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Abstract

In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equa-
tions and of some integrable polynomial Abel differential equations. As far as we know, the tools used 
to prove our results have not been utilized before for studying this type of questions. We show that the 
addressed problems can be reduced to know the number of polynomial solutions of a related polynomial 
equation of arbitrary degree. Then we approach to these equations either applying several tools developed 
to study extended Fermat problems for polynomial equations, or reducing the question to the computation 
of the genus of some associated planar algebraic curves.
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1. Introduction

In this work we investigate the number of polynomial solutions of some differential equations 
of type

q(t) ẋ = pn(t) xn + pn−1(t) xn−1 + · · · + p1(t) x + p0(t) (1)
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with q and pi polynomials in real or complex coefficients for i = 0, 1, 2, . . . , n, and pn(t) �≡ 0. 
More specifically, we consider the real or complex Bernoulli equation (pn−1 = pn−2 = · · · =
p1 = 0) and some special real Abel equations (n = 3) that will be fixed below.

There are several previous works asking for polynomial solutions of equation (1) for some 
values of n.

When n = 2, equation (1) is the well-known polynomial Riccati equation. In 1936, Rainville 
proved the existence of one or two polynomial solutions when q(t) = 1, see [19]. After, in the pa-
pers [7,8] the authors presented some criteria determining the degree of polynomial solutions of 
q(t) ẋ = p2(t) x2 +p1(t) x +p0(t) and show examples of these equations with 4 or 5 polynomial 
solutions. For them, in [10] the authors gave a complete answer: polynomial Riccati equations 
have at most N + 1 (resp. 2) polynomial solutions when N ≥ 1 (resp. N = 0), where N is the 
maximum degree of q(t), p0(t), p1(t), p2(t); moreover, there are equations of this type having 
any number of polynomial solutions smaller than or equal to these upper bounds.

Also in [2–4] the degrees of the polynomial solutions of (1) are studied. In this setting in [13]
it is shown that the degree of the polynomial solutions of (1) has to belong to a particular set of 
integers depending on the degrees of the coefficients. Finally, in [11] it is proved that equation (1)
with q = 1 has at most n polynomial solutions and that this bound is sharp.

Notice that the question we are interested in is also reminiscent of a similar one proposed by 
Poincaré about the number and degree of the algebraic solutions of planar autonomous polyno-
mial differential systems in terms of their degrees.

Our first result solves completely the problem for Bernoulli equations. It is not difficult to 
prove that linear equations have 0, 1 or all its solutions being polynomials. For instance the equa-
tion (2) with n = 0, ẋ = t , has the solutions x = t2/2 + c, c ∈ C. As we have already explained, 
the case n = 2, is solved in [10]. We include it in next theorem for the sake of completeness.

Theorem A. Consider Bernoulli equations

q(t) ẋ = pn(t) xn + p1(t) x, (2)

with q, pn, p1 ∈C[t] and pn(t) �≡ 0. Then:

(i) For n = 2, equation (2) has at most N +1 (resp. 2) polynomial solutions, where N ≥ 1 (resp. 
N = 0) is the maximum degree of q, p2, p1, and these upper bounds are sharp. Moreover, 
when q, p2, p1 ∈ R[t] these upper bounds are reached with real polynomial solutions.

(ii) For n = 3, equation (2) has at most seven polynomial solutions and this upper bound is 
sharp. Moreover, when q, p3, p1 ∈ R[t] this upper bound is reached with seven polynomial 
solutions belonging to R[t].

(iii) For n ≥ 4, equation (2) has at most 2n − 1 polynomial solutions and this upper bound is 
sharp. Moreover, when q, pn, p1 ∈R[t] it has at most three real polynomial solutions when 
n is even while it has at most five real polynomial solutions when n is odd, and both upper 
bounds are sharp.

Notice also, that in general, given n + 1 arbitrary polynomials x0, x2, . . . , xn there exists al-
ways an equation of the form (1) having these solutions as particular solutions. To get this differ-
ential equation it suffices to plug them in the equation (1) with q = 1 and solve the linear system 
with n +1 unknowns pn, pn−1, . . . , p0. Solving it we obtain a rational differential equation. Mul-
tiplying this equation by the least common multiple of all the denominators of the pj , we obtain 
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the desired polynomial differential equation. So, for general n, the problem is to know if there 
are equations (1) with more that n + 1 polynomial solutions. In particular, for Abel differential 
equations, we are interested in differential equations with at least five polynomials solutions.

Because of the difficulties that we have found to deal with the general Abel equation, in 
next result we fix our attention on real Abel differential equations, having at least three real 
polynomial solutions, that also have a very specific relative position in the space of polynomials: 
they are collinear. As we will see along the proof of next theorem, this geometric hypothesis 
implies that the Abel equation is integrable.

Theorem B. If equation

q(t) ẋ = p3(t) x3 + p2(t) x2 + p1(t) x + p0(t), (3)

with coefficients in R[t] and p3(t) �≡ 0, has three real polynomial solutions which are collinear 
then it has at most seven polynomial solutions and in this case one of the collinear solutions is 
the arithmetic average of the other two and the equation reduces to a Bernoulli equation with 
polynomial coefficients, as the one studied in item (ii) of Theorem A. If this relation between the 
three collinear solutions does not hold then equation (3) has at most six polynomial solutions 
and this upper bound is sharp.

Remark 1.1. Let x1, x2 and x3 be the collinear solutions of (3) given in Theorem B. The case 
when one of the solutions is the arithmetic average of the other two can be described by the 
equation x3 − x2 = x2 − x1 where x2 is the solution between the solutions x1 and x3. As we 
will see in the proof of the above Theorem when the three polynomial collinear solutions are not 
symmetric, that is none of them is the arithmetic average of the other two, and the equation has 
six polynomial solutions, then necessarily x3 − x2 = 2(x2 − x1). In all other cases the equation 
has at most five polynomial solutions and this upper bound is again sharp.

In all the paper, given a polynomial p ∈ C[t] we will denote by δ(p) its degree and by Z(p)

the number of different complex zeroes of p, without counting their multiplicities. Moreover, 
given m polynomials p1, p2, . . . , pm ∈ C[t], (p1, p2, . . . , pm) denotes their greatest common 
divisor.

As we will see, although the starting point for proving Theorems A and B is different, in 
both cases we will reduce the study of the polynomials solutions of the differential equation to 
the study of the polynomial solutions of a related polynomial equation with few monomials but 
arbitrarily high degree. More concretely, the equations that we will have to study will be

pk + qk = rk, (Fermat equation) (4)

pk − Mqk = rk − Lsk, (5)

(pk − qk)(r − s) = (rk − sk)(p − q), (6)

where p, q, r, s ∈ C[t], L, M ∈ C and 0 < k ∈ N. The first equation will appear in the proof of 
Theorem A and the other two in the proof of Theorem B.

All these equations will be treated by using some results developed in [6] that we introduce in 
next section and some new related results (see for instance Theorem 2.1). These results extend 
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the beautiful Fermat Theorem for polynomials, that deals with the first equation. We state here it 
for the sake of completeness.

Clearly, for all k, the Fermat equation (4) has the solutions q = α p , r = β p with α, β ∈ C

and 1 + αk = βk . It is said that two polynomials p1 and p2 are similar if p1 and p2 are linearly 
dependent.

Theorem 1.2 (Fermat Theorem for polynomials). Equation (4) has polynomial solutions, not 
pairwise similar, if and only if k = 1 or k = 2.

Notice that the above theorem implies that (4) has no non-trivial solutions when k > 2. Using 
the quoted results we will prove similar results for the other two equations. Equation (5) has 
no non-trivial solutions when k > 7 (see the proof of Theorem 5.4), and (6) has no non-trivial 
solutions when k > 83 (see Proposition 5.3).

