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Abstract

We show that planar continuous alternating systems, which can be used to model

systems with seasonality, can exhibit a type of Parrondo’s dynamic paradox, in which

the stability of an equilibrium, common to all seasons is reversed for the global seasonal

system. As a byproduct of our approach we also prove that there are locally invertible

orientation preserving planar maps that cannot be the time-1 flow map of any smooth

planar vector field.
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1 Introduction and Main results

For dynamical systems given by differential equations, alternating systems take the form

ẋ(t) = X1(x(t)) for t such that t (modT ) ∈ [0, T1),

ẋ(t) = X2(x(t)) for t such that t (modT ) ∈ [T1, T1 + T2),
...

ẋ(t) = Xn(x(t)) for t such that t (modT ) ∈ [T1 + · · ·+ Tn−1, T1 + · · ·+ Tn),

(1)
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where T =
∑n

j=1 Tj , with Tj > 0 for j = 1, 2, . . . , n, andXj being class C1 vector fields. They

can be used to model continuous seasonal systems with n seasons of durations T1, T2, . . . , Tn.

It is not necessary to recall the importance of these kind of systems in mathematical biology,

for instance in population models for which the seasonality has an effect in the reproduction

and mortality rates due to environmental circumstances or to human intervention like har-

vesting, see [12, 19, 20] and references therein (and [5, 9, 14, 15] for discrete examples); or

also in epidemiological models with periodic contact rate, see [3] and the references therein.

The existence of chaotic behaviors in this kind of systems have been reported, see for

instance the proof of the existence of topological horseshoes in the Poincaré maps associated

to the flow of a 2-seasonal Lotka–Volterra system of type (1) in [18]. The study of chaotic

dynamics in continuous seasonal systems is a challenge that will continue to require a lot

of attention. In this work we expose a collateral aspect that appears, however, in regular

regimes: one type of dynamic Parrondo’s paradox.

The so called Parrondo’s paradox is a paradox in game theory, that in a few words

says that a combination of losing strategies can become a winning strategy, see [11, 16].

Several dynamical versions of related paradoxes are presented in [4, 6, 7, 8] for discrete

non-autonomous dynamical systems. In the first paper the authors combine periodically

one-dimensional maps f1 and f2 to give rise to chaos or order. The existence of discrete

systems that exhibit (numerically) chaotic dynamics by alternating regular, or more pre-

cisely, integrable systems, has been referred in [6] and [7]. In this last reference also are

shown alternating systems with regular (integrable) dynamics obtained by alternating an

integrable map and a numerically chaotic one. In [8] we study a local problem, but in any

dimension. In particular, we relate the stability of a common fixed point of two planar

maps, F1 and F2, with the stability of this point for F2 ◦ F1. We prove that when the

fixed points have complex conjugated eigenvalues of modulus 1 (i.e. elliptic fixed points), a

common attracting character of the common fixed point of F1 and F2, can be reversed for

F2 ◦ F1. This phenomenon is the one that we named Parrondo’s dynamic type paradox for

2-periodic discrete dynamical systems. In this work we will show that a similar dynamical

paradox appears for continuous seasonal systems.

Remember that a singular point p is said to be stable if for every neighborhood U of p

there is a neighborhood V ⊂ U such that every solution ϕ(t;p0) with p0 ∈ V is defined and

lies in U for all t > 0. If, in addition, V is such that limt→+∞ ϕ(t;p0) = p then the point is

(locally) asymptotically stable (LAS from now on). The point is a repeller if it is not stable

and limt→−∞ ϕ(t;p0) = p, [10].

As noted in [3], the asymptotic stability of the equilibria of a seasonal system, for

instance the disease-free equilibrium of an epidemiological model, is a more complex issue
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than in the autonomous case. In this note we evidence that a seasonal system of type (1)

can exhibit a dynamic-type Parrondo’s paradox, in which the stability of an equilibrium

common to all stations (either LAS or a repeller), is reversed for the seasonal system (1).

That is, we show that there exist systems (1) with a common singular point which is LAS

(resp. repeller) for each season system ẋ = Xi(x) for i = 1, . . . , n and such it is a repeller

(resp. LAS) for the global seasonal system.

To simplify the problem, we prove the existence of the Parrondo’s-type paradox for

planar differential with two seasons, both with duration T1 = T2 = 1. Hence systems of the

form  ẋ(t) = X1(x(t)) for t ∈ [2k, 2k + 1),

ẋ(t) = X2(x(t)) for t ∈ [2k + 1, 2k + 2), k ∈ N ∪ {0},
(2)

with x(t) ∈ R2. Our main result is:

Theorem 1. There exist planar polynomial vector fields X1 and X2 sharing a common

singular point which is LAS (resp. repeller) for both of their associated differential systems,

and such that it is a repeller (resp. LAS) for the 2-seasonal differential system (2).

Notice that this theoretical result opens a practical interesting situation. Let us consider

a system where the state variables represent the density of individuals of an age-structured

population of a species that can be potentially dangerous to humans, like for instance

mosquitoes, [13]. Let us assume that for two different environmental situations (the two

seasons) the zero solution is a repeller. Of course, this corresponds to unwanted scenarios

since, in each season, for an arbitrary small initial density of individuals the amount of

them increases over time. Then, it might happen that alternating both situations we get a

system with the origin as a LAS critical point, implying the population decline (and long

term extinction) of the dangerous species.

