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Abstract. We show that for periodic non-autonomous discrete dynamical sys-

tems, even when a common fixed point for each of the autonomous associated

dynamical systems is repeller, this fixed point can became a local attractor for
the whole system, giving rise to a Parrondo’s dynamic type paradox.

1. Introduction and main results. The study of periodic discrete dynamical
systems is a classical topic that has attracted the researcher’s interest in the last
years, among other reasons, because they are good models for describing the dy-
namics of biological systems under periodic fluctuations whether due to external
disturbances or effects of seasonality, see [4, 15, 16, 17, 25, 26, 27] and the refer-
ences therein.

These k-periodic systems can be written as

xn+1 = fn+1(xn), (1)

with initial condition x0, and a set of maps {fm}m∈N such that fm = f` if m ≡ `
( mod k). For short, the set {f1, . . . , fk} will be called periodic set. We also will
assume that all fm : U ⊂ Rn → U being U an open set of Rn.

It is well-known that given a periodic discrete dynamical system (1), it can be
studied via the composition map fk,k−1,...,1 = fk ◦ fk−1 ◦ · · · ◦ f1. For instance, if all
maps fm ∈ {f1, f2, . . . , fk} share a common fixed point p, the nature of the steady
state x = p can be studied through the nature of the fixed point p of fk,k−1,...,1. In
the same way, the attractor of a periodic discrete dynamical system (1) is the union
of attractors of some composition maps, see [17, Thms. 3 and 6].
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A specially interesting case occurs when all the maps in the periodic set have a
fixed point which is a global asymptotically stable (GAS) and the periodic system
has a global asymptotically stable periodic orbit [1, 4, 6, 15]. In this setting, the
simplest situation corresponds to the case when all the autonomous maps share the
same fixed point which is GAS for all of them and it is also a GAS fixed point for
composition map, see [31]. It is known this is not a general phenomenon, see for
instance Examples 5 or 6 of next section.

We will focus on studying the stability of fixed points of k-periodic systems which
are common fixed points of all the maps in the periodic set. We restrict ourselves
to this setting because it is the simplest type of “periodic orbit” that a periodic
dynamical system can have.

Notice that given two stable n×n matrices1, A1 and A2, it holds that |det(Ai)| <
1 and hence |det(A2A1)| = |det(A2) det(A1)| < 1. As a consequence, the fixed point
of any composition map fk,...,1 in Rn (linear or non-linear) resulting of the compo-
sition of k maps fj with a common hyperbolic fixed point, which is asymptotically
stable for all them, must be generically either asymptotically stable or a saddle,
but it can never be repeller. A similar result happens with maps with a common
hyperbolic repeller: generically this point is either repeller or a saddle for the com-
position map, but never a local asymptotically stable (LAS) fixed point. Hence, in
this paper, to show that this third possibility may happen in both situations, we
will need to deal with non-hyperbolic fixed points. We recall the definitions of LAS,
GAS, repeller and semi-AS fixed point in Section 2.

The so called Parrondo’s paradox is a paradox in game theory, that essentially
says that a combination of losing strategies becomes a winning strategy, see [18,
23]. We will prove that in the non-hyperbolic case the periodicity can destroy the
repeller character of the common fixed points, giving rise to attracting points for the
complete non-autonomous system, showing, in consequence, the existence of a kind
of Parrondo’s dynamic type paradox for periodic discrete dynamical systems. The
phenomenon that we will show is in a simpler setting than the one presented in [7],
because there the authors combine periodically one-dimensional maps f1 and f2 to
give rise to chaos or order.

We start studying the one-dimensional case. The tools for determining the sta-
bility of non-hyperbolic fixed points for one-dimensional analytical maps are well
established, see Section 3.1. As we will see, one of the key points is the computation
of the so called stability constants for studying the stability of non-hyperbolic fixed
points of one-dimensional non-orientable analytic maps.

Using these tools, in the periodic case we prove the following result which implies
that, contrary to what we will show that happens in even dimensions, it is impossible
to find two one-dimensional maps sharing a fixed point which is repeller, and such
that the composition map has a LAS fixed point. However, it is possible to find
a LAS fixed point when three or more maps sharing a repeller fixed point are
composed (that is for k-periodic systems with k ≥ 3) giving rise to the Parrondo’s
dynamic paradox.

Theorem A. The following statements hold:

(a) Consider two analytic maps fi : U ⊆ R → U , i = 1, 2 having a common fixed
point p ∈ U which is LAS (resp. repeller). Then, the point p is either LAS

1All their eigenvalues have modulus smaller than 1.
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(resp. repeller) or semi-AS for the composition map f2,1 and both possibilities
may happen.

(b) There are k ≥ 3 polynomial maps fi : U ⊆ R → U , i = 1, 2, . . . , k sharing
a common fixed point p ∈ U which is LAS (resp. repeller) for all them and
such that p is a repeller (resp. a LAS) fixed point for the composition map
fk,k−1,...,1.

The situations stated in item (b) of the above theorem when k = 3, happen for
instance in Examples 1 and 2 of Section 2.

Next we consider the same problem for planar maps. Again we must pay atten-
tion to the stable/repeller character for non-hyperbolic fixed points. We restrict
ourselves to maps with elliptic fixed points. These points are fixed points for which
the eigenvalues of the associated linear part lie in the unit circle, but excluding the
values ±1. For most of them it is possible to get their Birkhoff normal form, which
permits to compute the so called Birkhoff constants and from them the Birkhoff
stability constants. Using these last constants it is possible to distinguish between
LAS and repeller fixed points. We recall all these concepts in Section 4.1.

The problem of the local stability of parabolic fixed points (eigenvalues ±1) is
much more involved, see [3, 22, 28, 29] for instance, but we do not need to use them
to get our results.

