/S = q.

(iii) When n ≥ 2, and K = R, or K = C and moreover z → f(t, z) is holomorphic, there

is an f and an S-periodic solution of the corresponding differential equation such that

T/S is any positive real number or infinity.

An example for n = 2 and K = R for proving (iii) appears for instance in the classical

book of Pliss ([12]) and is attributed there to Erugin, 1956. We recall it in the proof of

the theorem. It can be easily adapted to give real analytic or holomorphic examples in

Rn or Cn, n ≥ 2, respectively. As far as we know, items (i) and (ii) are new. We start

studying them looking at Problems 1.531-2-3 of the useful book [2, p. 59]. In fact, the

first part of item (ii) was already proved in [8, Prop. 2.1] when f is polynomial in x, that

is for generalized Abel equations. To the best of our knowledge, it is the first time that

complex 1-dimensional examples with T/S ∈ Q+, such that neither T/S ∈ N nor S/T ∈ N,

appear in the literature. We also remark that all the examples used to prove several parts

of Theorem 1 are given by generalized Abel equations.

When an S-periodic solution of a T -periodic equation (1) is such that S = mT for some

m ∈ N, it is usually said that it is an m-subharmonic, see [3, 7, 11]. Nevertheless, some

authors simply call the m-harmonics, see [8, 9]. Notice that m-subharmonic solutions of

T -periodic equation correspond to m-periodic points of the return map given by the flow

at time T . This no more true when we look for S-periodic solutions with S/T 6∈ N.
Real T -periodic equations x′ = f(t, x) having no uniqueness of solutions can also have

m-subharmonic solutions, see [10]. In the papers [1, 11] the authors prove that the existence

of just one subharmonic implies the existence of large sets of them.

Corollary 2. Under the same notations of Theorem 1, if we consider T -periodic n-th order

differential equations x(n) = g(t, x, x′, x′′, . . . , x(n−1)) the same results hold.
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We denote by P(f) the set of the periods of all the periodic solutions of the T -periodic

differential equation (1). For any ∅ 6= A ⊂ R ∪ {∞} we denote by Car(A) ∈ N ∪ {∞} its

cardinal. Next results study P(f) when n = 1 and K = R or K = C.

Theorem 3. Consider a T -periodic differential equation x′ = f(t, x), defined on R×R. Set

A ⊂ N ∪ {∞}. The following holds:

(i) If Car(A) < ∞ there exists a T -periodic real analytic function f such that P(f) =

{T/j : j ∈ A}.

(ii) For any set A there exists a real T -periodic C∞-function f such that P(f) = {T/j :

j ∈ A}.

(iii) If the differential equation is real analytic and T -periodic and Car(P(f)) =∞ then the

set of all its periodic orbits is unbounded. Moreover, for any set A with Car(A) =∞,

there exists a real analytic T -periodic function f such that P(f) ⊃ {T/j : j ∈ A}.

The main difficulty for proving items (i) and (ii) of the above results is, once we have

constructed an f with the given set of periods, to prove that the corresponding differential

equation (1) has no other periods.

An easy way of proving the second part of item (iii) is to construct an f such that

P(f) = {T/j : j ∈ N∪{∞}}. With the same approach, and for any given A ⊂ N∪{∞}, we

can also construct an f such that the equation (1) has periodic solutions with all periods

T/j, j ∈ A. Unfortunately, in this construction we do not know how to ensure that other

periodic solutions with different periods do not appear. Our construction is based on solving

a problem of interpolation in two complex variables that we tackle using classical complex

analysis techniques.

Next result proves, in the 1-dimensional holomorphic case, the coexistence of periodic

orbits with different periods commensurable with T .

Theorem 4. Consider a T -periodic holomorphic differential equation x′ = f(t, x), defined

on R × C. Set A ⊂ Q+ ∪ {∞}. If Car(A) < ∞ then there exists a T -periodic holomorphic

function f such that P(f) ⊃ {T/j : j ∈ A}.

We want to comment that the differential equations given to prove item (i) of Theorem 3

and Theorem 4 are again generalized Abel equations.

Our approach is also useful to prove results about the finiteness of P(f), see Theorem 13.

In particular, we show that for trigonometrical generalized Abel equations Car(P(f)) <∞.
Recall that given a trigonometrical polynomial, its degree k is the highest harmonic, sin(kt)

or cos(kt), of its corresponding Fourier series.
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Proposition 5. Let x′ = f(t, x) = am(t)xm + am−1(t)xm−1 + · · · + a1(t)x + a0(t) be a

real 2π-periodic differential equation with all aj(t) trigonometrical polynomials of degree at

most k. Then Car(P(f)) ≤ 2k + 1.

