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Abstract Let F be a real or compler-dimensional map. It is said thgtis globally
periodic if there exists somg e N* such thafF P(x) = x for all x, whereF¥ = F o
Fk-1, k> 2. The minimalp satisfying this property is called theriod of F. Given
am-dimensional parametric family of maps, 98y, a problem of current interest is
to determine all the values af such thaf, is globally periodic, together with their
corresponding periods. The aim of this paper is to show satteniques that we
use to face this question, as well as some recent results/éhhive obtained. We
will focus on proving the equivalence of the problem with toenplete integrability
of the dynamical system induced by the nig@and related issues; on the use of the
local linearization given by the Bochner Theorem; and ornugeethe Normal Form
theory. We also present some open questions in this setting.
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1 Introduction

This paper deals witlylobally periodicmaps and difference equations. A nfap
U — % , defined on an open sé& C K" (whereK is eitherR or C) is globally
periodicif there exists som@ € N such thaF P(x) = x for all x € %, whereFk =
F oF*1 k> 2. The minimalp satisfying this property is called thperiod of F.

Observe that if is globally periodic, then all the orbits of the discrete dyrical
system generated By are periodic.

This paper, rather of being a survey on global periodicipnts to show the tech-
niques that we have developed to detect globally periodigsiaside a parametric
families of maps. The reader is addressed to [3, 28, 36], lmmdeferences therein,
to have a general overview on the problem.

We start by showing some simple and well-known examplesaifally periodic
maps:

Example 1Some linear fractional maps defined in suitable open sulo§é&g or
R3:

a) The 5-periodic map (x,y) = (y, (1+Y)/x), is a paradigmatic example known
as the Lyness’ map. This map is associated to the celebrifeikdce equation
Xn+2 = (14 Xnt1)/Xn.

b) The 6-periodic map (x,y) = (y,y/X).

c) The 8-periodic map8*(x,y,2) = (y,z (+1+y+2)/x). The plus case is known
as the Todd’s map. The minus one appears in [20].

Example 2The piecewise linear map (x,y) = (y,max0,y) — x) is 5-periodic,
see [20]. Its associated globally 5-periodic recurrence is

Xn+2 = Max0,Xn+1) — Xn. 1)
This recurrence is theltradiscreteversion of the Lyness recurrence; see [46] for
further details on ultradiscrete systems.
Example 3The Coxeter’s maps (see [18, 23] and also Section 3.3), wdriefn +
3)-periodic:

X
Fn(le---aXn) = (XZ,...,Xn,l— Qﬂ*l ) (2)
1 1_ Xn—2

1—..

X2
1-x1

All of the above maps are associated to some difference iequ&ecall that, in
general, it is equivalent to study a map of the form

F(Xt,-- %) = (X2, .., Xn—1, T (X1, ..., Xn)), 3)

or the difference equation



Different approaches to the global periodicity problem 3
Xj4n = f(xj,Xj+l,...,Xj+n71). (4)

Example 4The maps

Yy —X
F =
(%) (1+x+y’1+x+y)

and

F(xy) = J X
’ V1+a83— 48 Y1+a8—4c

are 4-periodic. These maps are given by the flow at timg42of the planar 2-
isochronous centes = —y+ X%,y = X(14Y), andx = —y+ 4x%y?, y = X+ 4xy?,
respectively. Recall that a differential system, or a vefi&dd, is calledsochronous
in an invariant open se% C R", if there existsT > 0 such thaip(T,x) = x for
all x e % , whereg is the flow associated to the differential system. In thiedhe
flow is also called isochronous. It is clear that for e@achN™, everyT -isochronous
flow ¢ gives rise to several globallg-periodic maps, via thetroboscopic maps
Fi(x) =¢ (jT/p.,x), whereand € N*,j < pand(j,p) = 1.

Given am-dimensional parametric family of maps, sy, the goal of this work
is to determine all the values a@f such that~, is globally periodic, together with
their corresponding periods. A simple example is given by fdmmily of maps
F(x,y)=(y,(A +Yy)/x), A € C, which are globally periodic if and only ¥ € {0, 1}.

In this paper we will summarize the tools that we are usingte fthis question.
More concretely, the techniques that we will present heze ar

e Detect some special properties of the dynamical systencediby globally pe-
riodic maps; see Section 2.

e Use the local linearization given by the Bochner Theorem;3ection 3.

¢ Findintegrability type results and relate globally percmhaps with isochronous
flows; see Section 4..

e Use of the Normal Forms Theory to compute sopegiodicity conditionssee
Section 5.

We will pay a special attention to those families of maps ecapfrom globally
periodic difference equations.