The proof of Theorem 1.2 that we have found in the literature relies on a result, interesting 
by itself, called the “abc Theorem” for polynomials. It states that if a, b, c are pairwise coprime 
non-constant polynomials for which a + b = c, then the degree of each of these three polyno-
mials cannot exceed Z(a b c) − 1. The “abc Theorem” for polynomials (also known as Mason’s 
Theorem), was proved in 1981 by Stothers [22] and also later by Mason [15] and Silverman [21].

In the next section we give another proof of Theorem 1.2, based on the computation of the 
genus of a planar algebraic curve associated to (4). The key point will be that only curves of 
genus 0 can be rationally parameterized, see [12,14]. The reason for introducing this proof of 
a known result is that the same idea will be used in several parts of the paper for studying the 
remainder low degree cases of equations (5) and (6).

In fact, the study of polynomial solutions of each of these equations, combined with other 
polynomial relations appearing in our approach, will derive the problem to know when the genus 
vanishes for the irreducible components of two families of algebraic curves, with polynomial 
unknowns (u, v) ∈C2:

F(u, v) = vn − un − (Lvn+m − Mun+m) + unvn(Lvm − Mum),

with n, m > 0, (n, m) = 1, L, M ∈R, L �= 0 �= M , Mn �= 1 �= Ln and 2 < k = n + m ≤ 7; and

G(u,v) = vn − un − (vn+m − un+m) + unvn(vm − um) = (u − v)(u − 1)(v − 1)P (u, v),

with n, m > 0, n < m, (n, m) = 1 and 2 < k = n + m ≤ 83.
The results for F = 0 correspond to Propositions 4.1 and 4.2. Because, for each n and m fixed, 

F is a 2-parameter family of algebraic curves with parameters (L, M) ∈R2, but of low degree, 
we can prove its irreducibility by using a two steps procedure. First we find all its singular points 
(finite and infinite), studying the system

F(u, v) = 0,
∂F

∂u
(u, v) = 0,

∂F

∂v
(u, v) = 0,

and the corresponding ones in the other charts of the complex projective space, by using the 
resultants approach. Afterwards we develop an ad hoc method to prove the irreducibility of F . 
This method uses Bezout’s Theorem and also computes some bounds of the intersection numbers 
at the found singularities.
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The results for G = 0 (indeed for its component P = 0) are obtained in a different way. The 
main reason is that although the only parameters in G are the degrees, they arrive until 83 and 
the computational difficulty increases with the degree. In our computers, it is not possible to 
effectively obtain for n + m big, neither the corresponding resultants needed to solve

P(u, v) = 0,
∂P

∂u
(u, v) = 0,

∂P

∂v
(u, v) = 0,

nor to solve directly the systems, by using the computer algebra system Maple. Instead we have 
to apply to our computations some Grôbner basis tools detailed in the proof of Proposition 4.3. 
Similarly, to prove that P(u, v) = 0 are irreducible curves we apply the algorithm proposed 
in [18], and also implemented in Maple, based on reducing the problem modulo some prime 
numbers, see again the proof of Proposition 4.3 for more details.

In short, the paper is organized as follows: In the next Section we introduce and prove some 
Fermat type results for polynomial equations. Section 3 is devoted to prove Theorem A using 
Fermat Theorem for polynomials. In Section 4 we compute the genus of several families of 
planar algebraic curves and, finally, Theorem B is proved in Section 5.

2. Generalized Fermat type theorems for polynomials

We start this section with our proof of Fermat Theorem for polynomials and with an extension 
when k = 2, that will be the key step for studying Bernoulli equation with n = 3.

Proof of Theorem 1.2. Assume without loss of generality that p is not a constant. Then since

1 +
(

q

p

)k

=
(

r

p

)k

we get that the algebraic curve P(u, v) := 1 +uk − vk = 0 has a rational parametrization. On the 
other hand, it is easily seen that P(u, v) = 0 has no singularities because the system

P(u, v) = 0,
∂

∂u
P (u, v) = 0,

∂

∂v
P (u, v) = 0,

has no solutions. This implies that it is irreducible. Then, in this case its genus g(P ), only depends 
on its degree ([9]) and is

g(P ) = (k − 1)(k − 2)

2
.

Since it is well-known that the only algebraic curves with rational parameterizations have 
genus 0, see [12], the fact that k = 1 or k = 2 follows.

The existence of many polynomial solutions when k = 1 is trivial. For k = 2 it is well known 
that (4) has non-trivial polynomial solutions and they can be expressed similarly to the ones of 
Fermat equation on the integers, that is,

p = 2AB C, q = C(A2 − B2), r = C(A2 + B2),

for arbitrary polynomials A, B and C. �
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When k = 2 we prove a new result, related with the above one.

Theorem 2.1. Let p, q ∈C[t] be not similar polynomials such that

p2 + q2 = r2, p2 + ε2 q2 = s2, with r, s ∈C[t], ε ∈C. (7)

Then ε = 0 or ε2 = 1.

Proof. First of all note that if p, q, r, s and ε satisfy equations (7) then p2 = r2 − q2 =
(r + q) (r − q) and p2 = s2 − ε2 q2 = (s + ε q)(s − ε q). If (p, q) = 1 denoting A := r + q , 
B := r −q , C := s +ε q , D := s −ε q we get that (A, B) = (C, D) = 1 and therefore A, B, C, D
are perfect squares. Also

ε(A − B) = C − D. (8)

The proof will be given by an induction process on the degree of p. We assume that ε �= 0 and 
we are going to prove that ε2 = 1. First of all note that the degree of p can not be 0 because this 
fact will imply that p2 = r2 − q2 = (r + q) (r − q) has degree 0 and hence the same holds for r
and q contradicting the hypotheses.

Assume that the degree of p , δ(p) = 1. If (p, q) �= 1 we get (p, q) = p and dividing the first 
equation of (7) by p2 we obtain a new set of polynomials p̃, ̃q, ̃r satisfying the first equation 
of (7) with degree of p̃ equals to zero; a contradiction. Then (p, q) = 1 and the decomposition 

p2 = A B must be p2 = λ p
2

λ
with 0 �= λ ∈ C and p2 = C D is p2 = μ p

2

μ
with 0 �= μ ∈ C. Then, 

from (8) we get that ε
(
λ − p2

λ

)
= ± 

(
μ − p2

μ

)
which implies that ε λ ∓ μ =

(
ε
λ

∓ 1
μ

)
p2. 

Hence, ε λ ∓μ = 0 and ε
λ

∓ 1
μ

= 0, which implies μ = ±ελ and ε2 = 1. The proof is done when 
δ(p) = 1.

Now assume that the result is true for all p with δ(p) ≤ n − 1 and that δ(p) = n.
If M := (p, q) has degree greater than zero, then calling:

p̄ = p

M
, q̄ = q

M
, r̄ = r

M
, s̄ = s

M
,

we have that

p̄2 + q̄2 = r̄2 and p̄2 + ε2 q̄2 = s̄2,

and since δ(p̄) < n, by the induction hypothesis we get that ε2 = 1.
So, from now on we are going to assume that (p, q) = 1. Notice that δ(A) + δ(B) = 2 δ(p)

and also δ(C) + δ(D) = 2 δ(p). We are going to consider four different cases:

• Case 1. Assume that at least one over A, B, C, D has degree strictly between 0 and n. For 
instance, assume that 0 < δ(A) < n. Then (A, C) and (A, D) have degree less than n and at 
least one of them has positive degree (it is so because since A B = C D, the irreducible 
components of A have to be in C or D). Then, denote (A, C) by A∗ and assume that 
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0 < δ(A∗) < n. Also denote (B, D) by B∗. We observe that (A∗, B∗) = 1. From A B = C D

again we get that there exist two polynomials a, b and 0 �= λ ∈ C such that A = A∗ a, 
B = B∗ b, C = λ bA∗ and D = 1

λ
a B∗. Note also that (a, b) = 1. Now, from (8) we have 

that

(λb − ε a) A∗ =
(a

λ
− ε b

)
B∗. (9)

Since (a, b) = 1 also 
(
λb − ε a, a

λ
− ε b

) = 1 and from (9) it must exist a complex number β

such that λ b − ε a = β B∗ and a
λ

− ε b = β A∗. Assume now 1 − ε2 �= 0, we get

a = (λA∗ + ε B∗)β

1 − ε2
and b = (ε A∗ + 1

λ
B∗)β

1 − ε2
.