In same of the examples presented in this work, for simplicity and without any explicit

mention, instead of giving T -periodic differential equations, for any positive real number

T , we simply will consider 2π-periodic or 1-periodic differential equations. The extensions

of our examples to T -periodic ones is straightforward. In Section 2 we prove Theorem 1.

Section 3 is devoted to give some preliminary results about the holomorphic and real analytic

cases and to prove Proposition 5. Finally in Section 4, Theorems 3 and 4 are proved. We

end the paper with several questions suggested by our work.

2 On the relation between T and S

We start with a well known preliminary result. We include its proof for the sake of com-

pleteness.

Proposition 6. ([12]) Let ẋ = f(t, x) be a T -periodic C1-differential equation defined in

some open set Ω ⊂ R × Rn. Let ϕ(t) be a periodic solution of period S, and assume that

T/S /∈ Q ∪ {∞}. If γ := {ϕ(t) , t ∈ R}, then f(t, x) does not depend on t for all x ∈ γ.

Proof. From the periodicity of ϕ(t) we get that f(t + kS, ϕ(t)) = f(t, ϕ(t)) for all t ∈ R
and for all k ∈ Z. For each fixed t∗ ∈ R and calling x∗ = ϕ(t∗) we consider tk ∈ [0, T ], the

representative of t∗ + kS modulus T. Since f is T−periodic we get that f(t∗ + kS, x∗) =

f(tk, x
∗) = f(t∗, x∗) for all k ∈ Z. On the other hand, the incommensurability of T and S

implies that the points {tk : k ∈ Z} fill densely the interval [0, T ]. Then, by the continuity

of f we get that f(t, x∗) = f(t∗, x∗) for all t ∈ R and x∗ ∈ γ.

Proof of Theorem 1. (i) Consider an S-periodic solution φ(t) of equation (1) which is not

constant. Let ϕ(t) := φ(t+ T ). Then

ϕ′(t) = φ′(t+ T ) = f(t+ T, φ(t+ T )) = f(t, φ(t+ T )) = f(t, ϕ(t)),

that is, ϕ(t) is also a solution of (1). Let m (respectively M) be the maximum (resp.

minimum) value of φ(t) on [0, T ], and let t1 (resp. t2) such that φ(t1) = m and φ(t2) = M.

Since ϕ(t) = φ(t+ T ) the inequalities

φ(t1) ≤ ϕ(t1) and φ(t2) ≥ ϕ(t2)

hold. Hence, there exists some t∗ between t1 and t2 such that φ(t∗) = ϕ(t∗). From the

uniqueness of solutions we get that φ(t) = ϕ(t), that is φ(t + T ) = φ(t). Since φ(t) is an

S-periodic function we deduce that T = kS for some k ∈ N.
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The linear 2π-periodic differential equation

x′ =
(
x− sin(kt)

)
sin(t) + k cos(kt),

has the particular 2π/k-periodic solution x = sin(kt). Hence T/S = k, as we wanted to

prove. The case S = 0 is even easier, consider for instance x′ = x sin(t) which has the

solution x = 0.

(ii) Let γ be a S-periodic orbit of (1), with T and S incommensurable. Then given any

z∗ ∈ γ, by Proposition 6, f(t, z∗) does not depend on t. Therefore

g(t, z∗) :=
∂f(t, z∗)

∂t
= 0,

for all t ∈ R and z∗ ∈ γ. Then, for each t∗ ∈ R, the holomorphic function z → g(t∗, z) has the

continuum of zeros z ∈ γ and as a consequence g(t, z) ≡ 0, fact which is in contradiction

with the T -periodicity of f. Thus, S must be either 0 or commensurable with T , as we

wanted to prove.

Given q = m/k ∈ Q with (m, k) ∈ N2 and gcd(m, k) = 1, consider the following

holomorphic 2π-periodic generalized Abel differential equation

z′ =
m

k
iz +

(
zk − emit

)
eit. (2)

Clearly, it has the particular solution z = emit/k, which has period S = 2kπ/m. Therefore

T/S = m/k = q, as we wanted to prove. The case S = 0 follows as in item (i).

(iii) We will give only 2-dimensional real or complex examples, because higher dimen-

sional examples can be simply obtained by adding n− 2 more trivial equations x′j = 0, j =

3, . . . , n.

Next example is essentially the real 2-dimensional one appearing in [12, p. 10] due to

Erugin. Given z = x+ iy, consider

z′ = αiz + (zz − 1) sin(βt). (3)

Notice that (3) is T -periodic with T = 2π/β and has the solution z = ei αt which is S-

periodic with S = 2π/α. It shows that T/S can be any real number. The construction of

an example with S = 0 is similar that in items (i) and (ii).

