Differential and Integral Equations

Volume 29, Numbers 9-10 (2016), 905-922

PERIODS OF SOLUTIONS OF PERIODIC DIFFERENTIAL EQUATIONS

ANNA CIMA, ARMENGOL GASULL, and FRANCESC MAÑOSAS Departament de Matemàtiques, Facultat de Ciències Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Spain

(Submitted by: Jean Mawhin)

Abstract. Smooth non-autonomous T-periodic differential equations x'(t) = f(t, x(t)) defined in $\mathbb{R} \times \mathbb{K}^n$, where \mathbb{K} is \mathbb{R} or \mathbb{C} and $n \geq 2$ can have periodic solutions with any arbitrary period S. We show that this is not the case when n = 1. We prove that in the real C^1 -setting the period of a non-constant periodic solution of the scalar differential equation is a divisor of the period of the equation, that is $T/S \in \mathbb{N}$. Moreover, we characterize the structure of the set of the periods of all the periodic solutions of a given equation. We also prove similar results in the one-dimensional holomorphic setting. In this situation the period of any non-constant periodic solution is commensurable with the period of the equation, that is $T/S \in \mathbb{Q}$.

1. INTRODUCTION AND MAIN RESULTS

Consider a non-autonomous differential equation

$$x'(t) = f(t, x(t)), (1.1)$$

where f is of class C^1 in $\mathbb{R} \times \mathbb{K}^n$ and \mathbb{K} is \mathbb{R} or \mathbb{C} . It is said that (1.1) is a *T*periodic differential equation if it exists some T > 0 such that f(t + T, x) = f(t, x) for all $(t, x) \in \mathbb{R} \times \mathbb{K}^n$ and T is the minimum number with this property. Similarly, a function $\varphi(t), t \in \mathbb{R}$ is said to be *S*-periodic if there exits S > 0 such that $\varphi(t + S) = \varphi(t)$, for all $t \in \mathbb{R}$, and S is the minimum number with this property. A solution of (1.1), which is periodic will be named a periodic solution. By convenience we will say that the constant functions have period 0. For simplicity, we will use the following notations: when $y \in \mathbb{R}^+$, $y/0 = \infty$ and $y/\infty = 0$. Moreover, we denote by \mathbb{N} the set of positive natural numbers.

00 00

AMS Subject Classifications: 34C25, 37C27, 37G15.

Accepted for publication: April 2016.