Now we can state our main result for the planar case, that presents again a
Parrondo’s type paradox now in the two-periodic setting. Some simple examples of
maps f1 and f2 illustrating it are given in Examples 7 and 8 of the next section.

Theorem B. There exist polynomial maps f1 and f2 in R2 sharing a common fixed
point p which is a LAS (resp. a repeller) fixed point for both of them, and such that
p is repeller (resp. LAS) for the composition map f2,1.

Combining the maps that allow to prove item (b) of Theorem A and Theorem B
we can prove the following result that extends these theorems to arbitrary dimen-
sions.

Theorem C. The following statements hold.

(a) For all n ≥ 1 there exist k ≥ 3 polynomial maps fi : U ⊆ Rn → Rn, for
i ∈ {1, . . . , k}, sharing a common fixed point p which is LAS (resp. repeller)
for each map, and such that p is repeller (resp. LAS) for the composition
map fk,k−1,...,1. Furthermore, for one-dimensional maps (n = 1), this result
is optimal on k, that is, it is not possible to find only two of such maps such
that the corresponding composition map f2,1 satisfies the given properties.

(b) For all n = 2m ≥ 2 there exist 2 polynomial maps f1, f2 : U ⊆ R2m → R2m,
sharing a common fixed point p which is LAS (resp. repeller) for both maps,
and such that p is repeller (resp. LAS) for the composition map f2,1.

Although the above theorem is stated for polynomial maps, using similar tech-
niques, it is easy to construct examples with the same properties but with less
regularity, say of class Cm for any m ≥ 6 (resp. m ≥ 4) in item (a) (resp. item
(b)). As we will see, this restriction comes from the use of normal forms and Taylor
expansions involving terms until order five (resp. order three) in the construction
of our examples.

From its statement it is natural to wonder if item (a) of the theorem could be
improved for n ≥ 3, odd, taking k ≥ 2. We continue thinking on this question.
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The paper is structured as follows. In Section 2 we collect all the explicit examples
used to prove Theorems A and B and other that help to contextualize the problem
that we consider. Section 3 is devoted to prove the results in the one-dimensional
case. In particular, in Subsection 3.1 we give the expression of the first stability
constants and we prove Theorem A. Section 4 is devoted to prove Theorems B
and C.

2. Examples and some definitions. We start recalling some definitions, see
[13, 14, 21].

Definition 2.1. A fixed point p of a map f : U ⊂ Rn → U is said to be:

(i) Locally asymptotically stable (LAS) if it is stable and it is locally attractive.
That is, if given ε > 0, there exists δ > 0 such that if ||x0 − p|| < δ then
||fn(x0) − p|| < ε for all n ≥ 1 (estable), and there exists η > 0 such that
if ||x0 − p|| < η then lim

n→∞
fn(x0) = p (attractive). The point is globally

asymptotically stable in U (GAS), if it is LAS and lim
n→∞

fn(x0) = p for all

x0 ∈ U .
(ii) Repeller if there exists ε0 > 0 such that for any 0 < ε < ε0 and for all x0 6= p

such that ||x0−p|| < ε, there exists n = n(x0) ∈ N such that ||fn(x0)−p|| > ε.

If f is a one-dimensional map, the fixed point is called:

(iii) Semi–asymptotically stable2 (semi-AS) from the left (resp. right) if given
ε > 0, there exists δ such that if x0 ∈ (p − δ, p) (resp. x0 ∈ (p, p + δ)) then
|fn(x0)−p| < ε for all n ≥ 1, and there exists η > 0 such that if x0 ∈ (p−η, p)
(resp. x0 ∈ (p, p+ η)) then lim

n→∞
fn(x0) = p, and there exists η > 0 such that

if x0 ∈ (p, p + η) (resp. x0 ∈ (p − η, p)) then there exists n ∈ N such that
|fn(x0)− p| > η.

We remark that for invertible maps, instead of definition (ii) it is simpler to say
that a fixed point p is a repeller for f if p is an attractor for f−1.

Next we collect several examples that illustrate the main results of this paper.
We start with a one-dimensional example that gives the clue for proving item (b)
of Theorem A.

Example 1. Consider the maps:

f1(x) = −x+ 3x2 − 9x3 + 164x5,

f2(x) = −x+ 5x2 − 25x3 + 1259x5,

f3(x) = −x+ 2x2 − 4x3 + 33x5.

These maps have been chosen using the expressions of the stability constants given
in Proposition 3.3 of next section, in such a way that they satisfy V3(fi) = 0 and
V5(fi) < 0 for i ∈ {1, 2, 3}. Then, they have a LAS fixed point at the origin (see
Theorem 3.2). Moreover, f3,2,1(x) = −x + 90x4 − 48x5 + O(6). Computing the
stability constants for this map we obtain that V3(f3,2,1) = 0 and V5(f3,2,1) = 96 >
0. Hence, using again Theorem 3.2, we get that the origin is a repeller fixed point
of f3,2,1. In the proof of item (b) of Theorem A we will explain their whole process
of construction.

Clearly, taking the local inverses of these maps at the origin until order five we
will have an example of the other situation stated in item (b) of Theorem A, which

2 Also named saddle-node or shunt.
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precisely is the one that gives rise to the Parrondo’s dynamic paradox. We present
it in the next example.

Example 2. Consider the maps

g1(x) = T5(f−1
3 (x)) = −x+ 2x2 − 4x3 + 31x5,

g2(x) = T5(f−1
2 (x)) = −x+ 5x2 − 25x3 + 1241x5,

g3(x) = T5(f−1
1 (x)) = −x+ 3x2 − 9x3 + 160x5,

where the fj are the maps given in Example 1 and T5 means the Taylor polynomial
of degree 5 at the origin. These maps have a local repeller at the origin but the
composition map g3,2,1(x) = −x+90x4 +48x5 +O(6) has an attractor at the origin,
because its Taylor polynomial of degree 5 coincide with the one of the inverse of
f3,2,1. In fact the origin is LAS.