From (3) we can construct an example in (z, w) ∈ C2, simply by taking the real variables

(x, y) as the complex ones (z, w),{
z′ = −αw + (z2 + w2 − 1) sin(βt),

w′ = αz.
(4)
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A different extension to C2 of (3) is also{
z′ = αiz + (zw − 1) sin(βt),

w′ = −αiw.

Both cases are T -periodic, with T = 2π/β, and have some 2π/α-periodic solution. In the

first case z = cos(αt), w = sin(αt) and in the second one z = eiαt, w = e−iαt.

Notice that, as Proposition 6 shows, the above two periodic orbits with period incom-

mensurable with T lay on the region where the differential equation becomes autonomous.

Proof of Corollary 2. We start with the case n = 2. In fact, we only need to show that

some of our real or complex examples can be written as a 2nd-order T -periodic differential

equation. In the real case, notice that (3) writes as

y′′ = h(t, y, y′) := −α2y + α

((y′
α

)2
+ y2 − 1

)
sin(βt),

is 2π/β-periodic and has the particular solution y = sin(αt). In the complex case it suffices

to consider y ∈ C.
When n > 2 we can simply derive n− 2 times the above equation, obtaining

y(n) = H(t, y, y′, . . . , y(n−1)) :=
dn−2

dtn−2
h(t, y, y′).

This nth-order differential equation is 2π/β-periodic and has the 2π/α-periodic solution,

y = sin(αt).

We end this section with a real C∞-example with all their solutions periodic and such

that P(f) contains a closed interval of real numbers.

Consider the 2π−periodic system{
ẋ = −y

(
g(x2 + y2) + h(x2 + y2) cos(t)

)
,

ẏ = x
(
g(x2 + y2) + h(x2 + y2) cos(t)

)
.

(5)

In polar coordinates it reads as{
ṙ = 0,

θ̇ = g(r2) + h(r2) cos(t),

and hence its solutions are

r(t) = r0, θ(t) = g(r2
0)(t− t0) + h(r2

0)(sin(t)− sin(t0)) + θ0.

Let h be a C∞-function such that h(r) = 0 for all r ∈ [0, 1] and positive outside this interval,

and let g be a positive C∞-function such that g(r) = 1 for all r ≥ 1.
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• If r0 ≤ 1 then the solutions of system (5) are

ϕ(t) =
(
r0 cos(g(r2

0)(t− t0) + θ0), r0 sin(g(r2
0)(t− t0) + θ0)

)
and hence 2π/g(r2

0)-periodic. Therefore the periods of these solutions take all val-

ues between 2π/g(0) and 2π/g(1), including, when g(0) 6= g(1), commensurable and

incommensurable values with 2π.

• If r0 > 1, then θ(t) = t−t0+h(r2
0)(sin(t)−sin(t0))+θ0 and hence θ(t+2π) = θ(t)+2π.

This implies that then the solutions of (5), ϕ(t) = (r0 cos(θ(t)), r0 sin(θ(t))) are all 2π-

periodic.

3 Preliminary results for the real analytic and holomorphic

cases

We begin proving a result that can be read as an extension to two dimensions of the following

well-known result about interpolation of one variable holomorphic functions:

Theorem 7. ([6, Cor 7.27]) Let {aj} ⊂ C \ {0} be such that |aj | < |aj+1| for j ∈ N with

|aj | → +∞ and let {bj} ⊂ C be arbitrary. Then there exists an entire function f(z) such

that f(aj) = bj, j ∈ N.

Theorem 8. For each j ∈ N, let aj , bj : U ⊂ C→ C be holomorphic functions satisfying

0 < mj ≤ |aj(w)|U ≤Mj , with
∑
j

1

mj
<∞, Mj < mj+1.

Then, there exists an holomorphic function f(w, z), f : U × C→ C, such that

f(w, aj(w)) = bj(w), for all w ∈ U , j ∈ N. (6)

Proof. In this proof we will use several times the following well known Weirstrass theorem:

let V ⊂ Cn, n ∈ N, an open set and let fj : V ⊂ Cn → C be holomorphic functions. Then,

if for any given compact set K ⊂ V, fj converges uniformly to some function f on K, then

f is holomorphic on V, see for instance [14, Thm 1.4.20].

First, consider the function g : U × C→ C,

g(w, z) =

∞∏
j=1

(
1− z

aj(w)

)
.

It is holomorphic on U × C because

∞∑
j=1

∣∣∣∣ z

aj(w)

∣∣∣∣ ≤ ∞∑
j=1

|z|
mj

,
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and so the infinite product converges uniformly on compact sets, see again [6, Sec. 7.1&7.2].

Moreover g only vanishes on the sets z = aj(w), j ∈ N and

cj(w) :=
∂g

∂z
(w, aj(w)) 6= 0, w ∈ U .

