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Abstract Let F be a real or complexn-dimensional map. It is said thatF is globally
periodic if there exists somep∈ N+ such thatF p(x) = x for all x, whereFk = F ◦
Fk−1, k≥ 2. The minimalp satisfying this property is called theperiod ofF. Given
am-dimensional parametric family of maps, sayFλ , a problem of current interest is
to determine all the values ofλ such thatFλ is globally periodic, together with their
corresponding periods. The aim of this paper is to show some techniques that we
use to face this question, as well as some recent results thatwe have obtained. We
will focus on proving the equivalence of the problem with thecomplete integrability
of the dynamical system induced by the mapF , and related issues; on the use of the
local linearization given by the Bochner Theorem; and on theuse the Normal Form
theory. We also present some open questions in this setting.
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Universitat Autònoma de Barcelona, Spain.
e-mail: gasull@mat.uab.cat

Vı́ctor Mañosa
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1 Introduction

This paper deals withglobally periodicmaps and difference equations. A mapF :
U → U , defined on an open setU ⊆ Kn (whereK is eitherR or C) is globally
periodic if there exists somep∈ N such thatF p(x) = x for all x∈ U , whereFk =
F ◦Fk−1, k≥ 2. The minimalp satisfying this property is called theperiod ofF.

Observe that ifF is globally periodic, then all the orbits of the discrete dynamical
system generated byF are periodic.

This paper, rather of being a survey on global periodicity, wants to show the tech-
niques that we have developed to detect globally periodic maps inside a parametric
families of maps. The reader is addressed to [3, 28, 36], and the references therein,
to have a general overview on the problem.

We start by showing some simple and well-known examples of globally periodic
maps:

Example 1.Some linear fractional maps defined in suitable open subsetsof R2 or
R3 :

a) The 5-periodic mapF(x,y) = (y,(1+y)/x), is a paradigmatic example known
as the Lyness’ map. This map is associated to the celebrated difference equation
xn+2 = (1+xn+1)/xn.

b) The 6-periodic mapF(x,y) = (y,y/x).
c) The 8-periodic mapsF±(x,y,z) = (y,z,(±1+y±z)/x). The plus case is known

as the Todd’s map. The minus one appears in [20].

Example 2.The piecewise linear mapF(x,y) = (y,max(0,y) − x) is 5-periodic,
see [20]. Its associated globally 5-periodic recurrence is

xn+2 = max(0,xn+1)−xn. (1)

This recurrence is theultradiscreteversion of the Lyness recurrence; see [46] for
further details on ultradiscrete systems.

Example 3.The Coxeter’s maps (see [18, 23] and also Section 3.3), whichare(n+
3)-periodic:

Fn(x1, . . . ,xn) = (x2, . . . ,xn,1−
xn

1− xn−1

1− xn−2

1−·· · x2

1−x1

) (2)

All of the above maps are associated to some difference equation. Recall that, in
general, it is equivalent to study a map of the form

F(x1, . . . ,xn) = (x2, . . . ,xn−1, f (x1, . . . ,xn)), (3)

or the difference equation
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x j+n = f (x j ,x j+1, . . . ,x j+n−1). (4)

Example 4.The maps

F(x,y) =

(
y

1+x+y
,

−x
1+x+y

)

and

F(x,y) =

(
−y

3
√

1+4y3−4x3
,

x
3
√

1+4y3−4x3

)

are 4-periodic. These maps are given by the flow at time 2π/4 of the planar 2π-
isochronous centerṡx = −y+ x2, ẏ = x(1+ y), and ẋ = −y+ 4x2y2, ẏ = x+ 4xy3,
respectively. Recall that a differential system, or a vector field, is calledisochronous
in an invariant open setU ⊂ Rn, if there existsT > 0 such thatϕ(T,x) = x for
all x ∈ U , whereϕ is the flow associated to the differential system. In this case the
flow is also called isochronous. It is clear that for eachp∈ N+, everyT-isochronous
flow ϕ gives rise to several globallyp-periodic maps, via thestroboscopic maps
Fj(x) = ϕ ( jT/p,x) , where andj ∈ N+, j < p and( j, p) = 1.

Given am-dimensional parametric family of maps, sayFλ , the goal of this work
is to determine all the values ofλ such thatFλ is globally periodic, together with
their corresponding periods. A simple example is given by the family of maps
F(x,y) = (y,(λ +y)/x), λ ∈C, which are globally periodic if and only ifλ ∈ {0,1}.

In this paper we will summarize the tools that we are using to face this question.
More concretely, the techniques that we will present here are:

• Detect some special properties of the dynamical system induced by globally pe-
riodic maps; see Section 2.

• Use the local linearization given by the Bochner Theorem; see Section 3.
• Find integrability type results and relate globally periodic maps with isochronous

flows; see Section 4..
• Use of the Normal Forms Theory to compute someperiodicity conditions; see

Section 5.

We will pay a special attention to those families of maps coming from globally
periodic difference equations.