We observe that since p2 = A∗ B∗ a b and any pair among A∗, B∗, a, b have no common 
divisors we have that A∗, B∗, a, b all are perfect squares. Hence, A∗ + ε

λ
B∗ , A∗ + 1

λε
B∗ are 

also perfect squares. But since 0 < δ(A∗) < n and (A∗, B∗) = 1 by the induction hypothesis 
we get ε2 = 1; a contradiction.

• Case 2. Assume that the degrees of A and B are 2n and 0 respectively and the degrees of 
C and D are 2n and 0 respectively. This case works as the case in which p has degree one: 

the decompositions p2 = A B = p2

λ
λ and p2 = C D = p2

μ
μ for certain non-zero λ, μ ∈ C, 

using (8) give μ = λ ε and ε2 = 1.
• Case 3. Assume that the degrees of A and B are 2n and 0 respectively and δ(C) = δ(D) = n. 

It would imply that δ(A − B) = 2 n and δ(C − D) ≤ n. But it is not consistent with (8).
• Case 4. Assume that the degrees of A, B, C, D are all equal n. Calling A∗ = (A, C) and 

B∗ = (B, D) as before, if δ(A∗) = n = δ(B∗) then A = λ C , B = 1
λ

D, with 0 �= λ ∈ C, and 
from this, one can easily obtain ε2 = 1. So we can assume that δ(A∗) < n. If δ(A∗) > 0 then 
the proof follows as in Case 1. If δ(A∗) = 0, then (A, D) = A and (B, C) = B and the proof 
follows as in the previous subcase δ(A∗) = n = δ(B∗). �

Several generalizations of Mason’s Theorem and extensions of Fermat Theorem for polyno-
mials have appeared in [1,5,6,16,17,20]. Next we state the one dimensional version of two of 
these extensions, proved in [6] for polynomials in several variables, that we will use in the proof 
of Theorem B.

Theorem 2.2. Let g1, . . . , gn ∈ C[t] be not all zero, satisfying

gd
1 + gd

2 + · · · + gd
n = 0, with d ∈N,

and suppose that d ≥ n (n − 2). Then the vanishing sum gd
1 +gd

2 +· · ·+gd
n = 0 decomposes into 

vanishing subsums gd
i1

+ gd
i2

+ · · · + gd
is

= 0 with 1 ≤ i1 < i2 < · · · < is ≤ n, for which all gij are 
pairwise similar.

Theorem 2.3. Set n ≥ 3 and let f1, . . . , fn ∈ C[t] be not all constant, such that

f1 + f2 + . . . + fn = 0.



7106 A. Cima et al. / J. Differential Equations 263 (2017) 7099–7122
Assume furthermore that for all 1 ≤ i1 < i2 < . . . < is ≤ n, fi1 + fi2 + . . . + fis = 0 implies 
(fi1, fi2, . . . , fis ) = 1. Then for all i ∈ {1, . . . , n} we get

δ(fi) ≤ (n − 1)(n − 2)

2

(
Z(f1f2 . . . .fn) − 1

)
.

3. Proof of Theorem A

(i) This result is proved in [10]. For instance, an equation with N +1 polynomials solutions is

q(t)ẋ = x2 + q ′(t)x, q(t) =
N∏

j=1

(t − j),

because all its solutions are x = 0 and xc(t) = − q(t)
t−c

, and its N + 1 polynomial solutions are 
x = 0 and xj (t), j = 1, 2, . . . , N .

(ii) Consider equation (2) with n = 3,

q(t) ẋ = p3(t) x3 + p1(t) x. (10)

Performing the change u(t) = x2(t), it is transformed into

q(t) u̇ = 2p3(t) u2 + 2p1(t) u, (11)

a Ricatti equation. We are interested in polynomial solutions of (11) which are perfect squares. 
Suppose that v(t), w(t) ∈C[t] are such that v2(t) and w2(t) are solutions of equation (11). Either 
solving directly the differential equation or by using the fact that the cross ratio of four solutions 
of the Ricatti equation is constant in time it follows that, any solution u(t) of (11), different of 
u = 0, is of the form

u(t) = v2(t)w2(t)

c v2(t) + (1 − c)w2(t)
, c ∈C.

Hence any other polynomial solution of (11) being a perfect square is determined for a value of 
c ∈ C such that c v2(t) + (1 − c) w2(t) also is a perfect square, say z2(t). If the two solutions 
v2(t) and w2(t) are similar polynomials then p3 = 0. Hence, by the hypotheses this possibility 
is excluded. Then, we can apply Theorem 2.1 to the equation c v2(t) + (1 − c) w2(t) = z2(t), 
which assures that this can only happen for a unique value of c /∈ {0, 1}. This fact implies that 
equation (10) has at most seven polynomial solutions.

In order to find an equation of type (10) with seven polynomial solutions we look for an 
equation u̇ = a(t)u2 + b(t)u with a(t) and b(t) rational functions with three perfect squares 
polynomial solutions. If x2

1 and x2
2 are two of them, then the third one must be

x2
3 := x2

1 · x2
2

c x2
1 + (1 − c) x2

2

for some value of c. Since we are interested in polynomial solutions we consider:
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x1 = r(t) s(t) (r(t)2 + s(t)2)

2
√

c
and x2 = r(t) s(t) (r(t)2 − s(t)2)

2
√

c − 1
,

because in this way

x2
3 = (r(t)2 + s(t)2)2 (r(t)2 − s(t)2)2

16 c(c − 1)

and it also is a perfect square polynomial.
As we have explained in the introduction, given two arbitrary polynomial functions r(t) and 

s(t) we can find two rational functions a(t) and b(t), such that the differential equation u̇ =
a(t)u2 + b(t)u has x2

1 , x2
2 as solutions. Then taking r(t) = t , s(t) = 1 and c = 25/16 we find 

that the differential equation

4 t (t2 + 1) (t2 − 1) (t2 − 4) (4 t2 − 1) ẋ = 225x3 + 16 (3 t8 − 17 t6 + 6 t4 − 1) x

has the seven polynomial solutions, x = 0 and

x±
1 (t) = ± 2

5
t (t2 + 1), x±

2 (t) = ± 2

3
t (t2 − 1), x±

3 (t) = ± 4

15
(t4 − 1).

(iii) First observe that if x(t) is a solution of (2) then αx(t) also is a solution for all α ∈C such 
that αn−1 = 1. We perform the change of variable u = xn−1 in (2). This equation is transformed 
into the Riccati equation

q(t) u̇ = (n − 1)pn(t) u2 + (n − 1)p1(t) u. (12)

If vn−1 and ωn−1 are different solutions of (12) and it exists another solution of type xn−1, then

xn−1 = vn−1 · ωn−1

cvn−1 + (1 − c)ωn−1

for some number c ∈C. This fact implies that 
(

n−1
√

c v
)n−1 + (

n−1
√

1 − cω
)n−1 = yn−1 for some 

polynomial y. From Theorem 1.2 this last equation has no non-similar polynomial solutions 
for n ≥ 4 and as a consequence such an x does not exist unless the solutions are similar. This 
situation is also impossible because pn �= 0.