Therefore we have that g(w, aj(w)) = 0 on U for all j ∈ N. Following the proof of Mittag-

Leffer theorem ([6, Thm 7.24]) we will modify g to obtain a new function f satisfying (6).

Consider the holomorphic functions on Vj = U × {z : |z| < mj},

Sj(w, z) =
dj(w)

z − aj(w)
, where dj(w) =

bj(w)

cj(w)
.

Clearly, on each Vj ,

Sj(w, z) = −dj(w)

aj(w)

∞∑
k=0

(
z

aj(w)

)k
.

Moreover, on any compact set Cj = K × {z : |z| ≤ mj/2}, where K ⊂ U is also a compact

set, the above convergence is uniform. Define P`(x) = −
∑`

k=0 x
k, and consider {εj} ⊂ R+

such that
∑∞

j=1 εj <∞. Then, for each j ∈ N, there exists `j ∈ N such that∣∣∣∣Sj(w, z)− dj(w)

aj(w)
P`j

(
z

aj(w)

)∣∣∣∣ < εj . (7)

Let us prove that the function

S(w, z) =
∞∑
j=1

(
Sj(w, z)−

dj(w)

aj(w)
P`j

(
z

aj(w)

))
is meromorphic on U × C. Fix any open set W ⊂ U × C, with W = C compact. Therefore

there exists NC ∈ N such that all points (w, aj(w)/2) are outside C for j > NC . Hence,

write

S(w, z) =

NC∑
j=1

(
Sj(w, z)−

dj(w)

aj(w)
P`j

(
z

aj(w)

))
+

∞∑
j=NC+1

(
Sj(w, z)−

dj(w)

aj(w)
P`j

(
z

aj(w)

))
.

The first summand is a finite sum, while the second one converges uniformly on C because

of (7). Hence S(w, z) = SNC1 (w, z) + SNC2 (w, z), with SNc1 meromorphic and SNC2 holo-

morphic on W. Since W is arbitrary we have proved that S is holomorphic on U × C \
∪∞j=1{(w, z) : z = aj(w)}.

Finally, consider f(w, z) = g(w, z)S(w, z). This function is holomorphic on U × C and

moreover

f(w, aj(w)) = lim
z→aj(w)

f(w, z) = lim
z→aj(w)

g(w, z)− g(w, aj(w))

z − aj(w)
S(w, z)(z − aj(w))

= cj(w)
bj(w)

cj(w)
= bj(w),

as we wanted to prove.
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We need the two following technical lemmas.

Lemma 9. Set Cδ = {w ∈ C : | Im(w)| ≤ δ} and xj(w) = qj + sin(jt), for qj ∈ R+. Then,

for w ∈ Cδ,
qj − cosh(jδ) ≤ |xj(w)| ≤ qj + cosh(jδ).

Proof. It suffices to prove that | sin(jw)|Cδ ≤ cosh(jδ). It holds because on Cδ,

| sin(jw)| =
∣∣∣∣ejwi − e−jwi2i

∣∣∣∣ ≤ ej Im(w) + e−j Im(w)

2
= cosh(j Im(w)) ≤ cosh(jδ).

Lemma 10. Given δ > 0, small enough, there exists a sequence of positive real numbers

{qj} such that, for all w ∈ Cδ and for all j ∈ N, the functions

aj(w) = qj + sin(jw)

satisfy 0 < mj < |aj(w)| < Mj , for some sequences {mj} and {Mj} such that Mj < mj+1

and
∑∞

j=1 1/mj <∞.

Proof. It suffices to take in Lemma 9, qj = 2 + j2 +
∑j

k=1 cosh(kδ).

Next result gives an example of autonomous differential equation with continua of peri-

odic orbits with any given finite set of periods. It will be useful to construct the examples

for proving Theorem 4.

Proposition 11. Let S1, S2, . . . , Sm be m positive real numbers. Then, there exists a real

polynomial p such that, for all 1 ≤ k ≤ m, the holomorphic differential equation z′ = ip(z)

has continua of periodic solutions of period Sk.