2 General properties of globally periodic maps

2.1 Some properties

From now on,U will denote an open set ofKn, whereK can beR or C, depending
on the context. We list some well-known properties of globally periodic maps that
can be used to detect them in some given parametric families of maps.
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(i) If a mapF is p-periodic, then for any integerk the mapFk is also periodic.
(ii) If a mapF : U →U is periodic then it has to be bijective inU . IndeedF−1 =

F p−1.
(iii) Any pointwise periodichomeomorphism inU must be globally periodic; see

[38]. Recall thatF is called pointwise periodic inU if for every x ∈ U there
exists an integerk(x) such thatFk(x)(x) = x.

(iv) If a rationalmap isp-periodic in an open subset ofKn then it has to be periodic,
also of periodp, in the whole real or complex space, except at the points where
F or its iterates are not well defined.

(v) If F : U → U is a p-periodic map andx ∈ U is a fixed point ofF then
((DF)x)

p = Id . Thus the eigenvalues of(DF)x have to bep-roots of the unity.
Moreover, the matrix(DF)x diagonalices inC; see [35].

(vi) The fixed points of a periodic map are neither attractorsnor repellers.
(vii) Rationalglobally periodic maps have zero algebraic entropy; see [2],[24].

2.2 Some applications of the above properties

In this section we will consider the family ofn-th order rational difference equation

x j+n =
A1x j +A2x j+1 + · · ·+Anx j+n−1+A0

B1x j +B2x j+1 + · · ·+Bn j j+n−1+B0
, (5)

with initial condition (x1,x2, . . . ,xn) ∈ (0,∞)n, and∑n
i=0Ai > 0, ∑n

i=0Bi > 0, Ai ≥
0,Bi ≥ 0, andA2

1 +B2
1 6= 0.

The following well-known globally periodic difference equations, see Exam-
ple 1, belong to the above family:

x j+2 =
x j+1

x j
, x j+2 =

x j+1 +1
x j

, x j+3 =
x j+1 +x j+2+1

x j

x j+1 = x j , x j+1 =
1
x j

.
(6)

The two last ones are known as trivial ones.
Observe that eachp-periodicn-th order difference equation produces in a nat-

ural way periodic difference equations of higher order, see[14]. For instance, the
following ones of second order:

x j+2 =
x j+1

x j
, x j+2 =

x j+1 +1
x j

, (7)

give rise to

x j+2ℓ =
x j+ℓ

x j
, x j+2ℓ =

x j+ℓ +1

x j
,
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for any positive integerℓ, which are also periodic. Moreover takingxn = αyn,α 6= 0
they can be written as

y j+2ℓ =
αy j+ℓ

y j
, y j+2ℓ =

αy j+ℓ + α2

y j
.

We will say that these difference equations areequivalentto (7).
Next result is obtained by using almost all the properties listed in Section 2.1.

Theorem 1 ([14])Consider the n-th order rational difference equation (5) with the
above mentioned hypotheses. Then, for n∈ {1,2,3,4,5,7,9,11}, any globally periodic
recurrence in the family is equivalent to one of the difference equations given in (6).

Open question:Is the above result true for anyn?

Remark 2 If A j and Bj are no more non-negative and n= 1, then there are globally
periodic recurrences of type (5) of all periods: the Möbius transformations.

Remark 3 When n= 2, that is, for difference equations of the form,

x j+2 =
A1x j +A2x j+1+A0

B1x j +B2x j+1+B0
, Ai ,Bi ∈ C,

by using the property that the globally periodic maps have zero algebraic entropy,
it has been proved in [6, 7] that the only possible periods forthe globally periodic
cases are6, 5, 8, 12, 18, and30. Moreover all them are realizable; see also [42, 43].
Again new cases, non-equivalent to the ones of the list givenin (6), appear.

2.3 A remark about reversibility

Traditionally a mapF is said to be reversible ifF = σ1◦σ2 whereσ1,σ2 are involu-
tions. Curiously all explicit known globally periodic recurrences have an associated
mapF : U →U, whereU is a open subset ofRn, that satisfies thatσ ◦F is an involu-
tion whereσ : Rn → Rn is defined byσ(x1,x2, . . . ,xn−1,xn) = (xn,xn−1, . . . ,x2,x1).
Then for these periodic recurrences we getF = σ ◦ (σ ◦F) and they are reversible.

Due to this fact some authors claimed that this is a general property for the real
recurrences and tried to prove it. The following implicit example shows that there
are recurrencesF such thatσ ◦F is not an involution.

Proposition 4 ([15]) There exists a second order globally 3-periodic recurrence
which associated map F is such thatσ ◦F is not an involution.

Proof. Consider the mapF = Φ ◦L◦Φ−1, where
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Φ(x,y) = (x+g(y),y+g(−x−y))

with
g(z) = −z−z2−z3 and L(x,y) = (y,−x−y).