Hence, apart of the solution x = 0, there can be only two sets of solutions for equation (2):

x1, αx1, α
2x1, . . . , α

n−2x1 and x2, αx2, α
2x2, . . . , α

n−2x2,

where α is a (n − 1)-primitive root of unity. Therefore, for n ≥ 4, equation (2) has most 2n − 1
polynomials solutions.

It is easy to find examples with this number of polynomial solutions. Imposing that t and t2

are solutions we find the equation:

(t2n−1 − tn) x′ = xn + (t2n−2 − 2 tn−1) x

which has the solutions 0, α t and α t2 for each α satisfying αn−1 = 1.
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The real case follows from the fact that when n is even αn−1 = 1 has only the real solution 
α = 1 while it has the solutions α = ±1 when n is odd.

4. The genus of some algebraic curves

To prove Theorem B we will use similar arguments as in our proof of Theorem 1.2. As we 
will see we will need to know the genus of some algebraic curves.

Proposition 4.1. Consider the polynomial

F(u, v) = vn − un − (Lvn+m − Mun+m) + Lunvn+m − Mvnun+m

with L �= 0 �= M , (n, m) = 1 and 2 < n + m ≤ 7. If Mn �= 1 �= Ln and Ln �= Mn then F(u, v) is 
irreducible. Furthermore, the genus of F is

g(F ) = (2n + m − 1)(2n + m − 2)

2
− 3n(n − 1)

2
.

Proof. We start finding the singular points of F , and their multiplicities in the projective com-
plex plane. We consider homogeneous coordinates (u, v, w). Then the curve F = 0 always pass 
trough the points e1 = (1, 0, 0) , e2 = (0, 1, 0) and e3 = (0, 0, 1) and these points are singular if 
n > 1. In fact, in the charts U1 = {u �= 0} , U2 = {v �= 0} , U3 = {w �= 0} the local coordinates are 
(v, w) , (u, w) and (u, v) respectively and the expressions of F near the singular points are:

F1(v,w) := M(wn − vn) + Lvn+m − wn+m + vnwn+m − Lwnvn+m, (13)

F2(u,w) := L(un − wn) + wn+m − Mun+m + Mwnun+m − unwn+m, (14)

F(u, v) = vn − un + Mun+m − Lvn+m + Lunvn+m − Mvnun+m. (15)

From these expressions we see that each one of the points e1, e2 and e3 are points of F with 
multiplicity n, and hence they are singular if n > 1.

In fact, we will prove that when the hypothesis on L, M are satisfied and n > 1, then e1, e2, e3
are the only singularities of F .

Singular points on the affine plane have to satisfy F(u, v) = 0 and ∂F
∂u

(u, v) = 0 , ∂F
∂v

(u, v)

= 0. It is easy to see that (u, v) = (0, 0) is the unique singular point with u = 0. Then we are 
interested in to know which relations have to satisfy L and M in order to get more singularities. 
To this end we consider each one of the cases n, m with n + m ≤ 7 and n, m relatively primes. 
We begin by calculating the resultant between F and ∂F

∂u
in respect to v, and also compute 

the resultant between F and ∂F
∂v

in respect to v, getting two polynomials R1, R2 depending on 
u, L, M . These two polynomials vanish when u = 0, hence we divide them for the common 
power of u getting R̃1 and R̃2. Finally we consider the resultant between R̃1 and R̃2 in respect 
to u which is a polynomial R3 depending on L, M . For instance for n = 3, m = 1 this last 
polynomial is a constant multiplied by L37 M24 (M3 − 1)28 (L3 − M3)16 (L3 − 1)21. From the 
properties of the resultant we have that when R3(L, M) �= 0 the system of equations F = 0, 
∂F
∂u

= 0, ∂F
∂v

= 0 has no solutions with u �= 0. Analogue calculations on the other local charts let 
us to say that when the hypothesis on L, M are satisfied, the only singular points of F are e1, e2
and e3. The same result holds for all the other cases.
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Now we prove the irreducibility of F . When n = 1, since the points e1, e2, e3 are no multiple 
points of F , the result follows.

For n ≥ 2, to see that F is irreducible, in order to arrive to a contradiction, we suppose that 
F = fg for some polynomials of degrees r and s = 2n + m − r , for some 1 ≤ r ≤ 2n + m − 1. 
Then from Bezout’s Theorem, we know that 	p∈{f∩g}I (f ∩ g, p) = rs, where I (f ∩ g, p)

denotes the intersection number of f ∩ g at p. Since the points in f ∩ g are singular points of F , 
and we know that e1, e2 and e3 are the unique singularities of F , we only need to compute the 
numbers Ii := I (f ∩g, ei) for each i = 1, 2, 3. For instance, near the point e3 which corresponds 
to the point (0, 0) in the usual affine chart, we write f = fk + hot and g = gn−k + hot , for some 
k ∈ {0, 1, . . . , n − 1, n}. Since fkgn−k = vn − un = 
n−1

i=0 (v − αiu) with αn = 1 we get that fk

has k factors of vn −un and gn−k has the other ones. Since all the factors of fk are different from 
the ones of gn−k we have that I3 = k(n − k), which implies that I3 ≤ (

n
2

)2. The analysis near 
e1, e2 is exactly the same.

Hence, if F is reducible, for some r ∈ {1, 2, . . . , 2n + m − 1},

r(2n + m − r) = I1 + I2 + I3 ≤ 3
(n

2

)2
. (16)

If r ∈ {1, 2, 2n + m − 2, 2n + m − 1} the above inequality holds and we will arrive to a 
contradiction by using another approach afterwards. Otherwise, let us prove that (16) does not 
hold, giving us the desired contradiction.

To prove that when 3 ≤ r ≤ 2n + m − 3 the inequality (16) does not hold, first, notice that 
for r = 3, r(2n + 1 − r) − 3 

(
n
2

)2 = 3(2n − 2) − 3 
(

n
2

)2 = 3
4

(−n2 + 8n − 8
)
> 0 for 2 ≤ n ≤ 6. 

Hence

r(2n + m − r) ≥ r(2n + 1 − r) ≥ r(2n + 1 − r)
∣∣
r=3 > 3

(n

2

)2

Therefore, if F is reducible, at least one of its irreducible components has degree one or two. 
Therefore, without loss of generality we haver that either r = 1 or r = 2.

Consider first the case r = 1. Then F = fg and δ(f ) = 1. Then f pass at most for one critical 
point ei (otherwise f would be one of the coordinates u, v or w, which is not possible for F ). And 
at this point ei we have that Ii = n − 1. Hence Bezout’s Theorem says that 2n + m − 1 = n − 1, 
that is n + m = 0.