2 General properties of globally periodic maps

2.1 Some properties

From now onZ will denote an open set &", whereK can beR or C, depending
on the context. We list some well-known properties of glgbpériodic maps that
can be used to detect them in some given parametric familiesps.
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(i) If a mapF is p-periodic, then for any integdrthe mapFK is also periodic.

(i) IfamapF : % — % is periodic then it has to be bijective #. IndeedF 1 =
FP-1

(iii) Any pointwise periodiddomeomorphism ir¥Z must be globally periodic; see
[38]. Recall that~ is called pointwise periodic ir7 if for everyx € % there
exists an integek(x) such thaF*®)(x) = x.

(iv) If a rational map isp-periodic in an open subset&f' then it has to be periodic,
also of periodp, in the whole real or complex space, except at the pointsevher
F or its iterates are not well defined.

W) If F:% — 2 is a p-periodic map ank € % is a fixed point ofF then
((DF)x)P = Id. Thus the eigenvalues ¢DF ), have to bep-roots of the unity.
Moreover, the matriXDF )y diagonalices irC; see [35].

(vi) The fixed points of a periodic map are neither attractamsrepellers.

(vii) Rationalglobally periodic maps have zero algebraic entropy; seg2/]

2.2 Some applications of the above properties

In this section we will consider the family ofth order rational difference equation

_ ArXj +AoXjp1+ -+ AnXjrn—1+Ag
B1Xj +BoXjy1+ -4+ Bnjjyn_1+ By’

Xj+n (5)
with initial condition (xq,Xz,...,X) € (0,00)", andS oA >0, 3 (B > 0, Aj >
0,Bi > 0, andA? + BZ £ 0.
The following well-known globally periodic difference egfions, see Exam-
ple 1, belong to the above family:
o Xjq1 o Xjutl X1t X2+l
Xj+2 = i Xj+2 = X J+3—f
i i 1 i (6)

Xj+1 = Xj, Xj41= -
X]

The two last ones are known as trivial ones.

Observe that each-periodicn-th order difference equation produces in a nat-
ural way periodic difference equations of higher order, [4€&. For instance, the
following ones of second order:

Xj+1 _ X1+l

j
Xijo=—=_ X 7
j+2 Xj ) j+2 Xj ) ( )

give rise to
Xj+0 Xj++1

j+20 Xj ’ j+20 Xj )
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for any positive integef, which are also periodic. Moreover takirg= ayn,a # 0
they can be written as

Vi = Wy ayj ¢+ a?
j+20 = — 2= Q0
yj Yj

We will say that these difference equations egeivalento (7).
Next result is obtained by using almost all the propertigted in Section 2.1.

Theorem 1 ([14]) Consider the n-th order rational difference equation (5)hthe
above mentioned hypotheses. Then, fefn,2,3,4,5,7,9,11}, any globally periodic
recurrence in the family is equivalent to one of the diffeesaquations given in (6).

Open question:ls the above result true for amp

Remark 2 If Aj and B are no more non-negative and=n1, then there are globally
periodic recurrences of type (5) of all periods: théhus transformations.

Remark 3 When n= 2, that is, for difference equations of the form,

_ ArXj+ AoXj 1+ Ag
Bixj + Bsz+1+ By’

Xj+2 Ai7 Bi € (Ca

by using the property that the globally periodic maps have aggebraic entropy,

it has been proved in [6, 7] that the only possible periodstfa globally periodic
cases aré, 5, 8, 12, 18, and30. Moreover all them are realizable; see also [42, 43].
Again new cases, non-equivalent to the ones of the list @ivés), appear.

2.3 A remark about reversibility

Traditionally a magr is said to be reversible ¥ = g1 o 0, whereod;, 0, are involu-
tions. Curiously all explicit known globally periodic recances have an associated
mapF : U — U, whereU is a open subset @&", that satisfies that o F is an involu-
tion whereo : R" — R" is defined byo (X1, X2, ..., Xn—-1,%n) = (Xn, Xn—1, - - -, X2, X1)-
Then for these periodic recurrences welget oo (0o F) and they are reversible.

Due to this fact some authors claimed that this is a geneoglguty for the real
recurrences and tried to prove it. The following implicittexple shows that there
are recurrencels such thato o F is not an involution.

Proposition 4 ([15]) There exists a second order globally 3-periodic recurrence
which associated map F is such thab F is not an involution.

Proof. Consider the map = ®oLo @1 where
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P(x,y) = (X+9(y),y+9(—x—Y))

with
92)=-z—-2-7Z and  L(xy)=(y,—x—Y).