In the following, we will use complex notation in order to simplify the expressions. Hence

instead of taking real planar vector fields U(x, y)∂/∂x + V (x, y)∂/∂y with (x, y) ∈ R2, we

will consider the same vector fields but in complex notation X(z, z̄)∂/∂z + X̄(z, z̄)∂/∂z̄

where z = x + iy ∈ C , with associated differential equation ż = X(z, z̄), where, of course

˙̄z = X̄(z, z̄).

One of the key ingredients in our approach will be to know whether for a given local

polynomial diffeomorphism of the form

F (z, z̄) = eiαz +

n∑
j+k=2

fj,kz
j z̄k, α ∈ (0, 2π), (3)

of degree at most n, that has a non-hyperbolic elliptic fixed point at the origin, there exists
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of a polynomial vector field with

X(z, z̄) = iαz +
n∑

j+k=2

aj,kz
j z̄k (4)

and such that its associated flow ϕ(t; z, z̄) satisfies

ϕ(1; z, z̄) = F (z, z̄) +O(n+ 1), (5)

for every (z, z̄), for z in a small enough neighborhood of z = 0, and where f(z, z̄) = O(k) if

there exist two constants δ > 0 and C such that |f(z, z̄)| ≤ C|z|k for all z with |z| < δ. As

we will see, for our purposes we only will need to consider the cases n = 2 or n = 3. This

question is solved in next section.

We also would like to comment that very few planar polynomial maps are exactly a flow

at a fixed time, i.e. the remainder term O(n + 1) in (5) is identically zero. They are the

so-called polynomial flows, and the normal forms of their corresponding vector fields are

given in [2, Thm. 4.3].

In fact, ultimately, the proof of Theorem 1 relies on the fact that, near a critical point,

the flow of some suitable vector fields are such, up to certain fixed order on the initial

conditions, their associated time-1 maps are the ones given in Example 7 of [8]. We recall

them in Proposition 12. These maps display the features of the Parrondo’s dynamic paradox

for the dynamics induced by iterating maps and this fact translates to alternating systems

of differential equations. This proof is given in Section 3.

As a byproduct of our study we obtain the following result that we believe is interesting

by itself. Its proof is given in Section 4.

Theorem 2. It holds:

(i) Consider a local diffeomorphism of the form (3), where eiα is not a root of the unity.

Then, for any n ≥ 2 there is a unique polynomial vector field of the form (4) and

degree at most n such that its flow satisfies Equation (5).

(ii) For any n ≥ 2, there exists a map F of the form (3) with α = 2π/(n + 1) for which

there is no Cn+1 vector field X whose flow ϕ(t; z, z̄) satisfies Equation (5).

The above result implies the existence of planar local diffeomorphisms, preserving ori-

entation, that can not be given as the flow at a fixed time of smooth planar vector fields.

Particular examples of such maps are given in (13). We notice that it is known that the

“embedding problem” (that is the answer to the question: can an orientation preserving

diffeomorphism be embedded as the time-one map of a flow of an autonomous vector field? )

has negative answer in the general setting, see [17] for instance. It is also known that for
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any k ∈ N ∪ {∞} the subset of local Ck diffeomorphisms having an embedding vector field

with some smoothness is dense in the set of all local Ck diffeomorphisms with the coefficient

topology, see [21]. Also as a consequence of [22, Theorem 1.3 (a)] all planar C∞ diffeo-

morphisms with a hyperbolic fixed point that have a C∞ embedding flow are characterized.

Our result provide a simple proof and a very simple example in the case of non-hyperbolic

fixed points, and gives some insight on the open problem about the embedding problem for

planar diffeomorphisms with non-hyperbolic fixed points stated in this last reference.

2 Vector fields with prescribed maps as time-1 map

2.1 A recurrent procedure

We start establishing the structure equation that must satisfy the first terms of a flow map

associated with a vector field. First we prove that if a flow map satisfies Equations (3)–(5),

then the vector field must have the form X(z, z̄) = iαz +O(2), so we will work with vector

fields with this fixed linear part.

Lemma 3. A planar C2 vector field X(z, z̄) such that its associate flow satisfies ϕ(1; z, z̄) =

eiαtz +O(2) has the form X(z, z̄) = iαz +O(2).

Proof. We set X(z, z̄) = a1,0z + a0,1z̄ + O(2). By plugging the the associate flow ϕ(t) =

ϕ1,0(t)z + ϕ0,1(t)z̄ + O(2) into the differential equation ż = X(z, z̄) (using that ϕ̇(t) =

a1,0ϕ(t) + a0,1ϕ(t) +O(2)), and by a power comparison argument we have

ϕ̇1,0(t) = a1,0ϕ1,0(t) + a0,1ϕ̄0,1(t),

ϕ̇0,1(t) = a0,1ϕ̄1,0(t) + a1,0ϕ0,1(t).

We solve the linear initial value problem given by the above equations and their conjugates

with the initial conditions ϕ1,0(0) = 1 and ϕ0,1(0) = 0 (since ϕ(0; z, z̄) = z), and we obtain

the solutions ϕ1,0 and ϕ0,1, that we omit for the sake of shortness. At this stage, by imposing

that ϕ1,0(1) = eiα and ϕ0,1(1) = 0, we get that a1,0 = iα and a0,1 = 0, which proves the

result.

