PERIODS OF SOLUTIONS OF PERIODIC DIFFERENTIAL EQUATIONS

Anna Cima, Armengol Gasull, and Francesc Mañosas
Departament de Matemàtiques, Facultat de Ciències
Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona, Spain

(Submitted by: Jean Mawhin)

Abstract

Smooth non-autonomous T-periodic differential equations $x^{\prime}(t)=f(t, x(t))$ defined in $\mathbb{R} \times \mathbb{K}^{n}$, where \mathbb{K} is \mathbb{R} or \mathbb{C} and $n \geq 2$ can have periodic solutions with any arbitrary period S. We show that this is not the case when $n=1$. We prove that in the real \mathcal{C}^{1}-setting the period of a non-constant periodic solution of the scalar differential equation is a divisor of the period of the equation, that is $T / S \in \mathbb{N}$. Moreover, we characterize the structure of the set of the periods of all the periodic solutions of a given equation. We also prove similar results in the one-dimensional holomorphic setting. In this situation the period of any non-constant periodic solution is commensurable with the period of the equation, that is $T / S \in \mathbb{Q}$.

1. Introduction and main results

Consider a non-autonomous differential equation

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \tag{1.1}
\end{equation*}
$$

where f is of class \mathcal{C}^{1} in $\mathbb{R} \times \mathbb{K}^{n}$ and \mathbb{K} is \mathbb{R} or \mathbb{C}. It is said that (1.1) is a T periodic differential equation if it exists some $T>0$ such that $f(t+T, x)=$ $f(t, x)$ for all $(t, x) \in \mathbb{R} \times \mathbb{K}^{n}$ and T is the minimum number with this property. Similarly, a function $\varphi(t), t \in \mathbb{R}$ is said to be S-periodic if there exits $S>0$ such that $\varphi(t+S)=\varphi(t)$, for all $t \in \mathbb{R}$, and S is the minimum number with this property. A solution of (1.1), which is periodic will be named a periodic solution. By convenience we will say that the constant functions have period 0 . For simplicity, we will use the following notations: when $y \in \mathbb{R}^{+}, y / 0=\infty$ and $y / \infty=0$. Moreover, we denote by \mathbb{N} the set of positive natural numbers.