Remark 1. It is interesting to observe that the order in the periodic set is very
important. For instance, in Example 2, we have seen that the origin of the com-
position map g3,2,1 is LAS. Nevertheless, by using the stability constants, it can be
seen that the origin of g1,2,3(x) = −x+ 90x4 − 72x5 +O(6) is repeller.

Next example shows that even when two maps have a common GAS fixed point,
the corresponding composition map does not need to have a LAS fixed point.

Example 3. Consider the maps

f1(x) =

{
−x+ x2 x ≤ 1,
0 x > 1,

and f2(x) =

{
−x+ 2x2 x ≤ 1/2,
0 x > 1/2.

It is easy to check that the origin is a GAS fixed point for both of them. Their
corresponding composition map is

f2,1(x) = f2 ◦ f1(x) =


0 x < 1−

√
3

2 ,

x+ x2 − 4x3 + 2x4 x ∈
[

1−
√

3
2 , 1

]
,

0 x > 1.

It is not difficult to see that the origin is a fixed point, semi-AS from the left for
the composition map (see the Theorem 3.1 in next section). Moreover this map

also has another fixed point at x = 1 −
√

2/2. Hence the origin is neither a global
attractor of f2,1 nor stable. Gluing the three pieces of this example with some
suitable bump functions, it is possible to obtain differentiable or C∞ examples with
the same features.

To end with the one-dimensional examples, and although it is out of the periodic
systems framework, we consider non-periodic, non-autonomous system

xn+1 = fn+1(xn), (2)

with a non-hyperbolic fixed point p. We will show that it is possible to find maps
fn sharing this common fixed point p, which is a GAS for each of them, and such
that the system has an unbounded solution.

Example 4. We will construct a family of functions {fn}n≥0 such that the origin
is GAS for each fn but the unbounded sequence yn = (−1)n(n + 1) for n ≥ 0 is a
solution of (2).
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Consider the following auxiliary map ga(x) = a (exp(−x/a)− 1). Let a0 be the
solution of the equation ga(1) = −2. That is,

a0 =
2

2W−1

(
− exp(−1/2)/2

)
+ 1
' −0.7959,

where W−1(x) is the secondary branch of the Lambert W -function, [12, 24].
Now we take f0 := ga0 . The map f0 has a GAS fixed point at the origin3 which

is non-hyperbolic, since f ′0(0) = −1, and it satisfies f0(1) = −2.
In order to construct the maps fn for n ≥ 1, we consider the following linear

conjugations

hn(x) :=
(−1)n

3

(
(2n+ 3)x+ n

)
.

These maps are chosen in such a way that hn(−2) = (−1)n+1(n + 2) = yn+1 and
h−1
n (yn) = 1. Now, we define

fn(x) := hn ◦ f0 ◦ h−1
n (x), n ≥ 1.

Obviously each map has a GAS point at the origin, because they are conjugate to
f0. Finally, observe that for all n ∈ N,

fn(yn) = hn ◦ f0 ◦ h−1
n (yn) = hn ◦ f0(1) = hn(−2) = yn+1.

Hence the unbounded sequence {yn}n∈N is a solution of (2) with initial condition
x0 = 1.

We continue this section with some simple linear two-dimensional examples.

Example 5. This first example shows two linear maps such that for each of them
the origin which is GAS (in fact a super-attracting point), but the origin is a saddle
point of the composition map f2,1. Hence the origin is an unstable steady state of
the periodic system, but not repeller. Set x = (x, y) and fi(x) = Ai · xt, where

A1 =

(
0 2
0 1

2

)
and A2 =

(
1
2 0
2 0

)
.

Observe that Spec (A1) = Spec (A2) = {0, 1/2}, so the origin is GAS for the dynam-
ical systems associated to f1 and f2. The corresponding composition map associated
to the 2-periodic system is f2,1(x) = A2,1 · xt where

A2,1 := A2 ·A1 =

(
0 1
0 4

)
.

Since Spec (A2,1) = {0, 4}, the origin is a saddle point for f2,1.

Example 6. In [5] the authors consider the maps fi(x) = Ai · xt, i = 1, 2 where

A1 = α

(
1 1
0 1

)
and A2 = α

(
1 0
1 1

)
,

with |α| < 1. Both maps have the origin as a GAS point because Spec (A1) =
Spec (A2) = {α}. Then the composition map is f2,1(x) = A2,1 · xt with

A2,1 = α2

(
1 1
1 2

)
,

3Since f0(−∞, 0) ⊂ (0,+∞) and f0(0,+∞) ⊂ (−∞, 0) it is enough to check that if x > 0, then

for k ≥ 1 we have f2k
0 ([0, x]) ⊂ [0, ak), where limk→+∞ ak = 0+; and if x < 0, then for k ≥ 1 we

have f2k−1
0 ([0, x]) ⊂ [0, bk), where limk→+∞ bk = 0+.
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and it is such that Spec (A2,1) = {
(
3±
√

5
)
α2/2}. Hence the origin is either GAS

if |α| < (
√

5 − 1)/2 ' 0.618, or a saddle point if (
√

5 − 1)/2 < |α| < 1. Again the
stability can be lost but again no repeller fixed points appear.

Another nice linear example is given in [20, p. 8]. There the author shows two
linear maps, both with a stable focus at the origin, and such that the corresponding
composition map has again a saddle at the origin.