Hence, form now on, if we impose that X is polynomial of degree n we can write

X(z, z̄) = iαz+
∑n

j+k=2 aj,kz
j z̄k. When we only assume that it is of class Cn+1, near the ori-

gin we can write it asX(z, z̄) = iαz+
∑n

j+k=2 aj,kz
j z̄k+O(n+1). In any case, by plugging the

Taylor expansion of ϕ(t; z, z̄) in the expression of the differential system ż = X(z, z̄), that is

by imposing dϕ(t; z, z̄)/dt = X(ϕ(t), ϕ(t)) = iαϕ(t; z, z̄)+
∑n

j+k=2 aj,kϕ
j(t, z, z̄)ϕ̄k(t, z, z̄)+

O(n+ 1), and from a power comparison argument we get the following result:
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Lemma 4. Let X(z, z̄) = iαz +
∑n

j+k=2 aj,kz
j z̄k + O(n + 1) with α ∈ (0, 2π) be a planar

Cn+1 vector field. Then, in a neighborhood of the origin, its flow is given by ϕ(t; z, z̄) =

eiαtz +
∑n

j+k=2 ϕj,k(t)z
j z̄k +O(n+ 1), where for each j, k ∈ N such that 2 ≤ j + k ≤ n the

functions ϕj,k(t) satisfy the linear differential equation

ϕ̇j,k(t) = iαϕj,k(t) + aj,ke
i(j−k)αt + bj,k(t) with ϕj,k(0) = 0, (6)

where bj,k(t) =
∑

γ∈Sj,k Pγ(t)eγit and Sj,k ⊂ Z is a finite set, Pγ depends on the values on

the coefficients a`,m and the functions ϕ`,m(t) with 2 ≤ `+m < j + k.

By using the above result, given a map as in (3), we want either to obtain a planar

polynomial vector field X(z, z̄) such that in a neighborhood of the origin its flow satisfies

(5) or to prove that there is no Cn+1 vector field whose flow satisfies (5). We do it by a

recursive procedure.

Indeed, suppose that we have computed the coefficients of X up to order κ − 1 for

2 < κ ≤ n. To compute any coefficient aj,k with j + k = κ, we solve the initial value

problem (6) and impose Equation (5). If j − k − 1 = 0, then

ϕj,k(1) = eiα
[
aj,k +

∫ 1

0
bj,k(τ)e−iατdτ

]
= fj,k.

In this case we can isolate the coefficient aj,k, thus contributing to determinate the expres-

sion of the vector field.

If j − k − 1 6= 0, then we have

ϕj,k(1) = eiα
[

aj,k
i(j − k − 1)α

(
ei(j−k−1)α − 1

)
+

∫ 1

0
bj,k(τ)e−iατdτ

]
= fj,k. (7)

From the above equation we always can isolate the coefficient aj,k except in the case that

ei(j−k−1)α − 1 = 0,

or, in other words if eiα is a |j − k − 1|-root of the unity. In this case we say that there

appears a resonance associated with the coefficient aj,k, and the equation (7) is satisfied for

every value of aj,k (thus leading to a parametric family of vector fields) if and only if it is

satisfied the compatibility equation corresponding to the coefficient aj,k:

eiα
∫ 1

0
bj,k(τ)e−iατdτ = fj,k. (8)

Otherwise, we get an obstruction for F to be the time-1 map of a polynomial (or Cn+1)

vector field, see the proof of Theorem 2 for examples of polynomial maps for which there is

no vector field whose flow satisfies (5).
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In fact, observe that if for any couple ` and m with 2 ≤ ` + m < j + k there is not a

resonance, then the function bj,k(t) =
∑

γ∈Sj,k Pγ(t)eγit introduced in Lemma 4, depends

on the values of the previous coefficients a`,m, thus on the previous coefficients f`,m. On

the contrary, if there exists a couple of values ` and m with 2 ≤ `+m < j+ k giving rise to

a resonance (that is, eiα is a |`−m− 1|-root of the unity) and the compatibility condition

associated with a`,m is satisfied, then the function bj,k(t) also depends on the parameter

a`,m.

Also observe that a resonance may appear at different order levels, so that in order

to obtain the associated vector field, we must identify the first order in which a resonance

appears and verify that each compatibility equation is fulfilled. In that case, we can proceed

by solving the different equations (6) for higher orders, by carrying the expressions of the

indeterminate terms, and verifying that the next different compatibility equations are also

satisfied.

Remark 5. Fixing an order n, if we consider the pairs (j, k) with j + k = n we get that

|j−k−1| ∈ {0, 2, 4, . . . , n+1} if n is odd and |j−k−1| ∈ {1, 3, 5, . . . , n+1} if n is even. Hence,

if a resonance appears at order n and it has not appeared at order k < n, then eiα is an

m-root of unity with m ∈ {2, 4, . . . , n+ 1} if n is odd and m ∈ {3, 5, . . . , n+ 1} if n is even.

Summarizing the above recursive procedure we obtain the following result:

Theorem 6. Consider a polynomial map F of degree n of the form (3).

(i) If eiα is not a |j − k − 1|-root of the unity for all couple j, k with j + k ∈ {0, 1, . . . , n}
then there exists a unique polynomial vector field of degree at most n such that its

associated flow satisfies ϕ(1; z, z̄) = F (z, z̄) +O(n+ 1).