It can be seen thatF writes asF(x,y) = (y, f (x,y)) for a suitablef . SinceF is
3-periodic we get thatF−1(x,y) = ( f (x,y),x). On the other hand(σ ◦F ◦σ)(x,y) =
( f (y,x),x). Then the equalityσ ◦F ◦σ = F−1 which is equivalent to(σ ◦F)2 = Id
is also equivalent tof (x,y) = f (y,x). Computing the Taylor series off we obtain
f (x,y) 6= f (y,x). Henceσ ◦F is not an involution as we wanted to prove.

Nevertheless observe that for the above mapF = Φ ◦ L ◦Φ−1, if we consider
σ̃ := Φ ◦σ ◦Φ−1 it holds that:

• σ̃ is an involution.
• The mapσ̃ ◦F is also an involution.

So the following natural question arises:

Open question:Is any globally periodic recurrence reversible?

3 Linearization of globally periodic maps and recurrences

3.1 The Bochner Theorem

Let V be an open subset homeomorphic toKn. It is said that a mapF : V → V , C r -
linearizes (globally) if there exists aC r -diffeomorphism,ψ , with r ∈{0,1, . . . ,∞,ω},
such thatψ ◦F = L ◦ψ for all points inV , whereL is a linear map defined on a
suitable domain.

An adaptation of a classical result due S. Bochner states that every globally peri-
odic map with a fixed point locally linearizes:

Theorem 5 (Bochner [8] and [39, Chap. V])Let F : U →U be a p-periodicC r -
diffeomorphism, whereU is an open set ofKk and r 6= 0. Let x0 ∈ U be a fixed
point of F. Then, there exists a neighbourhood ofx0 where F isC r -conjugated with
the linear map L(x) = (DF)x0x. Moreover the linearization is given by the local
C r -diffeomorphism

ψ(x) =
1
p

p−1

∑
i=0

(DF)−i
x0

(
F i(x)

)
.

Proof. SinceF is p-periodic((DF)x0)
p = Id. So (det((DF)x0)

p = 1 and(DF)x0

is invertible. Considerψ as in the statement. By the inverse function theorem it is
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clear that the mapψ is a localC r -diffeomophism becauseDψ(x0) = Id. Using the
p-periodicity ofF and(DF)x0 we get that for anyx in a certain open neighborhood
of x0,

ψ(F(x)) = 1
p

[
F(x)+ (DF)−1

x0
F2(x)+ · · ·+(DF)

−(p−1)
x0 F p(x)

]

= 1
p(DF)x0

[
(DF)−1

x0
F(x)+ · · ·+(DF)−p

x0 F p(x)
]

= (DF)x0 ·ψ(x) = L(ψ(x))

and the result follows.

An easy, but useful, consequence of the Bochner Theorem is:

Proposition 6 Let F be a analytic map having a fixed pointx0. Assume that F is
globally p-periodic and let k be the minimum positive k such that ((DF)x0))

k = Id,
then k= p.

For instance, a simple corollary of the above result says that if an analytic map
F(x,y) = (−x+ O2(x,y),−y+ O2(x,y)) is globally p-periodic then it has to be an
involution, that isp = 2. HereO2(x,y) denotes second order terms at the origin.

In R andR2 every p-periodic map globally linearize. The last case is a conse-
quence of Kerékjártó’s Theorem.

Theorem 7 (Kerékjárt ó 1919, [19])Let U ⊆ R2 be homeomorphic toR2, and let
F be a p-periodic map inU . Then F isC 0-linearizable.

As a consequence of the above result it is easy to prove that every planar globally
periodic map is given by the stroboscopic map ofC 0 flow.

Corollary 8 For every preserving orientation globally periodic map F defined in an
open setU , homeomorphic toR2, there exists a continuous isochronous periodic
flowϕ such that F(x) = ϕ(T,x) for all x ∈ U .

Proof. Kerékjártó’s Theorem ensures the existence of a homeomorphismψ such
that

ψ ◦F = L◦ψ

whereL is a periodic linear map. On the other hand, we can consider that

L(x) = Ax, with A =

(
cosT −sinT
sinT cosT

)
,

and whereT = 2kπ/n, (k,n) = 1 andn is the period ofF. HenceL is the “time-T”
stroboscopic map of the isochronous flowϕL associated to the harmonic oscillator
u̇ = −v, v̇ = u. Therefore

F(x) = ψ−1◦L◦ψ(x) = ψ−1◦ϕL(T,ψ(x)) =: ϕ(T,x).
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As we will see in next sections, sometimes the Bochner Theorem can be used
to construct global linearizations of smooth globally periodic maps. However there
are examples of globally periodic homeomorphisms which do not linearize. The
first one was given by Bing in 1952, [5, p. 361]; see also [4]. Ingeneral, even
in a differentiable scenario the search of linearizations for globally periodic maps
needs stronger tools than the Bochner Theorem because although any periodicC 1-
diffeomorphism inRk, with k ≤ 6 must have a fixed point, there are periodicC 1-
diffeomorphisms inRk, k≥ 7 without fixed points; see [32, 34].