Finally, consider the case r = 2. Then F = fg, δ(f ) = 2 and f is irreducible. Since irre-
ducible conics have not multiple points, if f pass for some ei then the multiplicity of f at ei

must be one, and hence Ii = n −1. This implies that 	3
j=1 Ij ∈ {n −1, 2 (n −1), 3 (n −1)}. Since 

2 (2n +m −2) = 	3
j=1 Ij we get the three possibilities 2 (2n +m −2) = n −1 , 2 (2n +m −2) =

2n − 2 or 2 (2n + m − 2) = 3n − 3 which are not compatible with n ≥ 2, m ≥ 1.
Hence, in all the cases that we are interested in, F is irreducible. To see that the formula for 

the genus is the announced in the statement we apply the well-known formula ([9]) that says that 
the genus of a curve G of degree k is

g(G) = (k − 1)(k − 2)

2
− 	p

mp(G)(mp(G) − 1)

2
(17)

where mp(G) is the multiplicity of G at p, provided that near each multiple point p, G has 
mp(G) different tangents.
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From equations (13), (14) and (15), since F has degree 2n + m and the multiplicity of F at 
each ei is n, the result follows. �
Proposition 4.2. Consider the polynomial

F(u, v) = vn − un − (Lvn+m − Mun+m) + Lunvn+m − Mvnun+m

with L �= 0 �= M, Ln = Mn �= 1, (n, m) = 1 and 2 < n + m ≤ 7. Then there exists α ∈ C with 
αn = 1 such that the polynomial F(u, v) can be written as F(u, v) = (v −α u) P(u, v). Further-
more P(u, v) is irreducible and

g(P ) = (2n + m − 2)(2n + m − 3)

2
− 2n(n − 1)

2
− (n − 1)(n − 2)

2
.

Proof. A simple calculation proves that v − α u is a factor of F(u, v) if and only if αn = 1 and 
L = αm M which clearly implies that Mn = Ln. If (n, m) = 1, using the Bezout identity it can 
be seen that the equality Mn = Ln implies that it exists α ∈ C with αn = 1 and L = αmM . This 
proves that under our hypothesis, if Mn = Ln then F(u, v) has a factor v − αu. Considering the 
change v = α v̄ we have that the obtained polynomial in (u, v̄) has the factor v̄ −u and is F(u, v̄)

with L = M . Hence we consider:

F(u, v) = vn − un + M(un+m − vn+m) + Munvn(vm − um).

The proof is similar to the proof of Proposition 4.1. Considering all the cases (n, m) with 
n + m ≤ 7 and (n, m) = 1, our calculations imply that when L = M �= 1, the singular points of 
P(u, v) only can be e1, e2, e3. And their multiplicities are n, n, n − 1 respectively.

When n = 1, P(u, v) has no singular points and hence P(u, v) is irreducible. Using again 
formula (17) we get that

g(P ) = (2n + m − 2)(2n + m − 3)

2
= m(m − 1)

2
,

as we wanted to prove.
For n ≥ 2, to see that P(u, v) is irreducible, we suppose, as in the proof of previous proposi-

tion, that P = f g for some polynomials of degrees r, s with s = 2n + m − 1 − r and we apply 
Bezout’s Theorem to f ∩ g, considering 2 ≤ n ≤ 6. Now the corresponding equality (16) is

r (2n + m − 1 − r) ≤ 2
(n

2

)2 +
(

n − 1

2

)2

.

Arguing similarly as before we get that if F is reducible, then at least one of its irreducible 
components has degree one or two. Also these two possibilities can again be discarded for all the 
values of n, m. Applying once more (17) we obtain the desired result. �
Proposition 4.3. Consider the algebraic curve Gn,m(u, v) = (1 − un+m)(1 − vn) − (1 −
vn+m)(1 − un) = 0 with n, m > 0. This curve reduces in the following way

Gn,m(u, v) = (u − v)(u − 1)(v − 1)Pn,m(u, v)



A. Cima et al. / J. Differential Equations 263 (2017) 7099–7122 7111
Table 1
Suitable prime number to prove the irreducibility of P(u, v) = 0 for the given 
values of n and m.

(n,m) (11,47) (11,51) (19,63) (27,53) (31,51)

p 43 67 47 53 59

and when 2 < n + m ≤ 83, n < m and (n, m) = 1, Pn,m(u, v) = 0 is irreducible and has genus

(2n + m − 4)(2n + m − 5)

2
− 3

(n − 1)(n − 2)

2
.

Proof. The scheme of the proof is similar to the one of previous results but as we have already 
explained in the introduction, neither the computation of resultants approach, nor the use of the 
solve tools in Maple work for big n +m. Instead, for instance, for proving that in the finite plane 
for n ≥ 3 the only solution of

P(u, v) = 0,
∂P

∂u
(u, v) = 0,

∂P

∂v
(u, v) = 0, (18)

where P = Pn,m, is (0, 0), we proceed as follows. First we compute the Grobner basis of the 
three polynomials given in (18) with the order plex(u, v). Then we solve the new system, 
usually given by many equations, obtaining that (0, 0) is its unique solution.

This method works for all n and m under the hypotheses of the Proposition, but the case 
n = 29, m = 38. For this case we use the specific package algcurves with the tool singu-
larities(P, u, v), obtaining the same result.

It is not difficult to prove that when n = 1, 2 the algebraic curve has no singularities. Moreover, 
when n ≥ 3, by using the above result we obtain easily that the only singularities (in the complex 
projective space) are as in Proposition 4.1, e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) (this 
last one corresponds to the solution of (18)).

Therefore, to apply formula (17) to get the genus of P given in the statement, we only need 
to prove that this algebraic curve is irreducible. To prove this, there is a very useful result imple-
mented in Maple, based on [18]. This result uses the package algcurves and is the function
AIrreduc(P). This function uses test of irreducibility of P modulo some prime numbers p to 
know whether a polynomial P is irreducible over C[u, v]. More specifically, this function looks 
for sufficient conditions of absolute reducibility and returns true if the polynomial P is detected 
absolutely irreducible, false if it is detected absolutely reducible, FAIL otherwise. When P has 
rational coefficients (our case), the prime p runs through a given set of prime integers: the first 
ten odd primes and the first five primes greater than the degree of P are automatically chosen.

Running the above algorithm we prove the irreducibility of P for all n and m, except for the 
pairs given in Table 1. For these pairs the irreducibility is proved by using the same test but with 
the prime numbers indicated in that table. �
5. Proof of Theorem B

A crucial point to prove Theorem B will be the analysis of the number of rational real solutions 
of the equation

q(t) ż = p(t)z(z − 1)(z − k) , k ∈ (−1,0) , p(t), q(t) ∈R[t]. (19)

Next results goes in this direction.
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Proposition 5.1. If z1(t) = y1(t)
x1(t)

and z2(t) = y2(t)
x2(t)

with (y1, x1) = 1 = (y2, x2) are two non-
constant rational solutions of equation (19) then there exists 0 �= c ∈R such that y2(t) = c y1(t).

Proof. Solving equation (19) we get that for i = 1, 2

(zi − k)zk−1
i

(zi − 1)k
= Ci exp (k(k − 1)H(t)) where H ′(t) = p(t)

q(t)
.

Then

(z1 − k)zk−1
1

(z1 − 1)k
= K

(z2 − k)zk−1
2

(z2 − 1)k
where K = C1

C2
,

and writing z1(t) = y1(t)
x1(t)

and z2(t) = y2(t)
x2(t)

we get that

(y1 − kx1)(y1 − x1)
−ky1−k

2 = K (y2 − kx2)(y2 − x2)
−ky1−k

1 . (20)

Since k < 0, and (x1, y1) = 1 = (x2, y2) we have that y1 = 0 if and only if y2 = 0. Moreover, 
their zeroes have the same multiplicities. �

As we have seen in the previous Proposition, if z(t) is a solution of equation (19), z �= 1, and 
H(t) is a prescribed primitive of p(t)

q(t)
then there exists L ∈R such that

(z − k)zk−1

(z − 1)k
= L exp

(
k(k − 1)H(t)

)
.

From now on we will say that the energy level of the solution z(t) is L and we will denote it 
by π(z).

Proposition 5.2. Assume that z1(t) = y(t)
x1(t)

and z2(t) = y(t)
x2(t)

, with (y, x1) = 1 = (y, x2) are two 

non-constant rational solutions of equation (19) and set M = π(z2)
π(z1)

. Then the following holds.