It can be seen thd writes asF(x,y) = (y, f(x,y)) for a suitablef. SinceF is
3-periodic we get thaE ~1(x,y) = (f(x,y),x). On the other han@o o F 0 0)(x,y) =
(f(y,x),X). Then the equality o F o 0 = F~! which is equivalenttdo o F)? = Id
is also equivalent td (x,y) = f(y,x). Computing the Taylor series df we obtain
f(x,y) # f(y,x). Henceog o F is not an involution as we wanted to prove. [ |

Nevertheless observe that for the above rRap ® oL o @1, if we consider
0:=®o0o® Litholds that:

e O is aninvolution.
e The mapo oF is also an involution.

So the following natural question arises:

Open question:ls any globally periodic recurrence reversible?

3 Linearization of globally periodic maps and recurrences

3.1 The Bochner Theorem

Let ¥ be an open subset homeomorphi&th Itis said thatamap : ¥ — ¥, 6" -
linearizes (globally) if there exists@' -diffeomorphismyy, withr € {0,1,..., 0, w},
such thaty o F = Lo ¢ for all points in#", whereL is a linear map defined on a
suitable domain.

An adaptation of a classical result due S. Bochner stat¢égtieay globally peri-
odic map with a fixed point locally linearizes:

Theorem 5 (Bochner [8] and [39, Chap. V])Let F: % — % be a p-periodict™"-
diffeomorphism, wheré/ is an open set okk and r+# 0. Letxo € % be a fixed
point of F. Then, there exists a neighbourhoodgivhere F is¢" -conjugated with
the linear map Ix) = (DF )x,x. Moreover the linearization is given by the local
%" -diffeomorphism

1t

EO(DF);Oi (F'(x)).

w(x)

Proof. SinceF is p-periodic ((DF )y,)P = Id. So (def((DF )y,)P? = 1 and(DF ),
is invertible. Considery as in the statement. By the inverse function theorem it is
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clear that the mayy is a local¢” -diffeomophism becaudy(xp) = Id. Using the
p-periodicity ofF and(DF )y, we get that for anx in a certain open neighborhood
of X0,

W(F(X)) = 2 [F(0) + (DF)IF2(X) + -+ (DF ) P FP(0)|
= H(DF )y [ (D)3 F () -+ (DF ) FP(4)|
= (DF s $(x) = L(W(x))
and the result follows. [ |

An easy, but useful, consequence of the Bochner Theorem is:

Proposition 6 Let F be a analytic map having a fixed poiy. Assume that F is
globally p-periodic and let k be the minimum positive k sut ((DF ), ))* = Id,
then k= p.

For instance, a simple corollary of the above result saysiftlaa analytic map
F(x,y) = (—=x4+ O2(x,y), —y+ O2(x,y)) is globally p-periodic then it has to be an
involution, that isp = 2. HereO»(x,y) denotes second order terms at the origin.

In R andR? every p-periodic map globally linearize. The last case is a conse-
quence of Kerékjarté’s Theorem.

Theorem 7 (Kerékjarto 1919, [19])Let Z C R? be homeomorphic t&?, and let
F be a p-periodic map ir%7 . Then F is¢°-linearizable.

As a consequence of the above result it is easy to prove teat planar globally
periodic map is given by the stroboscopic magdfflow.

Corollary 8 For every preserving orientation globally periodic map Hided in an
open setZ, homeomorphic td&R?, there exists a continuous isochronous periodic
flow ¢ such that Kx) = ¢ (T,x) forall x ¢ % .

Proof. Kerékjarté’s Theorem ensures the existence of a homegimsm ¢ such
that

YoF=Loy

whereL is a periodic linear map. On the other hand, we can considér th

L(x) = Ax, with A= (COST —smT) ,

sinT  cosT

and wherel = 2krr/n, (k,n) = 1 andn is the period of. Hencel is the “timeT”
stroboscopic map of the isochronous flgy associated to the harmonic oscillator
U= —Vv,v=u. Therefore

FX)=¢ ToLow(x) =y o (T, (X)) =: ¢(T.x).
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As we will see in next sections, sometimes the Bochner Theaan be used
to construct global linearizations of smooth globally pdic maps. However there
are examples of globally periodic homeomorphisms which dblinearize. The
first one was given by Bing in 1952, [5, p. 361]; see also [4]gbmeral, even
in a differentiable scenario the search of linearizatiarsglobally periodic maps
needs stronger tools than the Bochner Theorem becausegtitany periodics™-
diffeomorphism inRK, with k < 6 must have a fixed point, there are periodit-
diffeomorphisms irR¥, k > 7 without fixed points; see [32, 34].