(ii) If eiα is a |j − k − 1|-root of the unity for certain j, k with j + k ∈ {0, 1, . . . , n}
and the compatibility equation (8) corresponding to the coefficient aj,k is not satisfied,

then there is no Cn+1 vector field such that its associated flow satisfies ϕ(1; z, z̄) =

F (z, z̄) +O(n+ 1).

(iii) If there are ` couples j, k with j+k ∈ {0, 1, . . . , n} such that eiα is a |j−k− 1|-root of

the unity and the compatibility equations (8) corresponding to the coefficients aj,k are

satisfied, then there exists an `-parametric family of polynomial vector fields of degree

at most n satisfying ϕ(1; z, z̄) = F (z, z̄) +O(n+ 1).

In the next sections we present the explicit expressions for the vector fields associated

with quadratic and cubic maps of the form (3), satisfying Equation (5) for n = 2 and n = 3

respectively.
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2.2 Vector fields for quadratic maps

The whole scene in the quadratic case is described in the next proposition. Observe that

in the above scheme, at order two a resonance can only occur if ω = eiα is a cubic root of

unity. This can be seen by taking the function r(j, k) = |j − k − 1| and observing that it

takes the values r(2, 0) = r(1, 1) = 1 and r(0, 2) = 3.

Proposition 7. Set F (z, z̄) = ωz+
∑

j+k=2 fj,kz
j z̄k, where ω = eiα with α ∈ (0, 2π). Then

(a) If ω is not a cubic root of unity, then there exists a unique quadratic vector field satis-

fying (5) with n = 2, given by X(z, z̄) = iαz +
∑

j+k=2 aj,kz
j z̄k where

a2,0 =
iα f2,0

ω (ω − 1)
, a1,1 =

iα f1,1
ω − 1

, a0,2 =
3iα ω2f0,2
ω3 − 1

. (9)

(b) Assume that ω is a cubic root of unity. If f0,2 = 0, then there exists an one-parameter

family of quadratic vector fields satisfying (5) with n = 2. In this case the coefficients

a2,0 and a1,1 of such a vector field are the ones given in Equation (9) and a0,2 is the

free parameter. If f0,2 6= 0 then there is no C3 vector field satisfying (5) with n = 2.

Proof. Consider a quadratic map F (z, z̄) = eiαz+ f2,0z
2 + f1,1zz̄+ f0,2z̄

2 and a vector field

of the form X(z, z̄) = iαz + a2,0z
2 + a1,1zz̄ + a0,2z̄

2. If we search for its associated flow

ϕ(t; z, z̄) = eiαtz + ϕ2,0(t)z
2 + ϕ1,1(t)zz̄ + ϕ0,2(t)z̄

2 + O(3), by plugging this expression in

the differential equation ż = X(z, z̄), we get that

ż = iαeiαtz + ϕ̇2,0(t)z
2 + ϕ̇1,1(t)zz̄ + ϕ̇0,2(t)z̄

2 +O(3) = X(z, z̄) =

= iαeiαtz+(iαϕ2,0(t)+a2,0e
2iαt)z2 +(iαϕ1,1(t)+a1,1)zz̄+(iαϕ0,2(t)+a0,2e

−2iαt)z̄2 +O(3),

so we obtain the differential equations:

ϕ̇2,0(t) = iαϕ2,0(t) + a2,0e
2iαt,

ϕ̇1,1(t) = iαϕ1,1(t) + a1,1,

ϕ̇0,2(t) = iαϕ0,2(t) + a0,2e
−2iαt.

with the conditions ϕ2,0(0) = 0, ϕ1,1(0) = 0 and ϕ0,2(0) = 0 (remember that ϕ(0; z, z̄) = z).

By integrating them, evaluating their solutions at time t = 1 and imposing ϕ(1; z, z̄) =

F (z, z̄) +O(3) we get the corresponding equations (6):

ϕ2,0(1) =
i

α
a2,0

(
1− eiα

)
eiα = f2,0,

ϕ1,1(1) =
i

α
a1,1

(
1− eiα

)
= f1,1, (10)

ϕ0,2(1) = − i

3α
a0,2

(
1− e−3iα

)
eiα = f0,2.
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Since α ∈ (0, 2π), the first two equations can always be solved giving the values for a2,0

and a1,1 in Equation (9). The third equation fixes a value of a0,2 unless ω is a third root of

unity, obtaining the expressions in (9), thus proving (a).

If ω is a cubic root of the unity, then the compatibility condition (8) associated with

the coefficient a0,2 is f0,2 = 0, and the result in statement (b) follows.

2.3 Vector fields for cubic maps

Given a cubic map, to search a cubic vector field satisfying (5) with n = 3, first we notice

that the resonances only occur when eiα is a third root of the unity, when is a square root

of the unity, or when is a primitive fourth root of the unity, see Remark 5. According to

Theorem 6, if eiα is not such a root of the unity there exists a unique polynomial vector

field satisfying (5).