Proof. Given a holomorphic differential equation z′ = f(z), it is well-known that if z0 ∈ C
is such that f(z0) = 0 and f ′(z0) is a non-zero purely imaginary number, then z = z0 is

an isochronous center for its associated planar system, see for instance [5]. In other words,

z = z0 is surrounded by periodic solutions of period 2π|i/f ′(z0)|. Hence, to construct the

polynomial p of the statement, consider the following Hermite interpolation problem:

g(xj) = 0, g′(xj) = 2π/Sj , j = 1, 2, . . . ,m,

where x1 < x2 < · · · < xm are given real numbers. Then, taking p as the 2m − 1 degree

Hermite interpolation polynomial of the above set of conditions, we get that the singularities

z = xj ∈ R of z′ = ip(z) are surrounded by periodic orbits with respective periods Sj , as

we desired to prove.
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Finally we recall the local description of planar real analytic sets given by Sullivan in

1971, see [4, 13]. We use it to study the finiteness of P(f) in the 1-dimensional real analytic

case. Recall that given any positive natural number k ∈ N it is said that a topological space

is a k-star if it is homeomorphic to {z ∈ C : zk ∈ [0, 1)}. The image of the origin under the

corresponding homeomorphism is called a vertex of the star. Note that the vertex of a star

is uniquely defined except in the case k = 2.

Theorem 12. ([4, Thm. 3.1]) Let U ⊂ R2 be open and connected and f : U → R be a real

analytic function. Let C = {z ∈ U : f(z) = 0} be the set of zeros of f . Then either C = U
or given any non-isolated point of c, z ∈ C, there exists a neighborhood V of z and a k ∈ N
such that V ∩ C is a 2k-star with vertex z.

Theorem 13. Let f be a real analytic T -periodic map and consider the differential equa-

tion (1). The following holds:

(i) If sup{x∈R : f(t,x)6≡0}Car({t ∈ [0, T ) : f(t, x) = 0}) ≤ K, then Car(P(f)) ≤ K + 1.

(ii) If Car(P(f)) =∞ then the set of all periodic orbits is unbounded.

Proof. We will use the following simple observation. Let x = ϕ(t) a T/m-periodic solution

of (1). Then, by periodicity it is clear the following property:

Property I : The function x = ϕ(t) has at least m equidistantly distributed maxima on [0, T ],

say t1, t2, . . . tm. Moreover, again by periodicity, if x̂ := ϕ(t1) = · · · = ϕ(tm), it holds that

0 = ϕ′(tj) = f(tj , x̂), j = 1, 2, . . . ,m.

Item (i) follows because by Theorem 3 the period of any solution are either 0 or T/j for

some j ∈ N. The first situation happens for all x∗ such that f(t, x∗) ≡ 0 because x = x∗ is

a constant periodic solution. Otherwise, by Property I, the minimum period is T/K. Hence

at most K + 1 different periods can be achieved by the periodic solutions of differential

equation.

To prove (ii), assume to arrive to a contradiction, that (1) has infinitely many bounded

solutions, with infinitely many different periods. Call them x = ϕk(t), k = 1, 2, . . . and

call their respective periods T/jk, with all jk different and tending to ∞. First notice that

taking a subsequence, if necessary, we can assume that limk→∞ ϕk(0) = x∗. By continuity,

if x = ϕ∗(t) is the solution (1) such that ϕ∗(0) = x∗, then, a priori, either x = ϕ∗(t) is a

periodic solution or it is only defined on [0, t0) ⊂ [0, 1) and limt→t0 |ϕ∗(t)| =∞. Let us see

that, in fact, ϕ∗(t) ≡ x∗, that is, it is a constant periodic solution of (1). Assume that it

is not. Then, in both situations, there exists t∗ ∈ [0, t0) such that ϕ′(t∗) = f(t∗, x∗) 6= 0.

Hence, in a small neighborhood of (t∗, x∗) the function f does not vanish. This is in
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contradiction with Property I, because {ϕk} tends uniformly to ϕ∗, and on the graph of each

of the functions there are at least jk equidistantly distributed zeroes of f(t, x). Therefore

ϕ∗(t) ≡ x∗.
Finally, let us prove that it is also impossible that {ϕk} converges uniformly to x∗.

Assume that this holds, and take one point on y = x∗, (t∗, x∗). It is clear that f(t∗, x∗) = 0.

Since f is a real analytic function, by Theorem 12 we know that in a neighborhood of

this point the graph of f is a 2k-star, with two of its edges contained in the line y = x∗.

Choosing a new point in this neighborhood, (t̂, x∗), t̂ 6= t∗, on one of these edges, there is a

smaller neighborhood of this point where the set f(t, x) = 0 coincides with a piece of the

line y = x∗. Hence, arguing similarly that in the previous paragraph, we get that this fact

is again in contradiction with Property I. Hence all the periodic orbits form an unbounded

set, as we wanted to prove.

Proof of Proposition 5. Fixed x = x∗, the equation

Hx∗(t) := f(t, x∗) = am(t)(x∗)m + am−1(t)(x∗)m−1 + · · ·+ a1(t)x∗ + a0(t) = 0

is either identically zero or a trigonometrical polynomial of degree k. In the second case

Hx∗(t) is a trigonometrical polynomial of degree at most k. It is well known that non-trivial

trigonometrical polynomial of degree d have at most 2d solutions in [0, 2π). Therefore, the

value K in item (i) of Theorem 13 is K = 2k and as a consequence Car(P(f)) ≤ K + 1 =

2k + 1.