3.2 Applications of the Bochner theorem

Some results that can be proved using Bochner Theorem afelltheing:

Theorem 9 ([16]) Any (n+ 1)-periodic recurrence of clasg® defined in an open
connected subset &" can be¢X-linearized.

The proof consists in showing that the Bochner linearizeitsan this case glob-
ally invertible. For other globally-periodic difference equations the same idea also
works.

Unfortunately, recently we have proved that there are sragplicit involutions
(p = 2), not coming from a difference equation, for which the &rigation given
by the Bochner Theorem is not globally invertible; see [INGn explicit examples
appear in [45].

Proposition 10 ([17]) Let F : R2 — R? be given by
F (Xa y) = (X+ 4Xy+ f (Xa y)7 —-y+ 2(X2+ y2) —f (Xa y)) ’ (8)

where f(x,y) = 4(x+Y)?(y —X) — 4(x+y)*. Then F is an involution, ha®,0) as
a fixed point and its associated Bochner linearizatipp- % (Id+(DF)(*(f0) o F) is
not a global diffeomorphism.

Despite this example, the global invertibility of the Boehrinearizations for
maps coming from difference equations is still an open goest

Open questions:
Let % be an open set, homeomorphidR8.

e Assume thatZ is invariant by the map associated to a globally periodic
¢1-difference equation. Is the Bochner linearization assedi to a fixed
pointin % globally invertible?

e Is any globally periodi&*-map,F : % — % globally linearizable?
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3.3 A fascinating example: the Coxeter recurrence

Notice that the global linearizations are not only asseddb a given globally pe-
riodic difference equation but also to a given invariantropet, homeomorphic to
R". For instance, consider the 5-periodic Lyness’ nkdp,y) = (y, (1+Y)/x). It

can be seen th& and its iterates are definedlitt\ . where.Z is the union of the
straight linesx = 0,x= -1,y =0,y = —1,x+y = —1. ClearlyR?\ .Z has twelve
connected components akdfixes two of them and permutes the rest. We denote
by 21 = {(x,y) € R?: x> 0,y > 0} and by%, the interior of the triangle with
vertices(—1,0),(—1,—1) and(0,—1) which are the two invariant components of
F. By using the Bochner theorem we prove:

Proposition 11 ([16]) The maps I, and F|4, are globallyz “-linearizable.

The Coxeter recurrence, which is an extension of the Lynessie much more
complicated; see [18]. For instance, Coxeter maps have ffir@d/points and on a
neighborhood of each of them they are locally conjugate diffferentlinear mod-
els.

In the statement of the two following result$ denotes the integer part function.

Lemma 12 ([18]) There are exactlj(n+ 2)/2] linear globally periodic recurrences
of order n and period n+- 3 without a line of fixed points (that is without eigenvalue
A=1).

Theorem 13 ([18]) The Coxeter map Fassociated to the recurrence (2), has ex-
actly [(n+2)/2] fixed points. Moreover at each of these fixed pointssHocally
conjugated to a different linear map.

In other words all linea¢n+ 3)-periodic recurrence of ordenwithout the eigen-
value 1, is present in the Coxeter nfigp

It would be interesting to know if the corresponding locahgmations given by
the Bochner Theorem are global in the corresponding inmtopen sets.

4 Integrability properties of globally periodic maps

4.1 Existence and construction of complete set of first intelg
A non-constant functioV : 2 C R" — R is called afirst integral or invariant of

the dynamical system generatedmyf

If a mapF possesses a first integké) then all the orbits lie in some level set\éf
or in other words, the level sets gfare invariant byF.
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A mapF : Z C R" — R" is integrableif it has n— 1 functionally independent
first integrals in7Z, and completely integrablé it has n functionally independent
first integrals in7Z . In [10], it was proved that there is a strong relation betwee
globally periodic maps and complete integrability.

Theorem 14 ([10])Let F: %7 C R" — % be an injective analytic map defined in
an open se# . The following statements hold:

(i) If F is globally periodic, then it is completely integrkeh
(ii) If F is completely integrable and it has n functionalhdependent first integrals
V1,Va,- -,V such that

n
Card<ﬂ{\/i = ci}ﬂ%> <K, forallci € R, (9)

i=1
being K a given positive integer, then F is globally periodic
Some remarks:

1. The proof of this result is constructive, so given a globpériodic mapF, we
are able to obtain a complete setdirst integrals; see Proposition 15.

2. Notice that the statement is given for analytic maps bezaue use strongly this
condition to prove that the system of first integrals that westruct is formed
by n functionally independent functions. However in many catesmethod
of construction gives functionally independent integeaden if the regularity is
relaxed. For instance in [10, Prop. 18] two functionallyepéndent integrals
are given for the continuous map associated to the recugr@nc

3. Condition (9) cannot be removed as the following examiptsvs: Consider the
mapF : R? — R?,

F(xy) = (x+2my).