We end this section with two planar examples that show that taking a periodic
set with only two elements with non-hyperbolic fixed points, the stabilities of the
common fixed point can be reversed for the corresponding composition maps. In
fact they allow to prove Theorem B. Their constructions are detailed in Section 4.2.

Example 7. Consider the maps

f1(x, y) =
(
−y + 2x2 + 6xy, x− 3x2 + 2xy + 3y2

)
,

f2(x, y) =

(
x

2
−
√

3

2
y − x (x2 + y2),

√
3

2
x+

1

2
y − y (x2 + y2)

)
.

As we will see in the proof of Theorem B in Section 4, the origin is a LAS fixed point
for both maps f1 and f2, because their Birkhoff stability constants are V1(f1) =
V1(f2) = −1/2 < 0. However the origin is a repeller fixed point for the composition

map f2,1 because V1(f2,1) = (3
√

3− 5)/2 ' 0.098 > 0.

Each map fi is locally invertible in a neighborhood of the origin. Hence, as we
did for passing from Example 1 to Example 2, by taking their local inverses f−1

i ,
we have maps with a repeller fixed point at the origin such that their composition
map has a LAS fixed point at the origin, giving an example of the remaining case
considered in Theorem B. Anyway, we also include an explicit independent example.

Example 8. The origin is a repeller fixed point for both maps

f1(x, y) =

(
−y +

1

3
x2 − 8xy +

5

3
y2, x+ 4x2 − 4

3
xy − 4y2

)
,

f2(x, y) =

(
x

2
−
√

3

2
y + x(x2 + y2),

√
3

2
x+

1

2
y + y(x2 + y2)

)
,

because their corresponding Birkhoff stability constants are V1(f1) = V1(f2) =

1/2 > 0. Now the origin is a LAS fixed point for f2,1, because V1(f2,1) = 3−2
√

3 '
−0.464 < 0.

3. One-dimensional maps.

3.1. Stability of fixed points. In this section we consider one-dimensional ana-
lytic maps with a fixed point that, without loss of generality, we take as the origin
and we denote by U a neighborhood of this point. As we have already mentioned,
it is clear that, from the view point of the stability problem for composition, the
more interesting maps are the ones having non-hyperbolic fixed points. A summary
of several results concerning this situation can also be found in [13]. Next we recall
some of them and also develop some new results for the orientation reversing case.

This first result is well-known and characterizes the local dynamics at a non-
hyperbolic non-oscillatory fixed points one-dimensional maps f (i.e. f ′(0) = 1, that
is, when f is locally orientation preserving):
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Theorem 3.1 ([13]). Let f be a Cm+1(U) function such that f(0) = 0, f ′(0) = 1
and

f(x) = x+ amx
m +O(m+ 1), with am 6= 0, m ≥ 2.

Then:

(a) If m is even then the origin is semi-AS from the left if am > 0 and from the
right if am < 0.

(b) If m is odd then the origin is repeller if am > 0 and LAS if am < 0.

The complete study of the local dynamics at a non-hyperbolic oscillatory fixed
point (i.e. when f(0) = 0 and f ′(0) = −1, that is when f is locally orientation
reversing), is more involved. In [13, Thm 5.1] a result is given in terms of the
derivatives of the orientation preserving map f2 = f ◦ f , by using Theorem 3.1.
However in [13, Thm 5.4], to avoid using these derivatives the authors present a
slightly more explicit expressions obtained using the Faà di Bruno Formula ([19]).
The expressions in [13, Thm 5.1] are closely related with what we call stability
constants, that we introduce below.

Given a Cω(U) function of the form

f(x) = −x+
∑
j≥2

ajx
j ,

one obtains

f2(x) := f ◦ f(x) = x+
∑
j≥3

Wj(a2, . . . , aj)x
j .

If f is not an involution (i.e. f2 6= Id), we define the stability constant of order
` ≥ 3, as V`, where

V3 := W3(a2, a3) and V` := W`(a2, . . . , a`) if Wj = 0, j = 3, . . . , `− 1.

Next result shows that the first non-zero stability constant is for ` odd and gives
the stability of the fixed point.

Theorem 3.2. Let f be an analytic map in U ⊆ R such that f(0) = 0, f ′(0) = −1.
If f is not an involution, then there exists m ≥ 1 such that V3 = V4 = V5 = · · · =
V2m = 0 and V2m+1 6= 0. Moreover, if V2m+1 < 0 (resp. V2m+1 > 0), the origin is
LAS (resp. repeller).

Proof. We start proving that the first non-zero stability constant has odd order.
Suppose, to arrive to a contradiction, that f2(x)− x = V2mx

2m +O(2m+ 1) with

V2m 6= 0. Then, there exists Ũ ⊆ U a neighborhood of the origin such that for all
x ∈ Ũ \ {0}, f is strictly monotonically decreasing and f2(x) − x does not change
its sign.

Let x0 ∈ Ũ \ {0} and consider its orbit xn = fn(x0). We take x0 small enough

with x1, x2, x3 ∈ Ũ \ {0}. When V2m > 0, we have that x2 − x0 = f2(x0)− x0 > 0.
Since f is decreasing, f(x2) < f(x0), that is, f2(x1) < x1, a contradiction. If
V2m < 0, then we have that x2 − x0 = f2(x0) − x0 < 0. Since f is decreasing,
f(x2) > f(x0), so f2(x1) > x1, which is, again, a contradiction.

Now, the theorem is a direct corollary of statement (b) of Theorem 3.1 applied
to f2.