4 Proof of Theorems 3 and 4

Proof of item (i) of Theorem 3. Set A = {k1, k2, . . . , km} and suppose first that A ⊂ N.
Consider them periodic functions xi,ε(t) = i+ ε sin(ki t) of periods 2π/k1, 2π/k2, . . . , 2π/km.

We take |ε| ≤ 1/3 to assure that xi,ε(t) 6= xj,ε(t) for all t ∈ R and all i 6= j ∈ {1, 2, . . . ,m}.
We want to construct a generalized Abel T -periodic equation having only the above

functions as periodic solutions. More concretely, we look for a function

f(t, x, ε) = xm +
m−1∑
j=0

bj(t, ε)x
j ,

such that for i = 1, . . .m, each xi,ε is a solution of the equation x′ = f(t, x, ε). To this end

we will use one adaption of the method of divided differences of Newton :

For i = 1, . . . ,m set ∆i(t, ε) = x′i,ε(t)− xmi,ε(t) and for j > 0 such that i+ j ≤ m define

recursively

∆i,i+1,...,i+j(t, ε) =
∆i+1,i+2,...,i+)(t, ε)−∆i,i+1,...,i+j−1(t, ε)

xi+j,ε(t)− xi,ε(t)
.
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In addition, for j = 1, . . . ,m− 1, set

gj(t, x, ε) =

j∏
i=1

(x− xi,ε(t)) and g0(t, x) ≡ 1.

Lastly consider

f(t, x, ε) = xm +
m−1∑
j=0

aj(t, ε) gj(t, x, ε), (8)

where a0(t, ε) = ∆1(t, ε) , a1(t, ε) = ∆1,2(t, ε), . . . , am−1(t, ε) = ∆1,2...,m(t, ε). Then, equa-

tion (8) can we written as

f(t, x, ε) = xn + ∆1(t, ε) + ∆1,2(t, ε)(x− x1) + ∆1,2,3(t, ε)(x− x1)(x− x2) + · · ·+
+∆1,2,··· ,n(t, ε)(x− x1)(x− x2) · · · (x− xm−1),

where xi = xi,ε(t).

A calculation gives that for all ε < 1/3 the equation x′ = f(t, x, ε) has the solutions

xi for all i ∈ {1, 2, . . . ,m}. We claim that for ε small enough there are no more periodic

solutions. To control the periodic orbits we consider the Poincaré return map. Let ϕ(t, x, ε)

be the solution of the equation x′ = f(t, x, ε) which satisfies ϕ(0, x, ε) = x, and for each ε

let Iε be the open interval on which the return map

φε(x) = ϕ(2π, x, ε)

is well defined. Thus for each ε the periodic orbits of the equation x′ = f(t, x, ε) are

determined by the fixed points of the map φε : Iε −→ R.
Notice, that for ε = 0, f(t, x, 0) = (x − 1)(x − 2) · · · (x − m), hence we deal with a

differential equation that can be written as

x′ = f(t, x, ε) = (x− 1)(x− 2) · · · (x−m) + ε g(t, x, ε), (9)

for a certain function g(t, x, ε) that is polynomial on x of degree m − 1 with periodic

coefficients on t. This implies that there exists M > 0 such that if |x| > M then |f(t, x, ε)| >
0 for all t ∈ R and for all ε ∈ (−1/3, 1/3). Thus, for these values of ε, the fixed points of

the return map are contained in the interval [−M,M ]. To arrive a contradiction assume

that for all ε ∈ (−1/3, 1/3) the map φε has more than m fixed points. Since φε(i) = i for

i = 1, . . . ,m and for all ε ∈ (−1/3, 1/3) it follows that there exists yε ∈ Iε\{1, . . . ,m} which

is a fixed point of φε. Since for all ε the fixed points of φε belong to [−M,M ] it follows

that the sequence yε must accumulate in some fixed point of φ0. This gives a contradiction

because the set of fixed points of φ0 is exactly {1, . . . ,m} and a simple computation shows

that all of them are hyperbolic (simple). Thus the claim is proved.
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We notice that equation x′ = f(t, x, ε) is a periodic equation of period T/k where k is

the greatest common divisor between k1, k2, . . . , kn and T = 2π. Since we want a differential

equation of period T we consider

x′ = F (t, x, µ) := f(t, x, ε̄) + µ cos(t), (10)

where ε̄ is such that equation x′ = f(t, x, ε̄) has only the n periodic solutions x1,ε̄(t), x2,ε̄(t),

, . . . , xm,ε̄(t), and the fixed points 1, . . . ,m of φε̄ are all hyperbolic. Thus as before we

can see that for µ small enough the equation (10) has exactly m periodic orbits. The fact

that each of these orbits has the prescribed period follows using the same arguments, but

considering the return maps given by πµ,i(x) = ξ(2π/ki, x, µ), where ξ(t, x, µ) is the solution

of (10) with ξ(0, x, µ) = x, instead of φε. This ends the proof of item (ii) in this case. When

some ki =∞ the same procedure works by considering xi,ε(t) = i.