Also according to Theorem 6, if eiα is a third root of the unity and the compatibility

condition associated to a0,2 is satisfied, then there exists an one-parameter family of vector

fields satisfying (5). If eiα is a square root of the unity (hence it also is a fourth-root of

unity) and the compatibility condition associated with a3,0, a1,2 and a0,3 are fulfilled, then

there exists a three-parametric family of such vector fields. And finally, if eiα is a primitive

quartic root of the unity and the compatibility condition associated with a0,3 holds, then

there exists an one-parameter family of such vector fields. All these four cases are studied

in the next four propositions:

Proposition 8. Set F (z, z̄) = ωz +
∑3

j+k=2 fj,kz
j z̄k, where ω = eiα with α ∈ (0, 2π). If ω

is not a quadratic, cubic or fourth root of unity, then there exists a unique cubic vector field

satisfying (5) with n = 3, X(z, z̄) = iαz +
∑3

j+k=2 aj,kz
j z̄k, where the coefficients a2,0, a1,1

and a0,2 are the ones given in (9), and

a3,0 =
−iαP3,0

ω2 (ω3 − 1) (ω + 1)
,

with

P3,0 =
(
f0,2f1,1 − 2 f3,0

)
ω3 + 2

(
f0,2f1,1 + f22,0 − f3,0

)
ω2 + 2

(
f22,0 − f3,0

)
ω + 2 f22,0;

a2,1 =
−i P2,1

ω2 (ω3 − 1)2
,

9



with

P2,1 =
(

(i+ α) |f1,1|2 + if2,1

)
ω7 +

(
(i+ 2α) |f1,1|2 − 2 if1,1f2,0

)
ω6+(

(i+ 3α) |f1,1|2 + (2 i+ 6α) |f0,2|2 − f1,1f2,0 (i+ α)
)
ω5+(

(−i+ 2α) |f1,1|2 − (i+ 2α) f2,0f1,1 − 2 if2,1

)
ω4 +

(
3 f1,1f2,0 − |f1,1|2

)
×

(i− α)ω3 +
(
−i |f1,1|2 − 2 i |f0,2|2 + (i− 2α) f1,1f2,0

)
ω2+

(f2,0f1,1 (i− α) + if2,1)ω − if1,1f2,0;

a1,2 =
−iαP1,2

(ω3 − 1) (ω + 1)
,

with

P1,2 =f1,1f2,0 ω
4 +

(
2 f1,1f0,2 + f2,0f1,1 − 2 f1,2

)
ω3 +

(
4 f1,1f0,2 + f2,0f1,1 + 4 f0,2f2,0+

f21,1 − 2 f1,2
)
ω2 +

(
2 f0,2f2,0 + f21,1 − 2 f1,2

)
ω + f21,1;

and

a0,3 =
−iα ω2 P0,3

(ω2 + 1) (ω3 − 1) (ω + 1)
,

with

P0,3 =2f0,2f2,0 ω
4 + 4

(
f0,2f2,0 − f0,3

)
ω3 +

(
6 f0,2f2,0 + 3 f0,2f1,1 − 4 f0,3

)
ω2+

2 (f0,2f1,1 − 2 f0,3)ω + f0,2f1,1.

Proof. Consider the cubic map F (z, z̄) and a cubic vector field X(z, z̄). We follow the

recursive procedure based on Lemma 4. Observe that the coefficients a3,0, a2,1, a1,2 and a0,3

will depend on the expressions of the quadratic coefficients a2,0, a1,1, and a0,2 that must be

computed firstly. We plug the expression ϕ(t; z, z̄) = eiαz+
∑3

j+k=2 ϕj,k(t)z
j z̄k +O(4) into

the differential equation ż = X(z, z̄), getting the equation

iαeiαtz +

3∑
j+k=2

ϕ̇j,k(t)z
j z̄k +O(4) = iαeiαtz +

3∑
j+k=2

Rj,k(t)z
j z̄k +O(4), (11)

where each term Rj,k(t) has the form of the right-hand side of equation (6). By a simple

power comparison argument we arrive to each equation (6) for j + k = 2, 3.

The equations corresponding to the quadratic terms are obtained by repeating the steps

proof of Proposition 7. After this steps we obtain the quadratic coefficients given in (9)

and also the functions ϕ2,0, ϕ1,1 and ϕ0,2, in terms of the quadratic coefficients of the map

f2,0, f1,1 and f0,2.

10



For the cubic terms we follow the same procedure. To obtain the coefficient a3,0 we

equal the terms with z3 in both sides of equation (11), and we get

ϕ̇3,0(t) = iαϕ3,0(t) + a3,0e
3iα t +

iαQ3,0(t)

ω2 (ω − 1)2 (ω2 + ω + 1)
,

where

Q3,0(t) = −2
(
ω2 + ω + 1

)
f22,0e

2 iα t +
(
f0,2f1,1ω

3 + 2
(
ω2 + ω + 1

)
f22,0
)

e3 iα t − f0,2f1,1ω3.

By integrating this differential equation and imposing Equation (5), we obtain the corre-

sponding Equation (7):

−i
(
ω2 − 1

)
ω a3,0

2α
+
f0,2f1,1ω

3 +
(
2 f0,2f1,1 + 2 f22,0

)
ω2 + 2 f22,0 ω + 2 f22,0

2ω (ω2 + ω + 1)
= f3,0,

thus we get the expression of the coefficient a3,0 in the statement.

The expressions of the rest of cubic coefficients are obtained in an analogous way.