Finally, we give an expression of some stability constants. It is clear that the
regularity of the function can be weakened in their computation, because the only
needed tools are the Taylor expansions at the origin.
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Proposition 3.3. Let f be a C12(U) function such that f(0) = 0, f ′(0) = −1.
Then the first stability constants are

V3 =2
(
−a2

2 − a3

)
,

V5 =2
(
2a2

4 − 3a2a4 − a5

)
,

V7 =2
(
−13a2

6 + 18a2
3a4 − 4a6a2 − 2a4

2 − a7

)
,

V9 =2
(
145a2

8 − 221a2
5a4 + 35a2

3a6 + 50a2
2a4

2 − 5a2a8 − 5a6a4 − a9

)
,

V11 =2
(
−2328a2

10 + 3879a2
7a4 − 561a2

5a6 − 1263a2
4a4

2 + 61a2
3a8 + 171a2

2a4a6+

55a2a4
3 − 6a2a10 − 6a4a8 − 3a6

2 − a11

)
,

Proof. The constants have been obtained by computing the first coefficient of the
Taylor expansion of f2. It is easy to check that any constant V2m+1 contains
the monomial −2a2m+1. Hence, once V2m+1 is obtained, the constant V2m+3 is
computed by solving V2m+1 = 0 with respect the coefficient a2m+1 and plugging
this value in the expression of W2m+3.

We stress that more constants can be easily obtained with very few computing
time.

3.2. Proof of Theorem A. Observe that the statement (a) of Theorem A is a
consequence of the following result.

Theorem 3.4. Consider two analytic maps fi : U ⊆ R → U , i = 1, 2 having a
common non-hyperbolic fixed point p ∈ U which is LAS (resp. repeller) for both of
them. Then p is either LAS (resp. repeller) or semi-AS for the composition map
f2,1 = f2 ◦ f1. More precisely,

(a) If one of the maps fi preserves orientation, then p is LAS (resp. repeller) for
f2,1.

(b) If both f1 and f2 reverse orientation, then p can be either a LAS (resp. re-
peller) or a semi-AS fixed point for f2,1.

To prove it, we introduce the differentiable normal form of an analytic map f
with a non-hyperbolic fixed point at 0, which is given by the next result in [8] (see
also [2, 9]). A similar result for C∞ maps can be found in [30, Thm 2]:

Theorem 3.5 (K. Chen, [8]). Let f be an analytic diffeomorphism on R. If f
is orientation preserving (resp. reversing), and it is not an involution, then given
any positive integer ` there exists a C` local diffeomorphism ϕ on R such that g =
ϕ−1 ◦ f ◦ ϕ is in one of the normal forms:

(a) g(x) = λx, with |λ| 6= 1 and λ > 0 (resp. λ < 0),
(b) g(x) = x+ (±x)m+1 + cx2m+1 (resp. g(x) = −x± xm+1 + cx2m+1),

where c ∈ R, and m is a positive (resp. positive even) integer.

Next result classifies the stability of each of these normal forms. The proof follows
from a straightforward application of Theorems 3.1 and 3.2.

Lemma 3.6. The following statements hold.

(a) The map f(x) = x + xm+1 + cx2m+1, with 0 < m ∈ N and c ∈ R, has a
semi-AS from the left fixed point at the origin if m is odd, and a repeller fixed
point if m is even.
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(b) The map f(x) = x − xm+1 + cx2m+1, with 0 < m ∈ N and c ∈ R, has a
semi-AS from the right fixed point at the origin if m is odd, and a LAS fixed
point if m is even.

(c) The map f(x) = −x+ x2r+1 + cx4r+1, with 0 < r ∈ N and c ∈ R, has a LAS
fixed point at the origin.

(d) The map f(x) = −x − x2r+1 + cx4r+1, with 0 < r ∈ N and c ∈ R, has a
repeller fixed point at the origin.

To prove Theorem 3.4, we also need the following result.

Lemma 3.7. Let f be an analytic map in U which is not an involution, given by
f(x) = −x+

∑
j≥2 ajx

j. Assume that a2j = 0 and V2j+1 = 0 for all j = 1, 2, . . . ,m.
Then a2j+1 = 0 for all j = 1, 2, . . . ,m.

Proof. We prove the lemma by induction on m. If m = 1 then a2 = V3 = 0. By
Proposition 3.3, since V3 = −2(a2

2 + a3) = −2 a3 = 0 we get a3 = 0.
Now assume that the result is true for all j ≤ m − 1 and assume that a2j = 0

and V2j+1 = 0 for all j = 1, 2, . . . ,m. In particular a2j = 0 and V2j+1 = 0 for all
j = 1, 2, . . . ,m − 1. Applying the induction hypothesis we get a2j+1 = 0 for all
j = 1, 2, . . . ,m − 1. Then, f(x) = −x + a2m+1 x

2m+1 + O(2m + 2) which implies
that V2m+1 = −2 a2m+1, because f2(x) = x − 2 a2m+1 x

2m+1 + O(2m + 2). Since
V2m+1 is zero, also a2m+1 must be zero.

Proof of Theorem 3.4. We will consider only the situation where f1 and f2 have a
LAS fixed point; the other case follows similarly.

(a) Let f1 and f2 be the two maps, and assume that the second one preserves
orientation. Without loss of generality, we can take the first one in one of its normal
forms given in Lemma 3.6, f1(x) = ±x ∓ x2r+1 + c x4r+1, and the second one, by
Theorem 3.1, as f2(x) = x+ a x2n+1 +O(2n+ 2) with a < 0. Then,

f2,1(x) = ±x∓ x2r+1 + c x4r+1 + a x2n+1 (±1∓ x2r + c x4r)2n+1

+O(min(2r + 2, 2n+ 2))=± x∓ x2r+1 ± a x2n+1 +O(min(2r + 2, 2n+ 2)).

