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Abstract The celebrated Kerékjártó Theorem asserts that planar continuous periodic maps
can be continuously linearized. We prove that C1-planar involutions can be C1-linearized.
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1 Introduction and statement of the main result

A map F : Rn → R
n is called m-periodic if Fm = Id, where Fm = F ◦ Fm−1, and m is the

smallest positive natural number with this property. When m = 2, then it is said that F is an
involution.

When there exists a Ck-diffeomorphism ψ : Rn → R
n, such that ψ ◦ F ◦ ψ−1 is a linear

map, then it is said that F is Ck-linearizable. In this case, the map ψ is called a linearization
of F . This property is very important because it is not difficult to describe the dynamics of the
discrete dynamical system generated by linearizable maps. For instance, planar m-periodic
linearizable maps behave as planar m-periodic linear maps: They are either symmetries with
respect to a “line” or “rotations.”
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There is a strong relationship between periodic maps and linearizable maps. For instance,
it is well known that when n = 1, every Ck periodic map is either the identity, or it is 2-
periodic and Ck-conjugated to the involution − Id, see for instance [8]. When n = 2, the
following result holds, see [4] for a simple and nice proof.

Theorem 1.1 (Kerékjártó Theorem) Let F : R
2 → R

2 be a continuous m-periodic map.
Then F is C0-linearizable.

The situation changes for n ≥ 3. In [1,2], Bing shows that for any m ≥ 2, there are
continuous m-periodic maps in R

3 which are not linearizable. Nevertheless, Montgomery
and Bochner give a positive local result proving that for Ck, k ≥ 1, m-periodic maps having
a fixed point are always locally Ck-linearizable in a neighborhood of this point, see [9] or
Theorem 3.1 below. In any case, in [3,5,7], it is shown that for n ≥ 7, there are continuous
and also differentiable periodic maps on R

n without fixed points.
The aim of this paper is to prove the following improvement for planar involutions of the

result of Kerékjártó.

Theorem A Let F : R2 → R
2 be a C1-differentiable involution. Then F is C1-linearizable.

Aswewill see, our proof uses classical ideas of differential topology togetherwith some ad
hoc tricks for extending and gluing non-global diffeomorphisms. The authors thank Professor
Sánchez Gabites for suggesting the use of the classification theorem of surfaces for the proof
of Lemma 2.5.

2 Preliminary results on differential topology

In this paper, unless it is explicitly stated, a differentiable map will mean a map of class C1.
Also a diffeomorphism will be a C1- diffeomorphism.

2.1 Results in dimension n

We state two results that we will use afterward when n = 2. The first one asserts that any
local diffeomorphism can be extended to be a global diffeomorphism, see [10].

Theorem 2.1 Let M be a differentiablemanifold and let g : V → g(V ) ⊂ M beadiffeomor-
phism defined on a neighborhood V of a point p ∈ M. Then, there exists a diffeomorphism
f : M → M such that f |W = g|W for some neighborhood W ⊂ V of p.

The second one is given in [6] for C∞- manifolds. Here, we state a slightly modified
version of the theorem for C1-manifolds. We leave the details of this generalization to the
reader. Notice that it allows to glue diffeomorphisms that match as a global homeomorphism,
only changing them in a neighborhood of the gluing set, but not on the gluing set itself.

Theorem 2.2 For each i = 0, 1, let Wi be an n-dimensional C1-manifold without boundary
which is the union of two closed n-dimensional submanifolds Mi , Ni such that

Mi ∩ Ni = ∂Mi = ∂Ni = Vi .

Let f : W0 → W1 be a homeomorphism which maps M0 and N0 diffeomorphically onto M1

and N1, respectively. Then, there is a diffeomorphism f̃ : W0 → W1 such that f (M0) =
M1, f (N0) = N1 and f̃ |V0 = f |V0 . Moreover, f̃ can be chosen such that it coincides with
f outside a given neighborhood Q of V0.
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2.2 Results in the plane

The aim of this subsection is to prove the following local result that will play a key role in
our proof of Theorem A.

Lemma 2.3 Let D ⊂ R
2 be an open and simply connected set such that {0}×R ⊂ D. Then,

there exist an open set V such that {0} × R ⊂ V ⊂ D and a diffeomorphism ψ : D → R
2

such that ψ |V = Id .