This mapF is bijective on the whol@&? and it is clearly notp-periodic for
all p € N. Moreover, the dynamical system generated by it is compldéed-

grable. For instancé/ (x,y) =y — sin(x) andV,(x,y) =y are two functionally
independent first integrals fér. On the other hand, it is clear that for many
andcy, the finiteness condition (9) is not satisfied.

Example 51t is well known that the Lyness map(x,y) = (y, (a+Yy)/x) has, for all
valuea € C, the first integral

Vl,a(X, y) _ (X+ 1) (y+X]3 (x+y+ a).

Whena = 0 it has also the first integral

Xy2 432y Ly Y2 x4 x

Vao(Xy) =

and fora= 1, the first integral, 1 (x,y) = P(x,y)/(x?y?), where
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P(xy) =xy* + (¢ +X2+ 2x+ 1) y*+ (X + 55 4 3x+ 2) y?
+ (X + 23+ 3¢+ 3x+ 1)y + X0+ 2 +x.
It can be easily seen th&f; andV,; fori = 0 ori = 1 are couples of function-

ally independent functions. So, as Theorem 14 predictalfip periodic cases are
completely integrable.

We also recall how to construct many independent first iatsgior globally
periodic maps.

Proposition 15 ([10])Let F: %7 ¢ R" — % be a globally p-periodic map on U.

Let
P

O YP = m — K
be a symmetric function. Then, whenever it is not a constenttion,
Vp(X) = @(x,F(x),...,FP1(x))
is a first integral of the dynamical system generated by F

Using the above result with some families of symmetric fiordd, for instance
symmetric polynomials, it is possible to obtain completes ¢ first integrals, see
again [10].

Example 6 Consider the map (x,y) = (y,c/(xy)), corresponding to the difference
equationx, 2 = ¢/ (XnXn11). It holds that

(%y) = (y, X—Cy> - <X—Cy><) = (XY),

soF is globally 3-periodic. In this case, then= 2 andp = 3.
A complete set of first integrals can be constructed usingstvitable symmetric
functions. Takingsi(a,b,c,d,e, f) =a+b+c+d+e+ f, we get:

c
Vi(xy) =2 <x+y+ x_y> .

Taking nowox(a, b, c,d,e, f) = a4 b?+ ¢ + d? + €+ f2, we obtain
2 c?
Vao(X,y) =2 (x +y2+ x2—y2) .

Note that the symmetric functioms(a, b, c,d, e, f) = abcde fgives a constant func-
tion and is not a first integral. It is easy to prove tNatandV, are functionally
independent first integrals.

Example 7Using the symmetric functioBy(ay, ..., anp) = a2+ a3+ ...+ a3, we
get that any globally-periodic magF : %7 C R" — % has always the first integral
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p-1
V(x) = ; IF ().

It is easy to see that the non-empty level sets of this firegiral are compact. This
will be usefull in the proof of Proposition 22.

4.2 A remark on invariant curves of rational maps and global
periodicity

Globally periodic rational maps iK? are in fact birational (i.e. its inverse is also
rational), becausé ! = FP~1, By Theorem 14 and Proposition 15 in this case a
complete set of rational first integrals can be chosen. Guresgly, they preserve

a couple of fibrations of the plane, which are genericallpsxersal, and given by
algebraic curves.

A theorem of Hurwitz of 1893, states that any compact Riensnface with
genusg > 1 admits at most 84 — 1) conformal automorphisms, that is, homeo-
morphisms of the surface onto itself which preserve thel lstcacture; see [21, 22].

In our context, Hurwitz theorem can be stated as (see [33]):

Theorem 16 (Hurwitz, 1893)The group of birational maps on a non-singular al-
gebraic curve of genusy 1is finite of order at mos84(g—1).

The following result, is a consequence of the above one aogepties(iii )
and(iv) given in Section 2.1.

Corollary 17 A birational map in%Z C K2 with a rational first integral V, such that
the curvegV = c} have generically genus:g 1, must be globally periodic.

Proof. If the curves{V = c} have generically genwgs> 1 then there exists an open
set?” C 7 foliated by curves of these type. By Hurwitz Theorem on eddhese
curves the map must be periodic, Bds pointwise periodic o/, and hence by
the Montgomery Theorem ([38], see also property (iii) int8gt2.1) F must be
globally periodic on?". SinceF is rational then it must be periodic on the whole
K2 except at the points where its iterates are not well definegyraperty(iv) in
Section 2.1, states. [ |

Example 81t is now common knowledge that for the Lyness nfafx,y) = (y,
(a+Yy)/x), and for all valuea € C the first integral¥/; 5 given in Example 5 produce
fibrations of the plane given by curves that have generigaiyus 1 (of course, for
some particular level sets the curves are straight lineseyohave genus 0).