When f1 also preserves orientation, f2,1(x) = x− x2r+1 + a x2n+1 +O(min(2r+
2, 2n+ 2)). Then, if r 6= n, from Theorem 3.1 the origin is LAS for the composition
map. If r = n then f2,1(x) = x + (a − 1)x2n+1 + O(2n + 2) and since a − 1 < 0,
applying again Theorem 3.1 the result follows.

When f1 reverses orientation, f2,1(x) = −x+x2r+1−a x2n+1+O(min(2r+2, 2n+
2)). In this case

f2
2,1(x) = x− 2x2r+1 + 2a x2n+1 +O(min(2r + 2, 2n+ 2)).

Applying the same tools that in the previous situation, but to f2
2,1, the result also

follows.
(b) In this case, without loss of generality, we consider f1 written in normal form

f1(x) = −x+x2r+1 + c x4r+1. We also consider f2(x) = −x+
∑

k≥2 akx
k such that

either V3 < 0 or V2j+1 = 0 for j = 1, 2, . . . ,m− 1 for m ≥ 2, and V2m+1 < 0. Now
we split the proof in three subcases:

(i) Assume first that V3 = −2(a2
2+a3) < 0. Then f2(x) = −x+a2x

2+a3x
3+O(4),

with a2
2 + a3 > 0 and

f2,1(x) = x− x2r+1 − c x4r+1 + a2 x
2
(
1− x2r − c x4r

)2
− a3 x

3
(
1− x2r − c x4r

)3
+O(4) = x+ a2 x

2 − a3 x
3 − x2r+1 +O(4).
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By Theorem 3.1, when a2 6= 0 the origin is semi-AS. If a2 = 0, then a3 > 0 and the
origin is LAS for all r ≥ 1.

(ii) In this second case we suppose that V3 = 0 and that there exists 1 ≤ j ≤
m − 1 such that a2i = 0 for i = 1, 2, . . . , j − 1 and a2j 6= 0. Since V2i+1 = 0 for
i = 1, 2, . . . , j−1 applying Lemma 3.7 we have that a2i+1 = 0 for i = 1, 2, . . . , j−1.
Hence f2(x) = −x+ a2j x

2j +O(2j + 1), and

f2,1(x) = x− x2r+1 − c x4r+1 + a2j x
2j
(
1− x2r − c x4r

)2j
+O(min(2r + 2, 2j + 1))

= x− x2r+1 + a2j x
2j +O(min(2r + 2, 2j + 1)).

Hence, by Theorem 3.1, if j ≤ r then the origin is a semi-AS fixed point and if j > r
then it is a LAS fixed point.

(iii) Finally assume that V3 = 0 and that a2i = 0 for i = 1, 2, . . . ,m − 1. Since
V2j+1 = 0, for j = 1, 2, . . . ,m − 1, and V2m+1 < 0, from Lemma 3.7 we get that
a2i+1 = 0 for i = 1, 2, . . . ,m − 1. Moreover m ≥ 2. Consequently f2(x) = −x +
a2m x2m+a2m+1 x

2m+1 +O(2m+2). Then, f2
2 (x) = x−2 a2m+1 x

2m+1 +O(2m+2),
and therefore 0 > V2m+1 = −2 a2m+1. Moreover,

f2,1(x) =x− x2r+1 − c x4r+1 + a2m x2m
(
1− x2r − c x4r

)2m−
a2m+1 x

2m+1
(
1− x2r − c x4r

)2m+1
+O

(
min(2r + 2, 2m+ 2)

)
=x− x2r+1 + a2m x2m − a2m+1 x

2m+1 +O
(

min(2r + 2, 2m+ 2)
)
.

Assume first that a2m 6= 0. Then, again by Theorem 3.1, when 2r+ 1 > 2m then
the origin is semi-AS and when 2r + 1 < 2m the origin is LAS.

Finally, suppose that a2m = 0. Applying once more Theorem 3.1 we obtain that
in all cases the origin is LAS because a2m+1 > 0.

Proof of Theorem A. Statement (a) is a direct consequence of Theorem 3.4.
(b) Observe that the maps of Examples 1 and 2 prove the statement for k = 3.

Indeed, for instance, remember that the maps of Example 1 have been chosen in such
a way that the stability constats satisfy V3(fi) = 0 and V5(fi) < 0 for i ∈ {1, 2, 3}, so
that they have a LAS fixed point at the origin. The stability of the origin for these
maps can also be straightforwardly obtained from the first terms of the Taylor series
at the origin of f2

i , i = 1, 2. A computation gives f3,2,1(x) = −x+90x4−48x5+O(6),
so from Proposition 3.3 we have V3(f3,2,1) = 0 and V5(f3,2,1) = 96 > 0, and therefore
the origin is a repeller fixed point of f3,2,1. Since f2

3,2,1(x) = x + 96x5 + O(7), the
result also follows from Theorem 3.1.

Next we show how to construct the maps of Example 1. We start with some
maps

fi(x) = −x+ a2,ix
2 + a3,ix

3 + a4,ix
4 + a5,ix

5, i ∈ {1, 2, 3}.

To get that V3(fi) = 0 and V5(fi) < 0, first we take a3,i = −a2
2,i, and then impose

that V5(fi) = 2
(
2a4

2,i − 3a2,ia4,i − a5,i

)
= −2A2

i , obtaining a5,i = 2a4
2,i−3a2,ia4,i +

A2
i .
At this point we notice that

f3,2,1(x) = −x+ (a2,1 + a2,3 − a2
2,2)x2 − (a2,1 + a2,3 − a2

2,2)2x3 +O(4),

hence V3(f3,2,1) = 0. In order to reduce parameters and simplify the expressions
we take a2,1 = a2

2,2 − a2,3, obtaining f3,2,1(x) = −x + (3a2
2,2a2,3 − 3a2,2a

2
2,3 +
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a4,1 − a4,2 + a4,3)x4 + O(5). Again, to reduce parameters we take a2,3 = 2 and
a4,1 = a4,2 = a4,3 = 0. With this choice we get that

V5(f3,2,1) = −2
(
A2

1 +A2
2 +A2

3 − 4a3
2,2 + 24a2

2,2 − 32a2,2

)
.