3.2 Applications of the Bochner theorem

Some results that can be proved using Bochner Theorem are thefollowing:

Theorem 9 ([16])Any (n+ 1)-periodic recurrence of classC k defined in an open
connected subset ofRn can beC k-linearized.

The proof consists in showing that the Bochner linearization is in this case glob-
ally invertible. For other globallyp-periodic difference equations the same idea also
works.

Unfortunately, recently we have proved that there are simple explicit involutions
(p = 2), not coming from a difference equation, for which the linearization given
by the Bochner Theorem is not globally invertible; see [17].Non explicit examples
appear in [45].

Proposition 10 ([17])Let F : R2 −→ R2 be given by

F(x,y) =
(
x+4xy+ f (x,y),−y+2(x2+y2)− f (x,y)

)
, (8)

where f(x,y) = 4(x+y)2(y−x)−4(x+y)4. Then F is an involution, has(0,0) as

a fixed point and its associated Bochner linearizationψ =
1
2

(
Id+(DF)−1

(0,0)
◦F
)

is

not a global diffeomorphism.

Despite this example, the global invertibility of the Bochner linearizations for
maps coming from difference equations is still an open question.

Open questions:
Let U be an open set, homeomorphic toRn.

• Assume thatU is invariant by the map associated to a globally periodic
C 1-difference equation. Is the Bochner linearization associated to a fixed
point inU globally invertible?

• Is any globally periodicC 1-map,F : U → U globally linearizable?
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3.3 A fascinating example: the Coxeter recurrence

Notice that the global linearizations are not only associated to a given globally pe-
riodic difference equation but also to a given invariant open set, homeomorphic to
Rn. For instance, consider the 5-periodic Lyness’ mapF(x,y) = (y,(1+y)/x). It
can be seen thatF and its iterates are defined inR2\L whereL is the union of the
straight linesx = 0,x = −1,y = 0,y = −1,x+ y = −1. ClearlyR2 \L has twelve
connected components andF fixes two of them and permutes the rest. We denote
by U1 = {(x,y) ∈ R2 : x > 0,y > 0} and byU2 the interior of the triangle with
vertices(−1,0),(−1,−1) and(0,−1) which are the two invariant components of
F. By using the Bochner theorem we prove:

Proposition 11 ([16])The maps F|U1 and F|U2 are globallyC ω -linearizable.

The Coxeter recurrence, which is an extension of the Lyness one, is much more
complicated; see [18]. For instance, Coxeter maps have manyfixed points and on a
neighborhood of each of them they are locally conjugate withdifferentlinear mod-
els.

In the statement of the two following results[ ] denotes the integer part function.

Lemma 12 ([18])There are exactly[(n+2)/2] linear globally periodic recurrences
of order n, and period n+3 without a line of fixed points (that is without eigenvalue
λ = 1).

Theorem 13 ([18])The Coxeter map Fn associated to the recurrence (2), has ex-
actly [(n+2)/2] fixed points. Moreover at each of these fixed points Fn is locally
conjugated to a different linear map.

In other words all linear(n+3)-periodic recurrence of ordern without the eigen-
value 1, is present in the Coxeter mapFn.

It would be interesting to know if the corresponding local conjugations given by
the Bochner Theorem are global in the corresponding invariant open sets.

4 Integrability properties of globally periodic maps

4.1 Existence and construction of complete set of first integrals

A non-constant functionV : U ⊆ Rn → R is called afirst integralor invariant of
the dynamical system generated byF if

V(F(x)) = V(x).

If a mapF possesses a first integralV, then all the orbits lie in some level set ofV,
or in other words, the level sets ofV are invariant byF.
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A mapF : U ⊆ Rn → Rn is integrableif it has n−1 functionally independent
first integrals inU , andcompletely integrableif it has n functionally independent
first integrals inU . In [10], it was proved that there is a strong relation between
globally periodic maps and complete integrability.

Theorem 14 ([10])Let F : U ⊆ Rn → U be an injective analytic map defined in
an open setU . The following statements hold:

(i) If F is globally periodic, then it is completely integrable.
(ii) If F is completely integrable and it has n functionally independent first integrals

V1,V2, · · · ,Vn such that

Card

(
n⋂

i=1

{Vi = ci}∩U

)
≤ K, for all ci ∈ R, (9)

being K a given positive integer, then F is globally periodic.

Some remarks:

1. The proof of this result is constructive, so given a globally periodic mapF, we
are able to obtain a complete set ofn first integrals; see Proposition 15.

2. Notice that the statement is given for analytic maps because we use strongly this
condition to prove that the system of first integrals that we construct is formed
by n functionally independent functions. However in many casesthe method
of construction gives functionally independent integralseven if the regularity is
relaxed. For instance in [10, Prop. 18] two functionally independent integrals
are given for the continuous map associated to the recurrence (1).

3. Condition (9) cannot be removed as the following example shows: Consider the
mapF : R2 → R2,

F(x,y) = (x+2π ,y).