It is interesting to notice that whem= 0 the integraV, o produces fibrations of
the plane given by curves that have generically genus 7ll§inghena = 1 the
integralV, 1 generically fibers the plane by curves of genus 6.
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4.3 Measure preservation

Another interesting property is that any globally periodiep has associated a
natural invariant measure. Recall that a measuris invariant for a mag- if
m(F~(B)) = m(B) for any measurable s&t

Lemma 18 Let% be an open subset &" and let F:  — % be a¢*-map glob-
ally periodic map, k> 1. Then F has the invariant measure

m(B) — p%l /F 5%

Moreover m is absolutely continuous with respect the Lelesteasure withgk—1-
densityv(x) = 3P |det(DF' (x))].

Proof. Let B be a Lebesgue measurable subseofSinceF ~1 = FP~1,

p-2 . . p-1 .
m(F~1(B)) = / dx + dx = / dx = m(B).
(F(8) i;}' Fi(B) JF-1(B) i;}- Fi(B) ®)

Somis an invariant measure.
By using the change of variables formula we obtain

m(B)_Z/I:i(B)dx_/Bg\det(DFi(x)ﬂdx_/Bv(x)dx,

giving the desired result. Notice thatis a®¢* ! function because the global peri-
odicity of F implies that defDF'(x)) # 0. |

4.4 Existence and construction of Lie Symmetries

A Lie Symmetnof a map F is avector field Xsuch that- maps any orbit of the
differential system
X = X(x), (10)

into another orbit of the system. An equivalent definitiorthis following: It is a
vector fieldX such that the differential equation (10) is invariant by thange of
variablesu = F(x). This property is characterized by

X(F(x)) =DF(x)X(x), for all xe%. (11)

The existence of Lie Symmetries is an important issue intieery of discrete
integrability; see for instance [30]. From a dynamic viewydhis importance is
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clear in the integrable case, where the dynamics are in feetdamensional. Next
results illustrate this fact.

Theorem 19 ([11])Let F: 7 CR" — % be a diffeomorphism having a Lie symme-
try X, and lety be an orbit of X preserved by F, i.e. Fy — y. Then the dynamics
of F restricted toy is either conjugated to a rotation, conjugated to a translat
of the line, or constant, according whethgis homeomorphic t6*, R, or a point,
respectively.

Theorem 20 ([11])Let F be an integrable map, with functionally independesst fir
integrals M, ..., Vs_1 and such that it preserves a measur@n= [z v(x)dx, with

v € €Y(% ) and non-vanishing i%/. Then F has a Lie Symmetry X sharing with F
the same set of functionally independent first integralsiddeer

X(x) = (=0V1(x)/dy,0V1(x)/0x) /v(x)if n=2, and

X(X) = (OV(X) % DV(X) % -+ x DNn_1(0)) /v(x) if n>2, 12

wherex denotes the cross productif'.

Summarizing the results of this section we have:

1. Globally periodic maps havefunctionally independent first integrals.

2. Every globally periodic map has an invariant measure wéhsity v(x) =
57 ¢ |det(DF ()|

3. Anintegrable map with an invariant measm@) = [z v(x) dx, has a Lie Sym-
metry of the form (12).

Collecting all the facts above, we have that every globadlyiqgrdic map has
linearly independent Lie Symmetries, thus obtaining thievang result:

Corollary 21 Let F be a globally p-periodic map defined on an openZ&et R",
with a complete set of first integralg V. ., Vh. Then there exist n Lie Symmetries of
F given by

X(X) = (—0Vk(X)/ 9y, 0Vk(x)/9x) /v(X),
fork=1,2,ifn=2and

—

X(x) = (TVA(0) X TV2(X) X -+ EVK(X) x -+ X ENR(X) ) /%),

forallk=1,...,n,if n > 2. In all casesv can be chosen as in Lemma 18.

We will say that a flow of a differential equationpgriodicif all their trajectories
are either periodic or critical points. Next result showat tht leash— 1 of the above
Lie Symmetries give rise to periodic flows as a consequenteafesult below.

Proposition 22 Let F: 7 C R" — R" be a p-periodic map defined in an open set
% , having n— 1 functionally independent first integrals; V. . ,V,,_1 and being

p-1
Vo9 =3 IFCoI”
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the first integral given in Example 7. Then, the induced fmiaof % given by
the transversal levels sets,L_n , :=h""! {Vi = h} is diffeomorphic to a finite
disjoint union ofS?.