Taking A1 =
√

2, A2 = 3 and A3 = 1, we obtain that

V5(f3,2,1) = −2
(
−4a3

2,2 + 24a2
2,2 − 32a2,2 + 12

)
= 8(a2,2 − 1)(a2

2,2 − 5a2,2 + 3),

and therefore V5(f3,2,1) > 0 if and only if a2,2 ∈
(
(5−

√
13)/2, 1

)
or a2,2 > (5 +√

13)/2 ' 4.303. Taking a2,2 = 5, we obtain the maps of Example 1.
Now we consider the case k > 3. We take the maps f1, f2 and f3 given in

Example 1, and for all j ∈ {4, . . . , k} we consider the maps fj(x) = x− x7, so that
all them have a LAS fixed point at the origin (by Theorem 3.1). Then fk,...,4(x) =
x− (k − 3)x7 +O(13).

Observe that if we take any map of the form g(x) = −x+
∑5

j=2 αjx
j +O(6) we

obtain fk,...,4 ◦g(x) = −x+
∑5

j=2 αjx
j +O(6). Thus fk,...,1(x) = fk,...,4 ◦f3,2,1(x) =

−x + 90x4 − 48x5 + O(6). Therefore V3(fk,...,1) = 0 and V5(fk,...,1) = 96 > 0, and
the origin is repeller for fk,...,1.

Similarly, consider the maps g1, g2 and g3 given in Example 2 and gj(x) = x+x7

for all j ∈ {4, . . . , k}. By construction, each map gj has a repeller fixed point at the
origin. Now gk,...,1(x) = −x + 90x4 + 48x5 + O(6), and a computation shows that
V3(gk,...,1) = 0 and V5(gk,...,1) = −96 < 0. Hence the origin is LAS for gk,...,1.

4. Proof of Theorems B and C. We start recalling the tools that we will use to
know the stability of the elliptic fixed point.

4.1. Birkhoff normal form and stability. We remark that in this article we are
not interested only on the stability of the elliptic fixed points, that is one of the
issues that people usually refers in the context of studying maps with elliptic points,
via Moser twist theorem and KAM theory. Here we want to know whether these
fixed points are LAS or repeller. This information is given by the so called Birkhoff
constants that we recall next.

Given an elliptic fixed point with eigenvalues λ, λ̄ = 1/λ, that are not roots of
unity of order ` for 0 < ` ≤ 2m+ 1, we will say that p is a non (2m+ 1)-resonant
elliptic point. Near a non (2m+ 1)-resonant elliptic fixed point, a C2m+2-map f is
locally conjugated to its Birkhoff normal form plus some remainder terms, see [2].
This normal form is

fB(z, z̄) = λz
(

1 +

m∑
j=1

Bj(zz̄)
j
)

+O(2m+ 2),

where z = x+yi and Bj are complex numbers. The first non-vanishing number Bj is
called the jth Birkhoff constant. Then, Vj = Re(Bj) will be called the jth Birkhoff
stability constant. Both constants provide very useful dynamical information in a
neighborhood of the elliptic point. In this sense, a well-known result is the following:

Lemma 4.1 ([11]). For m ∈ N, consider a C2m+2-map f with an elliptic fixed point
p ∈ U , non (2m+ 1)-resonant. Let Bm be its first non-vanishing Birkhoff constant.
If Vm = Re(Bm) < 0 (resp. Vm = Re(Bm) > 0), then the point p is LAS (resp.
repeller).
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The computation of the Birkhoff normal forms and the corresponding Birkhoff
constants is a subject on which there is abundant literature, the reader is referred
for instance to [2]. Next we give the expression of the first Birkhoff constant of a
map with a non 3-resonant fixed point at the origin. Set

g(z, z̄) = λz +

3∑
m+j=2

am,jz
mz̄j +O(4),

where z ∈ C, λ ∈ C, |λ| = 1. Then the first Birkhoff constant is

B1 = B1(g) =
P (g)

λ2 (λ− 1) (λ2 + λ+ 1)
, (3)

where

P (g) =
(
|a11|2 + a21

)
λ4 − a11 (2a20 − a11)λ3 +

(
2|a02|2 − a11a20 + |a11|2

)
λ2

− (a11a20 + a21)λ+ a11a20,

see for instance [10, Sec. 4].
Lemma 4.1 allows us to utilize the Birkhoff stability constants in an analogous

way as we used the stability constants for one-dimensional map. Therefore we
follow a similar idea than the used to construct the maps in the proof of Theorem
A, in order to prove Theorem B: we will construct two maps f1 and f2 such that
V1(fi) < 0 (resp. positive) and V1(f2,1) > 0 (resp. negative).

4.2. Proof of Theorem B. Consider the maps f1 and f2 of Example 7. To
compute their Birkhoff constants, first we write them in complex notation obtaining
that

g1(z, z̄) = iz + (1− 3i)z2 + zz̄ and g2(z, z̄) =

(
1

2
+

√
3

2
i

)
z − z2z̄, (4)

are their respective equivalent complex expressions. Conversely, the real expressions
of each gj(x, y) are obtained taking

fj(x, y) = (Re (gj(x+ yi, x− yi)) , Im (gj(x+ yi, x− yi))) , j = 1, 2. (5)

Next, we apply the formula (3) to the maps gj(z, z̄), j = 1, 2. We get that their first
Birkhoff constants are

B1(g1) = −1

2
− 11

2
i and B1(g2) = −1

2
+

√
3

2
i.