Proposition 9. Set F (z, z̄) = ωz +
∑3

j+k=2 fj,kz
j z̄k, where ω = eiα is a primitive third

root of unity. Then there exists a cubic vector field X satisfying (5) for n = 3 if and only if

f0,2 = 0. In this case, there is an one-parameter family of cubic vector fields X satisfying (5)

for n = 3, whose coefficients a2,0 and a1,1 are the ones given in Equation (9), a0,2 is a free

parameter, and

a3,0 =
a0,2f1,1(ω − 1)2 − 6 iαf3,0ω + 6 iαf22,0

3ω (ω − 1)
, a2,1 =

i P2,1

3α(ω − 1)2
,

with

P2,1 =
(

9 iα f1,1f2,0 − 3 f2,0f1,1α
2 + 3 iα f2,1 − 2 (|a0,2|)2

)
ω2

+
(

3 i (|f1,1|)2 α+ 3 (|f1,1|)2 α2 − 3 iα f1,1f2,0 + 3 iα f2,1 + 4 (|a0,2|)2
)
ω

− 3 i (|f1,1|)2 α− 6 iα f1,1f2,0 − 6 iα f2,1 − 2 (|a0,2|)2 ;

a1,2 =
i P1,2

3 (1− ω)
,

with

P1,2 =
(
−6 if1,2α+ 2 f1,1a0,2 + 4 f2,0a0,2

)
ω2 + i

(
3 iα f1,1

2 − 4 f1,1a0,2 − 2 f2,0a0,2
)
ω

+ i
(
3 if2,0α f1,1 + 2 f1,1a0,2 − 2 f2,0a0,2

)
;

and

a0,3 =
P0,3

3 (1− ω)
,

with

P0,3 = −
(
6 a0,2f2,0 + f1,1a0,2

)
ω2 +

(
2 a0,2f2,0 − f1,1a0,2

)
ω−12 if0,3α+4 a0,2f2,0 +2 f1,1a0,2.
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Proof. We follow the same steps as in the proof of Proposition 8, but we take into account

that as mentioned before, and as can be seen in the proof of Proposition 7, when eiα is a

third root of the unity, the only compatibility condition that appears is the one associated

with the coefficient a0,2, and it is f0,2 = 0. Assuming now this condition, we obtain a new

Equation (11). Setting a0,2 as a free parameter and fixing the values of the coefficients a2,0

and a1,1 as the ones in Equation (9), we proceed to compute the coefficients of the cubic

term. To obtain a3,0, we equal the terms with z3 in both sides of the corresponding equation

(11), and we get

ϕ̇3,0(t) = iαϕ3,0(t) + a3,0e
3iα t +

Q̃3,0(t)

3ω2 (ω − 1)2
,

where

Q̃3,0(t) = −6 iαf22,0e
2 iα t +

(
−a0,2f1,1ω2 + 6 iα f22,0 + a0,2f1,1

)
e3 iα t + a0,2f1,1

(
ω2 − 1

)
.

By integrating this equation, imposing Equation (5) and taking into account that ω3 = 1,

we get that the corresponding Equation (7) is:

i (ω − 1) a3,0
2α

−
i
(
a0,2f1,1 (ω − 1)2 + 6 iαf22,0

)
6ω α

= f3,0.

Thus we get the expression of the coefficient a3,0 in the statement. The expressions of the

other coefficients are obtained similarly.

If ω = eiα is a squared root of the unity, then α = π (since α 6= 0). In this case the

compatibility conditions (8) are the ones associated with the coefficients a3,0 and a1,2 but

also a0,3, because ω2 = 1 implies ω4 = 1. Proceeding as in the previous results, we obtain:

Proposition 10. Set F (z, z̄) = −z+
∑3

j+k=2 fj,kz
j z̄k. Then there exists a cubic vector field

X(z, z̄) = iπz +
∑3

j+k=2 aj,kz
j z̄k satisfying (5) for n = 3, if and only if

f3,0 = −1

2
f1,1f0,2 − f22,0,

f1,2 = −1

2
f21,1 −

1

2
f1,1f0,2 − f2,0f0,2 − f0,2f1,1,

f0,3 = −1

2
f0,2

(
2 f2,0 + f1,1

)
.

If these equations are fulfilled, then there is a three-parameter family of cubic vector fields

satisfying (5) for n = 3, and it is given by

a2,0 =
πi

2
f2,0, a1,1 = −πi

2
f1,1, a0,2 = −3πi

2
f0,2,

a2,1 =
1

4
(iπ − 2) |f1,1|2 +

1

2
(3 iπ − 2) |f0,2|2 −

(
3

2
+
πi

4

)
f2,0f1,1 − f2,1,

and a3,0, a1,2 and a0,3 are free parameters.
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The resonant case that appears when ω = eiα is a primitive fourth root of the unity is

studied in the following result:

Proposition 11. Set F (z, z̄) = ωz +
∑3

j+k=2 fj,kz
j z̄k. Then,

(a) If ω = i (that is α = π
2 ), then there exists a cubic vector field X(z, z̄) = iπ2 z +∑3

j+k=2 aj,kz
j z̄k satisfying (5) for n = 3, if and only if

f0,3 =
1

2
f0,2

(
(2 + 2 i) f2,0 + (1− i) f1,1

)
. (12)

If this equation is fulfilled, then there is an one-parameter family of vector fields satis-

fying (5) for n = 3, given by

a2,0 = −π
4

(1 + i) f2,0, a1,1 =
π

4
(1− i) f1,1, a0,2 =

3π

4
(1 + i) f0,2

and

a3,0 =− π

2

(
−
(

1 +
i

2

)
f1,1f0,2 + if22,0 + f3,0

)
,

a2,1 =
1

4
(−2 + (π − 2) i) |f1,1|2 +

1

2
(−2 + (3π + 2) i) |f0,2|2

+
1

4
(6 + (π − 2) i) f1,1f2,0 − if2,1,

a1,2 =
π

2

(
− (2 + i) f0,2f1,1 −

i

2
f1,1f2,0 − (2− i) f2,0f0,2 +

i

2
f21,1 + f1,2

)
,

being a0,3 the free parameter.