Proof. Is easy to prove that the nonempty level dats= {Vi = h;} are compact.
Now, sinceVy,..V, 1 are functionally independent, the locus where they intgrse
transversally

n—1
Lhy. by g = {x € ({Vi = hi} such that RankV1(x), ..., Vy_1(x)) =n— 1}
i—1

is a compact 1-dimensional manifold, so it must be diffegoh@rto a finite disjoint
union ofS?; see for instance [29, p. 208].

Therefore, the associated Lie symmetries give rise to gerarbits on each con-
nected component of the (non-empty) dets ., , Which are, of course, generic.
Also observe that the locus of non-transversality of thergnéevels will corre-
spond to singular points of the associated Lie Symmetriber&fore there exist at
leastn — 1 linearly independergeriodicLie symmetries. [ |

Open question:

e Is everyorientation preservinglobally periodic map of clasg! associ-
ated to a periodic flowp? That is: Is it true that

F(x) = ¢(1(x),x)

for some periodic flowg (t,x)?
e Furthermore, is every orientation preserving globallyigaic map of class
¢ the stroboscopic map of an isochronous flow? That is: |s é that

F(x) = ¢(1,x)

for some continuous periodic flog(t,x) and soma € R*?

Observe that the above questions are not equivalent. Indeezihave a periodic
vector fieldX : 7 CR" — R", it can be reparameterized by

Y(x) =T(X)X(X) : (13)

whereT(x) is the function that assigns to each point the period of théogie
orbit passing through it. IT were a smooth function iz then it would be an
1-isochronous vector field. But sometimésis not regular inZZ because it tends
to infinity. A characterization of whe is regular has been given recently in [37].
Notice that indeed, there are examples of periodic flows sadtme periodic orbits
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such that the periods of the neighbouring orbits tends taitgfas they approach
to thesingularperiodic orbit. These examples were constructed by G. RE&HP(),
D. Epstein (1972), D. Sullivan (1976) and E. Voght (1977 §&1, 25, 44, 47]
respectively. All these classical examples are not polyimbriRecently we have
learned about the existence of a polynomial one due to DltRe3alas [40].

Observe also that the obstruction to give a positive answviret first question in
the above open problem is that, although a globally periotip has at least— 1
Lie Symmetries that are periodic vector fields, it is diffidal guarantee that there
exists at least one of them such tlrapreserves any solutiop of the differential
equationx = X(x). The following example shows that sometimes this obstoacti
can be avoided.

Example 9The map

F(xy.2) = (27 1+y+ 27 1+ x+y+ z+xz)

X Xy

is globally 4-periodic because it correspond$xto G, whereG is the Todd’s map
given in Example 1; see also [12]. In the first octant it hasltieesymmetry given
by

X(X7 Y, Z) = XyZ( DV]_(X, Y, Z) X DVZ(X7 Y, Z))

where

v KDY+ D+ )A+x+y+7)  (X+1)(z+1)
1= ) 2= -
Xyz y

SinceF preserves any solutionof the differential equatiorn = X(x), this implies
that in the first quadrari can be seen as the stroboscopic map of the isochronous
flow of the vector fieldy (x) = T (x)X(x) onR3,

5 A Normal Form Theory approach

The theory of Normal forms for dynamical systems, both diszand continuous,
goes back to Poincaré and Lyapunov, and it is a well-knowh far the study of
bifurcations of dynamical systems; see for instance [1487,

In this section we outline a method, introduced in [13], whis the discrete
analog of the way in that Normal Form Theory is applied in theotry of planar dif-
ferential equations in order to obtain center and isocluigpnconditions [9, 26, 31].
First, let us recall briefly how Normal Form theory works fbese two problems.
Given a planar analytic differential equation

):( = _y+ fZ(Xa y) + f3(X7 y) =+ 04(Xa y)7 (14)
y= x+02xY)+0s(x%y) +0a(xy),
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it is well known that the origin is either a center or a focusthis later case the

stability of the origin is given by the sign of the first nonHmumber of a list of

polynomial expressions in the coefficientsfpfandg;, called theLyapunov quan-

tities \3, Vs, ... obtained from the coefficients df andgj. In particular, the first

Lyapunov quantity only depends dp, f3,02, andgs, that isV3 = V3( fo, f3,092,093).
The normal form of (14) is

X = —y— (X2 +y?)(Vay+ Tox) + O4(X,y),

Y =X+ (X2 4y?)(Vax— Toy) 4 Oa(x.y), 49

see [27, p. 154] or [48, Sec. 3.1B]. So only the tafsn(which gives the stability)
and the ternT, (that gives information about the period of the orbits) rama

Following the same idea, and since the Bochner Theorem ensluat globally
periodic maps with a fixed point locally linearize, we can lgghe Normal Form
theory to analytic maps with a fixed point in order to obtaimscexplicit expres-
sions of the obstructions to be locally linearized arouredghint. The vanishing of
these expressions will be necessary conditions for glod@bgicity.