(a) k ∈ Q ∩ (−1, 0), that is, there exist n, m ∈N such that (n, m) = 1, n < m and k = − n
m

.
(b) If Mm �= 1 then there exist two polynomials P, Q ∈R[t] with (P, Q) = 1, not simultaneously 

constant, such that

y = n

n + m
(P n+m − MQn+m),

x1 = n

n + m
(P n+m − MQn+m) − (P n − MQn)P m,

x2 = n

n + m
(P n+m − MQn+m) − (P n − MQn)Qm.

(c) If Mm = 1 then there exist two polynomials P, Q ∈R[t] with (P, Q) = 1, not simultaneously 
constant such that
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y = n

n + m

(P n+m − Qn+m)

P − Q
,

x1 = n

n + m

(P n+m − Qn+m)

P − Q
− (P n − Qn)P m

P − Q
,

x2 = n

n + m

(P n+m − Qn+m)

P − Q
− (P n − Qn)Qm

P − Q
.

Proof. (a) From (20) we know that

(
y − kx1

y − kx2

) (
y − x1

y − x2

)−k

= M, (21)

for some M ∈ R. If k ∈ R \Q, then (21) is not consistent with the fact that y, x1, x2 are polyno-
mials. Hence we get that k = − n

m
∈ Q ∩ (−1, 0), with (n, m) = 1.

(b) From (21) we get

(
y − kx1

y − kx2

)m (
y − x1

y − x2

)n

= Mm. (22)

From this last equality we deduce that there exist polynomials P, Q, a ∈ R[t] with (P, Q) = 1
such that

y − x1 = a P m and y − x2 = a Qm (23)

and also there exists b ∈R[t] such that

y + n

m
x1 = M bQn and y + n

m
x2 = bP n.

From the equalities y −x1 = a P m and y + n
m

x1 = M bQn (resp. y −x2 = a Qm and y + n
m

x2 =
bP n) we get:

n + m

m
y = n

m
aP m + MbQn and

n + m

m
y = n

m
aQm + bP n.

Hence,

n

m
a(P m − Qm) = b(P n − MQn). (24)

Since Mm �= 1 it follows that (P m − Qm, P n − MQn) = 1 and hence it must exist a polynomial 
T ∈ R[t] such that

a = (P n − M Qn)T and b = n

m
(P m − Qm)T .

Substituting the expressions of a and b in n+my = n aP m + MbQn we get

m m
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y = nT

n + m
(P n+m − M Qn+m)

and consequently

x1 = nT

n + m
(P n+m − M Qn+m) − (P n − MQn)T P m,

x2 = nT

n + m
(P n+m − M Qn+m) − (P n − MQn)T Qm.

Since (y, x1) = 1 = (y, x2) it follows that T is constant and we get the desired result.
(c) In this case from (22) we get

(
y − kx1

y − kx2

)m (
y − x1

y − x2

)n

= 1.

From this equality we again deduce that there exist polynomials P, Q, a ∈ R[t] with 
(P, Q) = 1 such that (23) holds. Arguing as in case (b) we arrive again to equation (24), but 
with M = 1.

Since (m, n) = 1 and (P, Q) = 1 in this situation it holds that (P m −Qm, P n −Qn) = P −Q

and hence it must exist a polynomial T ∈R[t] such that

a = P n − Qn

P − Q
T and b = n

m

P m − Qm

P − Q
T.

Now the result follows as in the previous case. �
Next proposition studies the solutions of the equation

(P n+m − Qn+m)(R − S) = (Rn+m − Sn+m)(P − Q)

where P, Q, R, S, ∈ R[t], (P, Q) = (R, S) = 1. This equation has the solutions P = Q and 
R = S; P = S and Q = R, and also when n + m is odd P = −R and Q = −S; P = −S and 
Q = −R. We call these solutions trivial solutions.

Proposition 5.3. When k > 83 the equation

(P k − Qk)(R − S) − (Rk − Sk)(P − Q) = 0, (25)

where P, Q, R, S, ∈ R[t], (P, Q) = (R, S) = 1 and δ(PQ) > 0, δ(RS) > 0, only has trivial 
solutions.

Proof. Assume first that no proper subsum of (25) is equal to zero. Then since (P, Q) =
(R, S) = 1 we get

(P kR,P kS,QkR,QkS) = 1
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and we are under the hypothesis of Theorem 2.3. Let l = max{δ(P ), δ(Q), δ(R), δ(S)} and as-
sume without loss of generality that δ(P ) = l. Thus, since equation (25) has 8 monomials, we 
have

kl ≤ δ(P kR) ≤ 7 · 6

2
(Z(PQRS) − 1) ≤ 84l − 21,

and hence k ≤ 83.
Then to finish the proof we need to examine all the cases when a subsum of (25) is zero. We 

have checked all them by a case by case study. Since all our arguments only use elementary facts 
about divisibility and there are a lot of cases we only detail the more interesting ones.

If there is some subsum of (25) equals to zero always there exists one subsum with a mini-
mal number of monomials. This minimal number of monomials can be two, three or four. We 
illustrate our proof by choosing some examples of each of these situations.

(I) There is some subsum of (25) with two monomials equals to zero. Due to symmetry of the 
four letters there are only seven cases. Namely the monomial PkR joined with each of the 
seven remainder monomials. We detail two of these cases.
(i) P kR + QkS = 0. Since (P, Q) = 1 we get R = aQk and S = −aP k for some 0 �=

a ∈ R. Substituting these equalities in (25) we obtain

aP 2k − aQ2k − akQk2
P + (−a)kP k2+1 + akQk2+1 − (−a)kP k2

Q = 0. (26)

Due to the facts that (P, Q) = 1 and δ(PQ) > 0 it follows that no proper subsum 
of (26) is equal to zero. Moreover the greater common divisor of all the mono-
mials appearing in (26) is one. So we are in the hypothesis of Theorem 2.3. Let 
l = max{δ(P ), δ(Q)}. If δ(P ) = l we will get

(k2 + 1)l = δ(P k2+1) ≤ 10(Z(PQ) − 1) ≤ 20l − 1

and then k2 < 19; a contradiction with k > 83. If δ(Q) = l we obtain the same contra-
diction by considering the monomial Qk2+1.

(ii) P kR − RkP = 0. This implies P = R or k odd and P = −R. Since when k is odd if 
P, Q, R, S is a solution of (25) P, Q, −R, −S is also a solution, it suffices to consider 
the case P = R. Substituting the above equality in (25) we obtain

−P kS − QkP + QkS + SkP + P kQ − SkQ = 0. (27)

Here (P, Q) = (P, S) = 1. Then, if there are no proper subsumes of (27) equal to zero, 
we are in the hypotheses of Theorem 2.3. Thus we get a contradiction with k < 83, as 
in the previous cases. The analysis of the cases when a proper subsum of (27) equals to 
zero is also a very large and tedious analysis of different situations. We omit it because 
there are not interesting new arguments.

(II) There are some zero subsums, and the minimal length of them is 3. We have to consider 11 
cases taking into account the symmetries. We only explain the case

P kR − P kS − PRk = 0,
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because it is the more interesting one. We get P k−1(R − S) − Rk = 0. Since (R, S) = 1 we 
get that R − S = a, R = aBk−1 and P = aBk for some 0 �= a ∈ R and B ∈ R[t]. Note that 
we also have

−Qk(R − S) + RkQ + Sk(P − Q) = 0 (28)

and hence Q divides Sk . So we have Sk = QH for some H ∈R[t]. Also we will have

P k−1 + Q(P k−2 + . . . + PQk−3 + Qk−2)

= P k − Qk

P − Q
= Rk − Sk

R − S
= Rk − Sk

a
= P k−1 − Sk

a
.