This mapF is bijective on the wholeR2 and it is clearly notp-periodic for
all p∈ N. Moreover, the dynamical system generated by it is completely inte-
grable. For instance,V1(x,y) = y−sin(x) andV2(x,y) = y are two functionally
independent first integrals forF . On the other hand, it is clear that for manyc1

andc2, the finiteness condition (9) is not satisfied.

Example 5.It is well known that the Lyness mapF(x,y) = (y,(a+y)/x) has, for all
valuea∈ C, the first integral

V1,a(x,y) =
(x+1)(y+1)(x+y+a)

xy
.

Whena = 0 it has also the first integral

V2,0(x,y) =
x4y2 +x2y4 +y4+y2+x2 +x4

x2y2

and fora = 1, the first integralV2,1(x,y) = P(x,y)/(x2y2), where
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P(x,y) =xy4 +
(
x3 +x2 +2x+1

)
y3 +

(
x3 +5x2+3x+2

)
y2

+
(
x4 +2x3+3x2+3x+1

)
y+x3+2x2+x.

It can be easily seen thatV1,i andV2,i for i = 0 or i = 1 are couples of function-
ally independent functions. So, as Theorem 14 predicts, globally periodic cases are
completely integrable.

We also recall how to construct many independent first integrals for globally
periodic maps.

Proposition 15 ([10])Let F : U ⊂ Rn → U be a globally p-periodic map on U.
Let

Φ : U
p =

p︷ ︸︸ ︷
U ×U ×·· ·×U −→ K

be a symmetric function. Then, whenever it is not a constant function,

Vφ (x) = Φ(x,F(x), . . . ,F p−1(x))

is a first integral of the dynamical system generated by F.

Using the above result with some families of symmetric functions, for instance
symmetric polynomials, it is possible to obtain complete sets of first integrals, see
again [10].

Example 6.Consider the mapF(x,y) = (y,c/(xy)), corresponding to the difference
equationxn+2 = c/(xnxn+1). It holds that

(x,y) →
(

y,
c
xy

)
→
(

c
xy

,x

)
→ (x,y),

soF is globally 3-periodic. In this case, thenn = 2 andp = 3.
A complete set of first integrals can be constructed using twosuitable symmetric

functions. Takingσ1(a,b,c,d,e, f ) = a+b+c+d+e+ f , we get:

V1(x,y) = 2

(
x+y+

c
xy

)
.

Taking nowσ2(a,b,c,d,e, f ) = a2 +b2+c2+d2 +e2+ f 2, we obtain

V2(x,y) = 2

(
x2 +y2+

c2

x2y2

)
.

Note that the symmetric functionσ3(a,b,c,d,e, f ) = abcde fgives a constant func-
tion and is not a first integral. It is easy to prove thatV1 andV2 are functionally
independent first integrals.

Example 7.Using the symmetric functionS2(a1, . . . ,anp) = a2
1 +a2

2 + . . .+a2
np, we

get that any globallyp-periodic mapF : U ⊂ Rn → U has always the first integral
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V(x) =
p−1

∑
i=0

‖F i(x)‖2.

It is easy to see that the non-empty level sets of this first integral are compact. This
will be usefull in the proof of Proposition 22.

4.2 A remark on invariant curves of rational maps and global
periodicity

Globally periodic rational maps inK2 are in fact birational (i.e. its inverse is also
rational), becauseF−1 = F p−1. By Theorem 14 and Proposition 15 in this case a
complete set of rational first integrals can be chosen. Consequently, they preserve
a couple of fibrations of the plane, which are generically transversal, and given by
algebraic curves.

A theorem of Hurwitz of 1893, states that any compact Riemannsurface with
genusg > 1 admits at most 84(g− 1) conformal automorphisms, that is, homeo-
morphisms of the surface onto itself which preserve the local structure; see [21, 22].
In our context, Hurwitz theorem can be stated as (see [33]):

Theorem 16 (Hurwitz, 1893)The group of birational maps on a non-singular al-
gebraic curve of genus g> 1 is finite of order at most84(g−1).

The following result, is a consequence of the above one and properties(iii )
and(iv) given in Section 2.1.

Corollary 17 A birational map inU ⊆K2 with a rational first integral V , such that
the curves{V = c} have generically genus g> 1, must be globally periodic.

Proof. If the curves{V = c} have generically genusg > 1 then there exists an open
setV ⊆ U foliated by curves of these type. By Hurwitz Theorem on each of these
curves the map must be periodic, soF is pointwise periodic onV , and hence by
the Montgomery Theorem ([38], see also property (iii) in Section 2.1)F must be
globally periodic onV . SinceF is rational then it must be periodic on the whole
K2 except at the points where its iterates are not well defined, as property(iv) in
Section 2.1, states.

Example 8.It is now common knowledge that for the Lyness mapF(x,y) = (y,
(a+y)/x), and for all valuea∈C the first integralsV1,a given in Example 5 produce
fibrations of the plane given by curves that have genericallygenus 1 (of course, for
some particular level sets the curves are straight lines so they have genus 0).