(b) If ω = −i (that is α = 3π
2 ), then there exists a cubic vector field X(z, z̄) = i3π2 z +∑3

j+k=2 aj,kz
j z̄k satisfying (5) for n = 3, if and only if

f0,3 =
1

2
f0,2

(
(1 + i) f1,1 + (2− 2 i) f2,0

)
.

If this equation is fulfilled, then the there is an one-parameter family of cubic vector

fields satisfying (5) for n = 3, and it is given by

a2,0 =
3π

4
(1− i) f2,0, a1,1 = −3π

4
(1 + i) f1,1, a0,2 =

9π

4
(−1 + i) f0,2

and

a3,0 =− 3π

2

((
1− i

2

)
f1,1f0,2 + if22,0 − f3,0

)
,

a2,1 =
1

4
(−2 + (3π + 2) i) |f1,1|2 +

1

2
(−2 + (9π − 2) i) |f0,2|2

+

(
3

2
+ i

(
1

2
+

3

4
π

))
f2,0f1,1 + if2,1,

a1,2 =
3π

2

(
(2− i) f0,2f1,1 −

i

2
f2,0f1,1 + (2 + i) f2,0f0,2 +

i

2
f1,1

2 − f1,2
)
,

being a0,3 the free parameter.
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3 Proof of Theorem 1

Theorem 1 is a consequence of the following two results. The first one is proved in [8] but

for completeness we include a sketch of its proof. The second one is a consequence of the

results in the previous section.

Proposition 12. The two polynomial maps

F1(z, z̄) = iz + (1− 3i)z2 + zz̄ and F2(z, z̄) =
1

2

(
1 + i

√
3
)
z − z2z̄,

have the origin as a LAS fixed point for both of them, while the composition map F2 ◦ F1

has the origin as a repeller fixed point.

We notice that the maps F1 and F2 in the above result are the complex representation

of the real maps

f1(x, y) =
(
−y + 2x2 + 6xy, x− 3x2 + 2xy + 3y2

)
,

f2(x, y) =

(
x

2
−
√

3

2
y − x (x2 + y2),

√
3

2
x+

1

2
y − y (x2 + y2)

)
,

introduced in [8, Example 7].

Proof of Proposition 12. Let U be a small enough neighborhood of the origin. Recall that

for a suitable m ∈ N∪{0}, a C2m+2 map F in U with an elliptic fixed point whose eigenvalues

λ, λ̄ = 1/λ, are not roots of unity of order ` for 0 < ` ≤ 2m + 1, is locally conjugate to its

Birkhoff normal form:

FB(z, z̄) = λz
(

1 +
m∑
j=1

Bj(zz̄)
j
)

+O(2m+ 2),

see [1]. The first non-vanishing number Bj is called the jth Birkhoff constant. If Vj =

Re(Bj) < 0 (resp. Vj > 0), then the point p is LAS (resp. repeller), see [8, Lem. 4.1] for

instance. The quantity Vj is called the jth Birkhoff stability constant. This is so, because

the fact that Vj 6= 0 implies that the function zz = |z|2 is a strict Lyapunov function at the

origin for the normal form map FB of F.

In [8], both the Birkhoff and the Birkhoff stability constants of F1 and F2 are computed

obtaining that B1(F1) = −1
2 −

11
2 i and B1(F2) = −1

2 +
√
3
2 i. So V1(Fj) = −1

2 < 0 for

j = 1, 2, and the origin is LAS for both maps F1 and F2. Also in this reference it is proved

that V1(F2 ◦ F1) = 1
2

(
3
√

3− 5
)
> 0, so that the origin is a repeller fixed point for the

composition map.
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Proposition 13. Consider the planar polynomial vector fields

X1(z, z̄, µ) =
iπ

2
z −

(
1− i

2

)
πz2 +

(
1

4
− i

4

)
πzz̄ − (3− 4i)πz3

+

(
3π

4
− 1

2
+ i

(
π

2
− 11

2

))
z2z̄ +

3π

4
zz̄2 + µ z̄3,

where µ is a free parameter, and

X2(z, z̄) =
iπ

3
z +

(
−1

2
+
i
√

3

2

)
z2z̄.

Let ϕj(t; z, z̄), j = 1, 2 be their respective associated flows. Then, for z in a small enough

neighborhood of the origin

ϕj(1; z, z̄) = Fj(z, z̄) +O(4), j = 1, 2,

where the maps Fj are given in Proposition 12.