5.1 Normal Form Theory and global periodicity

In this section we briefly recall some issues of Normal Forredrlg. We also indi-
cate how to use it to obtain some necessary conditions foagfweriodicity.

LetF :=F( : K2 — K2, be a family of smooth maps satisfyifig!) (0) = 0. Let
FO 00 = R 00 + BV () + -+ R (x) 4+ O(1x[*)

be the Taylor expansion &f at0, whereFr<1) € 4, the real vector space of maps
whose components are homogeneous polynomials of degree

A sequence of transformation®, can be constructed, in such a way that at each
step, @, removes (if it is possible), the terms of the correspondiombgeneous
part of degree, obtaining a sequence of maps of the form

FM(y) =Ly +F"(y)+O(ly|""?),

whereLy := F” (y) = DFD(0)y.
For instance, the transformation

X=®3(y) ==Y+ @s(y),
with @ € %3, conjugates the map? with a new mag-®, via

F@)(@3) = d3(F).
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From the above equation, it can be easily seen that the Fé??n: Las(y) —

o(Ly) + Féz) (y). In other words,

FO(y) = Ly+Laaly) — ¢s(Ly) + Fi2(y) + O(ly|*).

If @3(y) can be chosen in such a way that

ML (@(y) = Les(y) — @a(Ly) = —F{2(y), (16)
then the order-3 terms &3 can be removed and it is transformed into
FO(y) =Ly+O(lylh.

The vectorial equation (16), whose unknowns are the coefffisiofgs, is called
the order 3homological equatiomssociated with., and the existence of solutions
of it, is the necessary and sufficient condition to be abletoave the homogeneous
terms of degree 3.

If there is any obstruction to solve the homological equafis), this can be in-
terpreted as an obstruction in the linearization processs& obstructions are poly-
nomial expressions in the coefficientsfof), that must vanish in order to continue
with the linearization process. The equations obtainedjonakng these polynomial
expressions to zero are callpdriodicity conditionssee [13].

For instance, wheh = diaga,1/a), there are no obstructions for the order
2 homological equation. But there appear some ones in ther &dhomological
equation. The associated periodicity conditions in thigecare given by

f;7 =0 andg{’) = 0. (17)
Using the above method, and computing the explicit expoessof equations
(17), we prove:
Theorem 23 ([13])Consider a smooth complex map of the form
F(xy) = <0X+ > fi,inyj,EyﬂL > gi,inyj>, (18)
72 a5
whereq is a primitive p-root of unity, p> 5. Then the conditions

(fa1+ f11011) a® — f11(2f20—0g11) a3+
(2920f02 — frafoo+ fraGu1) a0 — (fo1+ frafoo) a+ f1afop =0,

0020110 — (G1.2+ Go2011) @° + (f1.101.1 + 202002 — Go201.1) A°
+011(—2002+ f11) o0+ 11011+ 0912=0
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are necessary for F to be p-periodic.

5.2 An application of Theorem 23

As an application of an extension of Theorem 23 presented3p {vhere an ad-
ditional third condition is given, we study the global peticity for the 2-periodic
Lyness recurrence

an +Xnt1

n

aforn=20+1,

X2 = , Wwhere a, = {b for n=2¢ (19)

anda,b € C. We obtain:

Theorem 24 ([13]) The only globally periodic recurrences {@9) are:

(i) The cases a b = 0 which is6-periodic, and a= b = 1, which is5-periodic.
(i) The cases a (—1+i+/3)/2 and b=a= 1/a, which is10-periodic.

Notice that the cases given in (i) correspond to the wellwkmautonomous glob-
ally periodic Lyness recurrences given in Example 1. Thesaoeresponding to (ii)
are new non-autonomous globally periodic recurrences.

Observe that the sequenfe } can be reobtained as

a G a G a
(X1 %2) % (X2, Xa) —2 (Xa,Xa) 2 (Xa,X5) > (Xs,XG) % -+
whereGq (x,y) = (Y, (o +Y)/x), with a € {a,b}. So the behavior of (19) is deter-
mined by the dynamical system generated by the map:

a+y a+bx+
F(Xay) = GbOGa(Xay) = (Tya 73,)

Xy

which always has some fixed point. In [13], the extension afdrem 23 is applied
to F for proving Theorem 24,
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