It is interesting to notice that whena = 0 the integralV2,0 produces fibrations of
the plane given by curves that have generically genus 7. Finally, when a = 1 the
integralV2,1 generically fibers the plane by curves of genus 6.
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4.3 Measure preservation

Another interesting property is that any globally periodicmap has associated a
natural invariant measure. Recall that a measurem is invariant for a mapF if
m(F−1(B)) = m(B) for any measurable setB.

Lemma 18LetU be an open subset ofRn and let F: U → U be aC k-map glob-
ally periodic map, k≥ 1. Then F has the invariant measure

m(B) =
p−1

∑
i=0

∫

F i(B)
dx.

Moreover m is absolutely continuous with respect the Lebesgue measure withC k−1-
densityν(x) = ∑p−1

i=0

∣∣det
(
DF i(x)

)∣∣.

Proof. Let B be a Lebesgue measurable subset ofU . SinceF−1 = F p−1,

m(F−1(B)) =
p−2

∑
i=0

∫

F i(B)
dx+

∫

F−1(B)
dx =

p−1

∑
i=0

∫

F i(B)
dx = m(B).

Som is an invariant measure.
By using the change of variables formula we obtain

m(B) =
p−1

∑
i=0

∫

F i(B)
dx =

∫

B

p−1

∑
i=0

∣∣det
(
DF i(x)

)∣∣dx =

∫

B
ν(x)dx,

giving the desired result. Notice thatν is aC k−1 function because the global peri-
odicity of F implies that det

(
DF i(x)

)
6= 0.

4.4 Existence and construction of Lie Symmetries

A Lie Symmetryof a map F is avector field Xsuch thatF maps any orbit of the
differential system

ẋ = X(x), (10)

into another orbit of the system. An equivalent definition isthe following: It is a
vector fieldX such that the differential equation (10) is invariant by thechange of
variablesu = F(x). This property is characterized by

X(F(x)) = DF(x)X(x), for all x ∈ U . (11)

The existence of Lie Symmetries is an important issue in the theory of discrete
integrability; see for instance [30]. From a dynamic viewpoint this importance is



14 A. Cima, A. Gasull, V. Mañosa, F. Mañosas

clear in the integrable case, where the dynamics are in fact one dimensional. Next
results illustrate this fact.

Theorem 19 ([11])Let F : U ⊆Rn →U be a diffeomorphism having a Lie symme-
try X, and letγ be an orbit of X, preserved by F, i.e. F: γ → γ. Then the dynamics
of F restricted toγ is either conjugated to a rotation, conjugated to a translation
of the line, or constant, according whetherγ is homeomorphic toS1, R, or a point,
respectively.

Theorem 20 ([11])Let F be an integrable map, with functionally independent first
integrals V1, . . . , Vn−1 and such that it preserves a measure m(B) =

∫
B ν(x)dx, with

ν ∈ C 1(U ) and non-vanishing inU . Then F has a Lie Symmetry X sharing with F
the same set of functionally independent first integrals. Moreover

X(x) = (−∂V1(x)/∂y,∂V1(x)/∂x)/ν(x) if n = 2, and
X(x) = (∇V1(x)×∇V2(x)×·· ·×∇Vn−1(x))/ν(x) if n > 2,

(12)

where× denotes the cross product inRn.

Summarizing the results of this section we have:

1. Globally periodic maps haven functionally independent first integrals.
2. Every globally periodic map has an invariant measure withdensity ν(x) =

∑p−1
i=0

∣∣det
(
DF i(x)

)∣∣.
3. An integrable map with an invariant measurem(B) =

∫
Bν(x)dx, has a Lie Sym-

metry of the form (12).

Collecting all the facts above, we have that every globally periodic map hasn
linearly independent Lie Symmetries, thus obtaining the following result:

Corollary 21 Let F be a globally p-periodic map defined on an open setU ⊆ Rn,
with a complete set of first integrals V1, . . . ,Vn. Then there exist n Lie Symmetries of
F given by

Xk(x) = (−∂Vk(x)/∂y,∂Vk(x)/∂x)/ν(x),

for k = 1,2, if n = 2 and

Xk(x) =
(

∇V1(x)×∇V2(x)×·· ·× ∇̂Vk(x)×·· ·×∇Vn(x)
)

/ν(x),

for all k = 1, . . . ,n, if n > 2. In all casesν can be chosen as in Lemma 18.

We will say that a flow of a differential equation isperiodicif all their trajectories
are either periodic or critical points. Next result shows that at leastn−1 of the above
Lie Symmetries give rise to periodic flows as a consequence ofthe result below.

Proposition 22Let F : U ⊆ Rn → Rn be a p-periodic map defined in an open set
U , having n−1 functionally independent first integrals, V1, . . . ,Vn−1 and being

V(x) =
p−1

∑
i=0

‖F i(x)‖2.
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the first integral given in Example 7. Then, the induced foliation of U given by
the transversal levels sets Lh1,...,hn−1 :=⋔

n−1
i=1 {Vi = hi} is diffeomorphic to a finite

disjoint union ofS1.