So their Birkhoff stability constants are V1(g1) = V1(g2) = −1/2 < 0. By Lemma
4.1, the origin is a LAS fixed point for both maps g1 and g2. Since for each j = 1, 2,
fj(x, y) and gj(z, z̄) are different expressions of the same map, the origin is LAS for
both maps f1 and f2.

The composition map g2,1(z, z̄) = g2 ◦ g1(z, z̄), given by

g2,1(z, z̄) = i

(
1

2
+

√
3

2
i

)
z +

1

2
(1− 3i)(1 +

√
3i)z2 +

1

2
(1 +

√
3i)zz̄ − iz2z̄ +O(4),

has an associated Birkhoff constant

B1(g2,1) =
3
√

3− 5

2
+ i

3
√

3− 13

2
' 0.098− 3.902 i,

and therefore V1(g2,1) > 0. So again by Lemma 4.1 the origin is a repeller fixed
point for g2,1(z, z̄), hence also for the composition map f2,1, as we wanted to prove.
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Next we will explain how we have found the Example 7, used in the above proof.
We start with

g1(z, z̄) = αz +

3∑
m+j=2

am,jz
mz̄j and g2(z, z̄) = βz + c2,1z

2z̄.

The last map has been chosen so that it only contains the cubic resonant terms that
appear in the formula (3). We take α = i and β = (1 +

√
3 i)/2, so that the origin

is non a 3-resonant elliptic fixed point for both maps. We compute the Birkhoff
constant, using the formula (3), obtaining

B1(g1) =
1− i

2

(
−2|a0,2|2 + 2a1,1a2,0 + a2,1 +

(
a1,1a2,0 − |a1,1|2 − a2,1

)
i
)
,

B1(g2) =
1− i

√
3

2
c2,1

and

B1(g2,1) = −1

2
|a1,1|2 − |a0,2|2 +

3

2
a1,1a2,0 +

1

2
c2,1

+
(√3

2
a1,1a2,0 +

√
3

2
|a1,1|2 −

√
3

2
c2,1 − |a0,2|2 − a1,1a2,0 − |a1,1|2 − a2,1

)
i.

In order to reduce the parameters we set a2,0 = t+si, a11 = 1, a0,2 = 0, a2,1 = 0,
c2,1 = u where s, t, u ∈ R. We get:

B1(g1) =
1

2
(3t+ s− 1 + (−t+ 3s− 1)i) , B1(g2) =

1

2

(
1−
√

3 i
)
u, (6)

and

B1(g2,1) =

(
1−
√

3

2

)
s+

3

2
t+

1

2
u− 1

2

+

(
3

2
s+

(√
3

2
− 1

)
t−
√

3

2
u− 1 +

√
3

2

)
i.

(7)

To simplify more the above expressions, we consider s = −3t and u = −1,
obtaining that V1(g1) = V1(g2) = −1/2, and

V1(g2,1) = −1 +
3

2
(
√

3− 1) t.

This last constant is positive for all t > 2/(3(
√

3− 1)) ' 0.911, so taking t = 1 we
get the maps (4). Applying the formula (5) we obtain the expression of the maps
of Example 7.

We have already commented before Example 8 that from the above example,
simply taking the inverse maps we could construct two planar maps having a com-
mon repeller fixed point such that the corresponding composition map has a LAS
fixed point. Nevertheless, next we construct a simple explicit example, namely, Ex-
ample 8. In this case, to reduce parameters in the expressions (6) and (7), we take
s = 2− 3t and u = 1, obtaining that V1(g1) = V1(g2) = 1/2, and

V1(g2,1) = 2−
√

3 +
3

2
(
√

3− 1) t.

This constant is negative for all t < 1
3

(√
3− 2

) (
1 +
√

3
)
' −0.244. Setting t =

−2/3, and applying the formula (5) we get the maps of this last example.
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4.3. Proof of Theorem C. (a) Consider the k ≥ 3 functions {f1, f2, . . . , fk} used
for proving item (b) of Theorem A, that is f1, f2 and f3 given in Example 1, and
fj(x) = x− x7 for j = 4, . . . , k. For any n ∈ N, define the maps

Fj

(
x1, x2, . . . , xn

)
=
(
fj(x1), fj(x2), . . . , fj(xn)

)
, j = 1, 2, . . . , k.

which are from Rn into itself. Because the components of the above maps are
uncoupled, from Theorem A we obtain that the origin is a LAS fixed point for each
Fj , but a repeller fixed point for Fk,...,1,

Analogously, we take the maps gj , j = 1, . . . , k, given at the end of the proof of
Theorem A, and define Gj

(
x1, x2, . . . , xn

)
=
(
gj(x1), gj(x2), . . . , gj(xn)

)
, for j =

1, 2, . . . , k. For these maps, the origin is a repeller fixed point for each Gj but it is
LAS fixed point for Gk,...,1.

(b) For any m ∈ N we define the two maps from R2m into itself,

Fj

(
x1, x2, . . . , x2m

)
=
(
fj(x1, x2), fj(x3, x4), . . . , fj(x2m−1, x2m)

)
, j = 1, 2,

where the fj are the ones appearing either in Example 7 or in Example 8. Then
the result follows taking the periodic set {F1, F2} and noticing that the dynamics
of each consecutive pair of components of any map Fj is uncoupled.
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[3] I. Baldomá and E. Fontich, Stable manifolds associated to fixed points with linear part equal
to the identity, J. Differential Equations, 197 (2004), 45–72.
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