Therefore H = −a(P k−2 + . . . + PQk−3 + Qk−2) and then (Q, H) = 1. Dividing equa-
tion (28) by Q and taking into account that R − S = a, we obtain

−Qk−1a + Rk + H(P − Q) = 0, (29)

and this equation is already under the hypothesis of Theorem 2.3. However we need to 
control the degree of H . To do this we first claim that δ(P ) = δ(Q). We have

kRk−1 −
∑k

i=2

(
k
i

)
(−a)iRk−i

a
= Rk − (R − a)k

R − S

= P k − Qk

P − Q
= P k−1 +

k−1∑
i=1

P k−1−iQi.

Note that the degree of the left side of this equality is (k − 1)2δ(B) and the degree of 
the right side is k(k − 1)δ(B) if δ(P ) > δ(Q) while it is (k − 1)δ(Q) > (k − 1)kδ(B) if 
δ(Q) > δ(P ). Therefore we must have δ(Q) = δ(P ) as we have claimed.
On the other hand since R − S = a we get δ(R) = δ(S) and therefore δ(Sk) = kδ(R) =
k(k − 1)δ(B). Thus

δ(H) = δ(Sk) − δ(Q) = δ(Sk) − δ(P ) = k(k − 2)δ(B).

Considering (29), since the number of monomials of this equation is n = 4, from Theo-
rem 2.3 we get

k(k − 1)δ(B) = δ(HP ) ≤ 3(Z(QPHR) − 1) = 3(Z(BS) − 1) ≤ 3kδ(B) − 3.

We obtain k(k − 1) < 3k which gives the desired contradiction.
(III) There are some zero subsums, and the minimal length of them is 4. After symmetries there 

are 15 cases. Again, we only explain one of them. Assume that

P kR − P kS − PRk − QkR = 0.

Therefore P k(R − S) − R(PRk−1 + Qk) = 0 and since (P, Q) = (R, S) = 1 we will have 
R = aP k for some 0 �= a ∈R. Substituting R and dividing by P k we obtain
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aP k − S − akP k2−k+1 − aQk. (30)

Since 1 = (R, S) = (aP k, S) the above equation is under the hypotheses of the Theo-
rem 2.3. However we need to control the degree of S. To do this notice that in this case 
we also have QkS + PSk + QRk − QSk = 0 and hence

(Qk + PSk−1)S + Q(Rk − Sk) = 0.

Since (S, R) = (P, Q) = 1 we get that S = bQ for some 0 �= b ∈ R and hence δ(Q) =
δ(S). Now let l = max{δ(P ), δ(Q)} and assume for example that δ(P ) = l. Then applying 
Theorem 2.3 to (30) we will have

kl = δ(P k) ≤ 3(Z(PQS) − 1) ≤ 9l − 3,

which gives the desired contradiction. If δ(P ) < l the result follows by considering the 
monomial Qk . �

Next Theorem gives a complete answer to the question on the number of rational solutions 
of (19).

Theorem 5.4. Equation (19) with k ∈ (−1, 0) has at most six rational solutions. Moreover if it 
has six rational solutions k = − 1

2 . Otherwise it has at most five rational solutions. These upper 
bounds are both achieved.

Proof. From Proposition 5.1 we know that two different rational solutions of (19) which are 
not 0, 1, k have the same numerator y. Assume that the differential equation has three different 
rational solutions z1, z2, z3 with zi = y

xi
for i = 1, 2, 3. First assume that there are two solu-

tions, namely z1, z2 such that |π(z1)| �= |π(z2)|. In this case |π(z3)| is different either to |π(z1)|
or |π(z2)|. So we can assume without loss of generality that M̄ = π(z2)

π(z1)
and L̄ = π(z3)

π(z1)
satisfy 

that M̄m �= 1 and L̄m �= 1. Thus applying Proposition 5.2 to z1, z2 and z1, z3 we know the exis-
tence of P, Q, R, S ∈ R[t] with (P, Q) = (R, S) = 1, PQRS �= 0, δ(PQ) > 0, δ(RS) > 0 such 
that

y = n

n + m
(P n+m − M̄Qn+m)

x1 = n

n + m
(P n+m − M̄Qn+m) − (P n − M̄Qn)P m

x2 = n

n + m
(Rn+m − M̄Sn+m) − (P n − M̄Qn)Qm

and

y = n

n + m
(Rn+m − L̄Sn+m)

x1 = n

n + m
(Rn+m − L̄Sn+m) − (Rn − L̄Sn)Rm

x3 = n

n + m
(Rn+m − L̄Sn+m) − (Rn − L̄Sn)Sm.
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In particular

Rn+m − L̄Sn+m = P n+m − M̄Qn+m (31)

and

(Rn − L̄Sn)Rm = (P n − M̄Qn)P m. (32)

Looking at equation Rn+m − L̄Sn+m − P n+m + M̄Qn+m = 0, we have that if such poly-
nomials exist, then n + m must satisfy n + m ≤ 7. This is so, because if n + m ≥ 8, 
from Theorem 2.2 the equality must decompose into trivial ones and since R �= 0 �= S, 
P �= 0 �= Q, (P, Q) = (R, S) = 1 and none of these pairs is constant we have that Rn+m −
P n+m = 0, and L̄Sn+m − M̄Qn+m = 0 or Rn+m + M̄Qn+m = 0 and L̄Sn+m + P n+m = 0. 
In both situations the set of solutions obtained from P, Q and R, S are the same. That is 
z2 = z3.

Now assume that n + m ≤ 7. Calling u = Q
P

and v = S
R

from (31) and (32) we deduce 
that

(1 − L̄ vn+m) (1 − M̄ un) − (1 − M̄ un+m) (1 − L̄ vn) = 0.

Hence the existence of three non-constant rational solutions implies that some of the irreducible 
components of the above polynomial has a rational parametrization. But it is know that this 
happens if and only this irreducible component has genus equal to zero. For convenience, we 
consider the change of coordinates ū = M̄1/n u and v̄ = L̄1/n v and renaming the variables we 
will consider

F(u, v) := (1 − Lvn+m) (1 − un) − (1 − M un+m) (1 − vn),

with n + m ≤ 7, L �= 0 �= M and n, m relatively prime. Note that L = L̄− m
n and M = M̄− m

n .
From Propositions 4.1 and 4.2 we see that in our situation (remember that |M̄| �= 1 �= |L̄|) the 

only case that the genus of some irreducible component of F is zero is when Mn = Ln. In this 
case we get M̄−m = L̄−m. Therefore L̄ = M̄ or m is even and L̄ = −M̄ . In both cases the com-
ponent of genus zero is u − v which in the original variables gives Q

P
= S

R
or in the case m even 

also we can get Q
P

= − S
R

. In all this situations we obtain that z2 = z3. Thus in this case there are 
only five rational solutions.

Now assume that |π(z1)| = |π(z2)| = |π(z3)| and first suppose that m is odd and π(z1) =
−π(z2) = −π(z3). Then applying Proposition 5.2 to the pairs z1, z2 and z2, z3 it follows that 
there exist P, Q, R, S ∈R[t] such that PQRS �= 0, (P, Q) = (R, S) = 1,

y = n

n + m
(P n+m + Qn+m)

x1 = n

n + m
(P n+m + Qn+m) − (P n + Qn)P m

x2 = n

n + m
(Rn+m + Sn+m) − (P n + Qn)Qm,

and
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y = n

n + m
(Rn+m + Sn+m)

x1 = n

n + m
(Rn+m + Sn+m) − (Rn + Sn)Rm

x3 = n

n + m
(Rn+m + Sn+m) − (Rn + Sn)Sm.

