ELSEVIER

Contents lists available at ScienceDirect

Communications in Nonlinear Science and Numerical Simulation

journal homepage: www.elsevier.com/locate/cnsns

Research paper

Pointwise periodic maps with quantized first integrals

Anna Cima a, Armengol Gasull a,b, Víctor Mañosa c,*, Francesc Mañosas a

^b Centre de Recerca Matemàtica, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain

^c Departament de Matemàtiques, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya Colom 11, 08222 Terrassa, Spain

ARTICLE INFO

Article history:
Received 20 April 2021
Received in revised form 14 September 2021
Accepted 21 November 2021
Available online 15 December 2021

MSC: primary 37C25 39A23 secondary 37C55 37J35 52C20

Keywords:
Periodic points
Pointwise periodic maps
Piecewise linear maps
Quantized first integrals
Regular and uniform tessellations

ABSTRACT

We describe the global dynamics of some pointwise periodic piecewise linear maps in the plane that exhibit interesting dynamic features. For each of these maps we find a first integral. For these integrals the set of values are discrete, thus quantized. Furthermore, the level sets are bounded sets whose interior is formed by a finite number of open tiles of certain regular or uniform tessellations. The action of the maps on each invariant set of tiles is described geometrically.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A pointwise periodic map is a bijective self-map in a topological space such that each point is periodic. A periodic map is a bijective self-map in a topological space such that some iterated of the map is the identity. For a periodic map $F: X \longrightarrow X$ the minimum natural number p satisfying $F^p = \operatorname{Id}$ is called the period of F. Notice that a pointwise periodic map satisfying that the period of the points has an upper bound is periodic and its period is the least common multiple of the periods of the elements of the space.

A classical result of Montgomery establishes that any *pointwise periodic homeomorphism* in an Euclidean space is *periodic*, [1]. Non-periodic but pointwise periodic bijective maps do exist when the continuity assumption is relaxed, see [2] for instance. In the series of papers [3–5], the authors introduce three explicit examples of pointwise periodic maps that are not periodic. The examples given by these authors in the above mentioned references belong to the family of piecewise affine maps with a line of discontinuity:

$$G(x, y) = (y, -x - \rho y + \operatorname{sign}(y)), \quad \text{where} \quad \operatorname{sign}(y) = \begin{cases} +1, & \text{if } y \ge 0; \\ -1, & \text{otherwise,} \end{cases}$$
 (1)

E-mail addresses: cima@mat.uab.cat (A. Cima), gasull@mat.uab.cat (A. Gasull), victor.manosa@upc.edu (V. Mañosa), manyosas@mat.uab.cat (F. Mañosas).

^{*} Corresponding author.