Proof of item (ii) of Theorem 3. We start by taking the function given by the Blaschke

product,

f(x) =
∏
m≥1

(
1− x

m

)
ex/m. (11)

It is known that f is an entire function and f(x) = 0 if and only if x is a positive natural

number. Moreover all of these zeroes are simple. We will do the proof in three steps.

STEP 1. We prove that for the equation

x′ = g(x, t, ε) = f(x) + ε sm(x)

(
k cos(kt)− f(x)

x−m
sin(kt)

)
, ε ∈ [−1/4, 1/4] , m ∈ N

(12)

where sm(x) is a C∞-function such that

sm(x) =

{
1 if |x−m| < 1/4,

0 if |x−m| > 1/2,
(13)

it exists 0 6= εm ∈ [−1/4, 1/4], such that (12) with ε = εm has only the periodic solutions

xm(t) = m+ εm sin(kt) and x(t) = k for k ∈ N \ {m}.
A simple calculation proves that xm,ε(t) = m + ε sin(kt) is a 2π/k-periodic solution of

(12), for all ε ∈ [−1/4, 1/4] . Moreover, since for x /∈ (m− 1/2,m+ 1/2), g(t, x, ε) ≡ f(x) it

follows that x(t) = k ∈ N \ {m} is a solution of (12). Moreover they are the only periodic

solutions with initial condition x /∈ (m− 1/2,m+ 1/2).

Let ϕ(t, x, ε) be the solution of (12) with ϕ(0, x, ε) = x and consider the Poincaré return

map

φε(x) = ϕ(2π, x, ε) with (x, ε) ∈ [m− 1/2,m+ 1/2]× [−1/4, 1/4] .
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Since for ε = 0 , x′ = f(x) and f(m) = 0 we have that x = m is the unique fixed point of

φ0. Now since it is also a hyperbolic fixed point it follows that for ε small enough φε has

also a unique fixed point. So we can choose εm small enough with the required property.

STEP 2. Consider A = {k1, k2, k3, . . .} and suppose first that A ⊂ N. Consider the

non-autonomous differential equation

x′ = f(x) +
∑
m≥1

msm(x)

(
km cos(km t)−

f(x)

x−m
sin(km t)

)
, (14)

where f(x) and sm(x) are defined in (11) and (13) respectively and εm is selected such

that equation (12) with ε = εm only has the periodic solution xm(t) = m + εm sin kmt

in [m− 1/2,m+ 1/2] . Then, equation (14) only has the periodic solutions xm(t) = m +

εm sin kmt , m ∈ N.
It is so because from step 1 we know that in each strip |x−m| < 1/2 only the periodic

solution m + εm sin kmt exists and for x < 1/2, equation (14) reads as x′ = f(x). Hence,

if ϕ(t, x, ε) = 1/2 for some t > 0, since f(1/2) > 0, ϕ(t, x, ε) > 1/2 for all t > 0, and

the solution can not be periodic. If ϕ(t, x, ε) < 1/2 for all t > 0, then since autonomous

equations in dimension 1 have no periodic solutions other than constants, ϕ(t, x, ε) is not

periodic.

In the case that ∞ ∈ A it suffices to consider a new summand in (14), corresponding to

x0(t) = 0 + ε0 sin(0t) = 0.

Notice that in both cases the differential equation (14) is 2π/ gcd(k1, k2, . . .) periodic.

STEP 3. In order to get a differential equation of period 2π we consider in the case

when A ⊂ N,

x′ = f(x) +
∑
m≥1

εm sm(x)

(
km cos(km t)−

f(x)

x−m
sin(km t)

)
+ µ s0(x) cos(t). (15)

Then in each strip |x−m| < 1/2, equation (15) only has the prescribed periodic solutions

m+ εm sin kmt.

Since for µ = 0 equation (15) has no periodic solutions in the strip |x| < 1/2, the same

is true for µ small enough.

Finally, for x < −1/2 the solution ϕ(t, x, µ) of equation (15) is increasing in t for t > 0

small, because x′ = f(x) and f(−1/2) > 0. This implies that ϕ(t, x, µ) > −1/2 and the

solution can not be periodic.

In the case that ∞ ∈ A the proof follows similarly.