In particular

Rn+m + Sn+m = P n+m + Qn+m (33)

and

(Rn + Sn)Rm = (P n + Qn)P m. (34)

As before looking at equation Rn+m + Sn+m − P n+m − Qn+m = 0, we have that if such 
polynomials exist, then n + m must satisfy n + m ≤ 7. So we assume that n + m ≤ 7.

Thus from equations (33) and (34) we obtain

(1 + vn+m) (1 + un) − (1 + un+m) (1 + vn) = 0.

As in the previous case, the existence of three non-constant rational solutions implies that 
some of the irreducible components of the above polynomial has genus equal zero. Again from 
Proposition 4.2 we see that the only irreducible component of genus zero is u − v which implies 
that Q

P
= S

R
and z2 = z3. So again in this case we obtain only five rational solutions.

Lastly consider the case π(z1) = π(z2) = π(z3) or m is even and π(z1) = −π(z2) = −π(z3). 
In both cases from Proposition 5.2 applied to the pairs (z1, z2) and (z1, z3) we obtain that there 
exist P, Q, R, S ∈R[t] such that PQRS �= 0, (P, Q) = (R, S) = 1, δ(PQ) > 0, δ(RS) > 0,

y = n

n + m

(P n+m − Qn+m)

P − Q
,

x1 = n

n + m

(P n+m − Qn+m)

P − Q
− (P n − Qn)P m

P − Q
,

x2 = n

n + m

(P n+m − Qn+m)

P − Q
− (P n − Qn)Qm

P − Q
,

and

y = n

n + m

(Rn+m − Sn+m)

R − S
,

x1 = n

n + m

(Rn+m − Sn+m)

R − S
− (Rn − Sn)Rm

R − S
,

x3 = n

n + m

(Rn+m − Sn+m)

R − S
− (Rn − Sn)Sm

R − S
.

In particular we have that

(P n+m − Qn+m)(R − S) = (Rn+m − Sn+m)(P − Q)
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and from Proposition 5.3 it follows that for n + m ≥ 84 the above equation has no relevant 
solutions. So we assume that n + m ≤ 83.

From

(P n+m − Qn+m)

P − Q
= (Rn+m − Sn+m)

R − S
and

(P n − Qn)P m

P − Q
= (Rn − Sn)Rm

R − S

and putting Q/P = u and S/R = v we obtain

(1 − un+m)(1 − vn) − (1 − vn+m)(1 − un) = 0.

Proposition 4.3 shows that for n + m ≤ 83, and n > 1 the only irreducible components with 
genus zero of the above polynomial are u = 1, v = 1 and u = v. The two first possibilities give 
that z1, z2 and z3 are constants. The case u = v forces z2 = z3 and again we obtain five rational 
solutions

In the case n = 1, m = 2 there is also the component u + v + 1 = 0 that has genus zero. In 
this case we obtain

y = 1

3

(P 3 − Q3)

P − Q
, x1 = 1

3

(P 3 − Q3)

P − Q
− P 2, x2 = 1

3

(P 3 − Q3)

P − Q
− Q2

and

y = 1

3

(R3 − S3)

R − S
, x1 = 1

3

(R3 − S3)

R − S
− R2, x3 = 1

3

(R3 − S3)

R − S
− S2,

which gives the solutions R = P, S = Q, or R = P, S = −(P + Q), or R = −P, S = P + Q. 
They give rise to three different solutions with x1 = y − P 2, x2 = y − Q2, x3 = y − (P + Q)2. 
So in this case we can obtain six rational solutions.

In the case n = 1, m = 3 there is also the component 1 + u + v + u2 + uv + v2 = 0 that has 
genus zero. However there are no rational real functions u, v ∈ R(t) satisfying this relation.

If n = 1, m > 3 and n + m ≤ 83, Proposition 4.3 shows that the only irreducible components 
of genus zero are again u = 1, v = 1 and u = v. Thus the result follows as when n > 1.

This ends the proof that there are most six rational solutions.
To get an example with six solutions in the case k = − 1

2 we simply choose P(t) = t and 
Q(t) = 1 in the corresponding set of equations. Then the equation is

3t (t + 1)(t2 + t + 1) ż = −2(2t + 1)(t − 1)(t + 2) z(z − 1)(z + 1

2
).

This equation has the solutions 0, 1, − 1
2 and

z1(t) = − t2 + t + 1

(2t + 1)(t − 1)
, z2(t) = t2 + t + 1

(t + 2)(t − 1)
, z3(t) = − t2 + t + 1

(t + 2)(2t + 1)
.

To get an example with five rational solutions when k �= − 1
2 , we consider the same P and Q

and k = − 1 . We get the differential equation
3
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4t (t + 1)(t2 + 1)(t2 + t + 1) ż = −3(t − 1)(3t2 + 2t + 1)(t2 + 2t + 3) z(z − 1)(z + 1

3
).

For this equation the only rational solutions are 0, 1, − 1
3 and

z1(t) = − (t + 1)(t2 + 1)

(t − 1)(3t2 + 2t + 1)
, z2(t) = (t + 1)(t2 + 1)

(t − 1)(t2 + 2t + 3)
. �

Now we are ready to set out the main result of this section.

Proof of Theorem B. Assume that equation (3) has x1, x2, x3 ∈ R[t] three different solutions 
which are collinear. Assume also that x2 is between x1 and x3. Then the change y = x − x2
transforms (3) in

q(t) ẏ = p3(t) y3 + p̃2(t) y2 + p̃1(t) y, (35)

for some p̃2(t), ̃p1(t) ∈ R[t]. Notice that equation (35) has the collinear solutions y1 = x1 − x2, 
y2 = 0, y3 = x3 − x2 = ky1, for some k < 0.

If x2 = 1
2 (x1 + x3) then a simple computation shows that k = −1 and p̃2(t) = 0. So in this 

case the result follows from Theorem A.
If x2 �= 1

2 (x1 + x3) then k �= −1. We consider the change z(t) := y(t)
ȳ1(t)

that transforms equa-
tion (35) in q(t) ̇z = p(t)z(z − 1)(z − k) for some p(t) ∈ R[t]. Note that we can assume 
that k ∈ (−1, 0). If this is not the case it suffices to consider the change z(t) := y(t)

ȳ2(t)
instead 

z(t) := y(t)
ȳ1(t)

and we obtain equation (19) with k ∈ (−1, 0). Thus the polynomial solutions of 
the original equation are transformed in rational solutions of equation (19). Hence, from The-
orem 5.4 we obtain that our equation has at most six polynomial solutions. To get an example 
with this number of polynomial solutions it suffices to modify the example given in the proof 
of Theorem 5.4. Consider the change of variable ω(t) = z(t)(t + 2)(2t + 1)(t − 1) where 
(t + 2)(2t + 1)(t − 1) is the least common multiple of d1(t), d2(t) and d3(t), the respective 
denominators of z1(t), z2(t) and z3(t) in the mentioned example. We get

Q(t) ω̇ = P3(t)ω3 + P2(t)ω2 + P1(t)ω,

where

Q(t) = 3(2t + 1)(t − 1)t (t + 1)(t + 2)(t2 + t + 1),

P3(t) = −2, P2(t) = (2t + 1)(t − 1)(t + 2),

P1(t) = 22t6 + 66t5 + 60t4 + 10t3 − 3t2 + 3t + 4.
The above equation has the solutions

ω1 = 0, ω2 = (2t + 1) (t − 1) (t + 2) ,

ω3 = −1

2
(2t + 1) (t − 1) (t + 2) , ω4 = − (t + 2)

(
t2 + t + 1

)
,

ω5 = (2t + 1)
(
t2 + t + 1

)
, ω6 = − (t − 1)

(
t2 + t + 1

)
.
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Using the same approach one can construct examples with five polynomial solutions when 
k ∈Q ∩ (−1, 0) and k �= −1/2. �
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