Proof. Observe that F1 has the form (3) with α = π/2, so that eiα is a primitive fourth root

of the unity. Since the compatibility condition (12) is satisfied, by using the expression in

Proposition 11(a) we can find an one-parameter family of vector fields X1(z, z̄, µ) satisfying

ϕ1(1; z, z̄) = F1(z, z̄) + O(4). This is the family of vector fields X1 given in the statement,

where µ is the free parameter a0,3. Also observe that F2 has also the form (3) with α = π/3,

so that eiα is a primitive sixth root of the unity. By using Proposition 8 we can find a unique

vector field X2 satisfying ϕ2(z, z̄) = F2(z, z̄)+O(4). This X2 is the second vector field given

in the statement.

Proof of Theorem 1. We will prove that the vector fields given in the statement of Propo-

sition 13 provide the desired example with X1 and X2 having the origin as a singular LAS

point and with the origin being a repeller for the 2-seasonal differential system (2). Then,

the converse situation will hold simply by considering the vector fields −X1 and −X2.

The key point is to realize that if ϕ(t; z, z̄) denotes the flow of (2) it holds that

ϕ(2; z, z̄) = ϕ2(1;ϕ1(1; z, z̄), ϕ1(1; z, z̄)) = F2

(
F1(z, z̄

)
+O(4)) +O(4)

= F2 ◦ F1(z, z̄) +O(4).

Now, a crucial step is that the first Birkhoff stability constant V1(F ) only depends on the

third order jet of F at the fixed point, see [8, Equation (3)]. Hence V1(ϕj(1; z, z̄)) = V1(Fj),

j = 1, 2 and V1(ϕ(2; z, z̄)) = V1(F2 ◦ F1).

It is clear that for the vector fields X1, X2 and the one in (2) the stability of the

origin coincides with the one of the corresponding flows ϕ1(1; ·, ·), ϕ2(1; ·, ·) and ϕ(2; ·, ·)
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respectively. Equivalently, these stabilities coincide with the ones of the origin for the

maps F1, F2 and F2 ◦ F1. Since, by Proposition 12, these maps provide a discrete dynamic

Parrondo’s paradox, we have that both X1 and X2 have a LAS singular point at the origin,

and the corresponding 2-seasonal system (2) has a repeller point at the origin, as we wanted

to prove.

4 Proof of Theorem 2

(i) This is a corollary of statement (i) of Theorem 6.

(ii) We will use item (ii) of Theorem 6. For each n ≥ 2 we will prove that the polynomial

map

F (z, z̄) = eiαz + z̄n, with α =
2π

n+ 1
, (13)

satisfies the statement of the theorem.

The result for n = 2 is a direct consequence of Proposition 7. When n = 3, the result

follows by item (a) of Proposition 11 because the compatibility condition (12) does not

hold.

Now suppose that n ≥ 4. We claim that for each 2 ≤ m ≤ n − 1, if eiα is a primitive

(n+ 1)-root of unity and Xm is a vector field with associated flow of the form ϕm(t; z, z̄) =

eiαtz +O(m+ 1), then it satisfies Xm(z, z̄) = iαz +O(m+ 1). We will prove the claim by

induction on m, by using the same method and notations introduced in Section 2.1.

By Proposition 7 the result is true form = 2. Assume that the result is true form < n−1.

As a consequence, for any vector field of the form

Xm+1(z, z̄) = iαz +
∑

j+k=m+1

aj,kz
j z̄k +O(m+ 2),

its associated flow has the form

ϕm+1(t; z, z̄) = eiαtz +
∑

j+k=m+1

ϕj,k(t)z
j z̄k +O(m+ 2).

By plugging the above expression into the differential system ż = Xm+1(z, z̄), we get that

for j + k = m+ 1:

ϕ′j,k(t) = iαϕj,k(t) + aj,ke
(j−k)iαt, (14)

and since ϕj,k(0) = 0 we obtain that

ϕj,k(t) =


aj,k

(j − k − 1)iα
eiαt

(
e(j−k−1)iαt − 1

)
, j 6= k + 1,

aj,kt eiαt, j = k + 1.
(15)
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Since eiα is a primitive (n + 1)-root of unity, e(j−k−1)iα 6= 1 for j + k = m + 1 < n (see

Remark 5). Now, if we assume that ϕm+1(1; z, z̄) = eiαz + O(m + 1) then ϕj,k(1) = 0 for

j + k = m+ 1 and from (15) aj,k = 0 and ϕj,k(t) ≡ 0. So, the claim is proved.

Now we proceed by contradiction. We consider the map (13), and suppose that there

exists a vector field X whose flow satisfies

ϕ(1; z, z̄) = F (z, z̄) +O(n+ 1) = eiαz + z̄n +O(n+ 1). (16)

From the claim, X must have the form X(z, z̄) = iαz +
∑

j+k=n aj,kz
j z̄k + O(n + 1).

For these kind of vector fields the associated flow must have the form ϕ(t; z, z̄) = eiαt +∑
j+k=n ϕj,k(t)z

j z̄k + O(n + 1). For j + k = n, the functions ϕj,k(t) also satisfy (14) and

hence (15). In particular,

ϕ0,n(t) = − 1

2πi
a0,n e

2πi
n+1

t (e−2πit − 1
)
,

and therefore ϕ0,n(1) = 0. But this is in contradiction with Equation (16), which implies

that ϕ0,n(1) = 1.
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