Proof. Is easy to prove that the nonempty level setsLh1 = {V1 = h1} are compact.
Now, sinceV1,...Vn−1 are functionally independent, the locus where they intersect
transversally

Lh1,...,hn−1 :=

{
x ∈

n−1⋂

i=1

{Vi = hi} such that Rank(∇V1(x), . . . ,∇Vn−1(x)) = n−1

}

is a compact 1-dimensional manifold, so it must be diffeomorphic to a finite disjoint
union ofS1; see for instance [29, p. 208].

Therefore, the associated Lie symmetries give rise to periodic orbits on each con-
nected component of the (non-empty) setsLh1,...,hn−1 which are, of course, generic.
Also observe that the locus of non-transversality of the energy levels will corre-
spond to singular points of the associated Lie Symmetries. Therefore there exist at
leastn−1 linearly independentperiodicLie symmetries.

Open question:

• Is everyorientation preservingglobally periodic map of classC 1 associ-
ated to a periodic flowϕ? That is: Is it true that

F(x) = ϕ(τ(x),x)

for some periodic flowϕ(t,x)?
• Furthermore, is every orientation preserving globally periodic map of class

C 1 the stroboscopic map of an isochronous flow? That is: Is it true that

F(x) = ϕ(τ,x)

for some continuous periodic flowϕ(t,x) and someτ ∈ R+?

Observe that the above questions are not equivalent. Indeed, if we have a periodic
vector fieldX : U ⊆ Rn → Rn, it can be reparameterized by

Y(x) = T(x)X(x) : (13)

whereT(x) is the function that assigns to each point the period of the periodic
orbit passing through it. IfT were a smooth function inU then it would be an
1-isochronous vector field. But sometimes,T is not regular inU because it tends
to infinity. A characterization of whenT is regular has been given recently in [37].
Notice that indeed, there are examples of periodic flows withsome periodic orbits
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such that the periods of the neighbouring orbits tends to infinity as they approach
to thesingularperiodic orbit. These examples were constructed by G. Reeb (1952),
D. Epstein (1972), D. Sullivan (1976) and E. Voght (1977); see [41, 25, 44, 47]
respectively. All these classical examples are not polynomial. Recently we have
learned about the existence of a polynomial one due to D. Peralta-Salas [40].

Observe also that the obstruction to give a positive answer to the first question in
the above open problem is that, although a globally periodicmap has at leastn−1
Lie Symmetries that are periodic vector fields, it is difficult to guarantee that there
exists at least one of them such thatF preserves any solutionγ of the differential
equationẋ = X(x). The following example shows that sometimes this obstruction
can be avoided.

Example 9.The map

F(x,y,z) =

(
z,

1+y+z
x

,
1+x+y+z+xz

xy

)

is globally 4-periodic because it corresponds toG◦G, whereG is the Todd’s map
given in Example 1; see also [12]. In the first octant it has theLie symmetry given
by

X(x,y,z) = xyz(∇V1(x,y,z)×∇V2(x,y,z))

where

V1 =
(x+1)(y+1)(z+1)(1+x+y+z)

xyz
, V2 =

(x+1)(z+1)

y
.

SinceF preserves any solutionγ of the differential equatioṅx = X(x), this implies
that in the first quadrantF can be seen as the stroboscopic map of the isochronous
flow of the vector fieldY(x) = T(x)X(x) onR3.

5 A Normal Form Theory approach

The theory of Normal forms for dynamical systems, both discrete and continuous,
goes back to Poincaré and Lyapunov, and it is a well-known tool for the study of
bifurcations of dynamical systems; see for instance [1, 27,48].

In this section we outline a method, introduced in [13], which is the discrete
analog of the way in that Normal Form Theory is applied in the theory of planar dif-
ferential equations in order to obtain center and isochronicity conditions [9, 26, 31].
First, let us recall briefly how Normal Form theory works for these two problems.
Given a planar analytic differential equation

ẋ = −y+ f2(x,y)+ f3(x,y)+O4(x,y),
ẏ = x+g2(x,y)+g3(x,y)+O4(x,y),

(14)
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it is well known that the origin is either a center or a focus. In this later case the
stability of the origin is given by the sign of the first non-null number of a list of
polynomial expressions in the coefficients off j andg j , called theLyapunov quan-
tities V3,V5, . . . obtained from the coefficients off j andg j . In particular, the first
Lyapunov quantity only depends onf2, f3,g2, andg3, that isV3 = V3( f2, f3,g2,g3).

The normal form of (14) is

ẋ = −y− (x2+y2)(V3y+T2x)+O4(x,y),
ẏ = x+(x2+y2)(V3x−T2y)+O4(x,y),

(15)

see [27, p. 154] or [48, Sec. 3.1B]. So only the termV3 (which gives the stability)
and the termT2 (that gives information about the period of the orbits) remain.

Following the same idea, and since the Bochner Theorem ensures that globally
periodic maps with a fixed point locally linearize, we can apply the Normal Form
theory to analytic maps with a fixed point in order to obtain some explicit expres-
sions of the obstructions to be locally linearized around the point. The vanishing of
these expressions will be necessary conditions for global periodicity.