Proof of item (iii) of Theorem 3. The first part is proved in item (ii) of Theorem 13. To

simplify the proof of the second result we will consider first the case T = 2π and A = N.
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Some comments about how to modify some steps to prove the result for other A and for

including the period zero case will be given at the end of the proof.

Consider the f constructed in Theorem 8 associated to the following data:

• U = Int(Cδ) = {w ∈ C : | Im(w)| < δ},

• The functions aj(w) appearing in Lemma 10,

• The functions bj(w) = a′j(w).

Then, it holds that a′j(w) = f(w, aj(w)) on U × C. Therefore, the same happens with the

real analytic 2π/j-periodic functions aj(t) = pj + sin(jt), that is a′j(t) = f(t, aj(t)). Notice

that by construction, f is 2π-periodic and real restricted to w = t + i t2 ∈ U ∩ R and

z = x+ i y ∈ R.
To include the period zero case it suffices to take one more aj , as a0(w) = 1 and follow

the same steps. When A is an arbitrary set it may happen that the greatest common divisor

of all the elements of A, gcd(A) 6= 1, then the constructed differential equation has period

2π/ gcd(A) instead 2π. To force f to be 2π-periodic we can add to the list of function aj

and bj a new one, say a0(w) = 1 + sin(w) but with b0(w) = 0 instead of a′0(w). In this way

a0(w) is not a solution of the differential equation, but f becomes 2π-periodic.

Proof of Theorem 4. Consider first the case whenA is a finite subset of Q+ and let kj/mj , j =

1, 2, . . . , `, with gcd(mj , kj) = 1, be its elements. The case when ∞ ∈ A will be treated at

the end.

By using Proposition 11 we consider a real polynomial p such that z′ = ip(z) has `

periodic solutions zj(t) with respective periods Sj = mj/kj , j = 1, 2, . . . , `.

Associated to each of these solutions, consider the functions

Pj(t, z) :=

mj−1∏
l=0

(
z − zj

(
t+

l

kj

))
.

Observe that

Pj

(
t+

1

kj
, z
)

= Pj(t, z),

because zj(t+mj/kj) = zj(t). Moreover, each function z = zj

(
t+ l

kj

)
, l = 1, 2, . . . ,mj − 1,

is also a Sj-periodic solution of z′ = ip(z). Finally consider the holomorphic differential

equation

z′ = ip(z) + e2πit
∏̀
j=1

Pj(t, z). (16)
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This equation is 1-periodic, so T = 1 and by construction, for each j, has at least mj

periodic solutions z = zj

(
t + l

kj

)
, l = 0, 1, 2, . . . ,mj − 1, of period Sj . Hence, for each j,

T/Sj = kj/mj ∈ P(f) as we wanted to prove.

If ∞ ∈ A, write A = {kj/mj , j = 1, 2, . . . , `} ∪ {∞}. Then we can modify (16) to be

z′ = ip(z) + e2πit
(
z − x0

) ∏̀
j=1

Pj(t, z),

where x0 ∈ R is one of the zeros of p. Clearly, z = x0 is a constant periodic solution of this

differential equation and 0 ∈ P(f). Hence {T/j : j ∈ A} ⊂ P(f) and the theorem follows.

Remark 14. Notice that in the proofs of item (iii) of Theorem 3 and the proof of Theorem 4

we can not ensure that the set of periods of all the periodic orbits is exactly {T/j : j ∈ A}.
In the first case, an attempt for proving this fact consists in considering instead of the

functions aj(w) = qj +sin(jw), the new ones aj(w, ε) = qj +ε sin(jw), with ε small enough,

but we do not know how to control possible periodic orbits (and their corresponding periods)

bifurcating from infinity when ε ≈ 0.

Open questions.

We end this paper with several questions suggested by our results.

(I) For any set A ⊂ N∪ {∞}, with Car(A) =∞, improve item (iii) of Theorem 3 giving

a real analytic map f such that P(f) is exactly {T/j : j ∈ A}.

(II) Improve Theorem 4 giving a holomorphic map f such that P(f) is exactly {T/j : j ∈
A}. Extend also this result to sets A with Car(A) =∞.

(III) In the C∞-setting, the real 2-dimensional example (5) shows that P(f) can contain

closed intervals. Is this possible in the real analytic or holomorphic settings? More in

general: Which is the structure of P(f) when the differential equation in real analytic

or holomorphic and the dimension n ≥ 2? For instance, in the paper [3] the authors

give real analytic planar differential equations (n = 2) for which there exists j0 ∈ N
such that {jT : j ≥ j0} ⊂ P(f). These examples are given by forced pendulum

equations and the proof of the existence of all the j-subharmonics is based on the the

Poincaré-Birkhoff fixed point theorem.
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