5.1 Normal Form Theory and global periodicity

In this section we briefly recall some issues of Normal Form Theory. We also indi-
cate how to use it to obtain some necessary conditions for global periodicity.

Let F := F (1) : K2 →K2, be a family of smooth maps satisfyingF (1)(0) = 0. Let

F(1)(x) = F (1)
1 (x)+F(1)

2 (x)+ · · ·+F(1)
k (x)+O(|x|k+1)

be the Taylor expansion ofF at 0, whereF (1)
r ∈ Hr , the real vector space of maps

whose components are homogeneous polynomials of degreer.
A sequence of transformationsΦn can be constructed, in such a way that at each

step,Φn removes (if it is possible), the terms of the corresponding homogeneous
part of degreen, obtaining a sequence of maps of the form

F (n)(y) = Ly+F(n)
n+1(y)+O(|y|n+2),

whereLy := F (1)
1 (y) = DF(1)(0)y.

For instance, the transformation

x = Φ3(y) := y+ φ3(y),

with φ3 ∈ H3, conjugates the mapF (2) with a new mapF (3), via

F (2)(Φ3) = Φ3(F
(3)).
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From the above equation, it can be easily seen that the termF (3)
3 = Lφ3(y)−

φ3(Ly)+F(2)
3 (y). In other words,

F (3)(y) = Ly+Lφ3(y)−φ3(Ly)+F(2)
3 (y)+O(|y|4).

If φ3(y) can be chosen in such a way that

ML (φ3(y)) := Lφ3(y)−φ3(Ly) = −F(2)
3 (y), (16)

then the order-3 terms ofF(3) can be removed and it is transformed into

F (3)(y) = Ly+O(|y|4).

The vectorial equation (16), whose unknowns are the coefficients ofφ3, is called
the order 3homological equationassociated withL, and the existence of solutions
of it, is the necessary and sufficient condition to be able to remove the homogeneous
terms of degree 3.

If there is any obstruction to solve the homological equation (16), this can be in-
terpreted as an obstruction in the linearization process. These obstructions are poly-
nomial expressions in the coefficients ofF(2), that must vanish in order to continue
with the linearization process. The equations obtained by equaling these polynomial
expressions to zero are calledperiodicity conditions; see [13].

For instance, whenL = diag(α,1/α), there are no obstructions for the order
2 homological equation. But there appear some ones in the order 3 homological
equation. The associated periodicity conditions in this case, are given by

f (2)
2,1 = 0 andg(2)

1,2 = 0. (17)

Using the above method, and computing the explicit expressions of equations
(17), we prove:

Theorem 23 ([13])Consider a smooth complex map of the form

F(x,y) =

(
αx + ∑

i+ j≥2

fi, j x
iy j ,

1
α

y + ∑
i+ j≥2

gi, jx
iy j

)
, (18)

whereα is a primitive p-root of unity, p≥ 5. Then the conditions

( f2,1 + f1,1g1,1)α4− f1,1(2 f2,0−g1,1)α3+

(2g2,0 f0,2− f1,1 f2,0 + f1,1g1,1)α2− ( f2,1 + f1,1 f2,0)α + f1,1 f2,0 = 0,

g0,2g1,1α4− (g1,2 +g0,2g1,1)α3 +( f1,1g1,1+2g2,0 f0,2−g0,2g1,1)α2

+g1,1(−2g0,2+ f1,1)α + f1,1g1,1 +g1,2 = 0
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are necessary for F to be p-periodic.

5.2 An application of Theorem 23

As an application of an extension of Theorem 23 presented in [13], where an ad-
ditional third condition is given, we study the global periodicity for the 2-periodic
Lyness recurrence

xn+2 =
an +xn+1

xn
, where an =

{
a for n = 2ℓ+1,
b for n = 2ℓ,

(19)

anda,b∈ C. We obtain:

Theorem 24 ([13])The only globally periodic recurrences in(19)are:

(i) The cases a= b = 0 which is6-periodic, and a= b = 1, which is5-periodic.
(ii) The cases a= (−1± i

√
3)/2 and b= a = 1/a, which is10-periodic.

Notice that the cases given in (i) correspond to the well-known autonomous glob-
ally periodic Lyness recurrences given in Example 1. The ones corresponding to (ii)
are new non-autonomous globally periodic recurrences.

Observe that the sequence{xn} can be reobtained as

(x1,x2)
Ga−→ (x2,x3)

Gb−→ (x3,x4)
Ga−→ (x4,x5)

Gb−→ (x5,x6)
Ga−→ ·· ·

whereGα(x,y) = (y,(α + y)/x), with α ∈ {a,b}. So the behavior of (19) is deter-
mined by the dynamical system generated by the map:

F(x,y) := Gb◦Ga(x,y) =

(
a+y

x
,
a+bx+y

xy

)

which always has some fixed point. In [13], the extension of Theorem 23 is applied
to F for proving Theorem 24,
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