To prove Lemma 2.3, we introduce two more results. The first one is a direct corollary
of the natural generalization for non-compact C1-surfaces of the theorem of classification of
C∞-compact surfaces given in [6].

Theorem 2.4 Let M be a simply connected and non-compact C1- surface such that ∂M is
connected and non-empty. Then, M is diffeomorphic to H = {(x, y) ∈ R

2 : x ≥ 1}.
The second result is a lemma that allows to transform by a diffeomorphism any C1-curve

“going from infinity to infinity” into a straight line.

Lemma 2.5 Let C be a closed, connected and non-compact C1-submanifold of R2. Then,
there exists a diffeomorphism ϕ : R2 → R

2 such that ϕ(C) = {0} × R.

Proof First of all note that R2 \C has two connected components that we will denote by C+
and C−. Denote also by C1 and C2 the simply connected and non-compact differentiable
surfaces obtained by addingC toC+ andC−.Applying Theorem 2.4 toC1 andC2, we obtain
diffeomorphisms φ1 : C1 −→ H1 and φ2 : C2 −→ H2 where H1 = {(x, y) ∈ R

2 : x ≥ 0}
and H2 = {(x, y) ∈ R

2 : x ≤ 0}. Clearly, the map φ2 ◦ φ−1
1 is a diffeomorphism of {0} ×R

into itself. Thus, (φ2 ◦ φ−1
1 )(0, y) = (0, λ(y)) for a certain diffeomorphism λ : R −→ R.

Consider the diffeomorphism h : R
2 −→ R

2 given by h(x, y) = (x, λ(y)) and define
G : R2 −→ R

2 as

G(x, y) =
{

(h ◦ φ1)(x, y), if (x, y) ∈ C1;
φ2(x, y), if (x, y) ∈ C2.

Thus applying Theorem 2.2 with W0 = W1 = R
2, M0 = C1, N0 = C2, M1 = H1, N1 =

H2 and f = G, we obtain the desired diffeomorphism ϕ : R2 −→ R
2. 
�

We are ready to prove the main result of this subsection.

Proof of Lemma 2.3 We consider first the case when there exists ε > 0 such that [−ε, ε] ×
R ⊂ D. In this particular case denote by

D+ = {(x, y) ∈ D : x > 0} and Dε = {(x, y) ∈ D : x ≥ ε}.
Since D is an open and simply connected set, by the Riemann Theorem, there exists a
diffeomorphism G : D → R

2. Set

C+ = G({ε} × R).

Clearly, we have that C+ is a closed, connected and non-compact submanifold of R2. Thus
by Lemma 2.5, there exists a diffeomorphism

�+ : R2 → R
2 such that �+(C+) = {ε} × R.
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Composing �+ with an appropriate involution, if necessary, we can assume that (�+ ◦
G)(Dε) = {(x, y) ∈ R

2 : x ≥ ε} .= Hε . Set

ψ+ = �+ ◦ G.

Thus, we have that ψ+(Dε) = Hε and ψ+({ε} × R) = {ε} × R. Therefore, ψ+(ε, y) =
(ε, h(y)) for some diffeomorphism h of R. Let H : R

2 → R
2 be the diffeomorphism

defined by H(x, y) = (x, h−1(y)). Lastly, if we denote by ϒ+ = H ◦ ψ+, we get that ϒ+
is a diffeomorphism between Dε and Hε such that ϒ+|{ε}×R = Id . As before, denote by
R
2+ = {(x, y) ∈ R

2 : x > 0} and consider the map T+ : D+ → R
2+ defined by

T+(z) =
{

ϒ+(z) if x ∈ Dε,

z otherwise.

Applying Theorem 2.2 with Wε = D+ , W1 = R
2+, M0 = M1 = (0, ε] × R, N0 =

Dε, N1 = Hε and f = T+, we obtain a diffeomorphism g+ : D+ → R
2+ such that

g+|(0,ε/2)×R = Id .

In a similar way, if we denote by D− = {(x, y) ∈ D; x < 0}, and R
2− = {(x, y) ∈ R

2 :
x < 0}, we can construct a diffeomorphism g− : D− → R

2− such that g−|(−ε/2,0)×R = Id .

Clearly, the map g : D → R
2 defined by

g(z) =
⎧⎨
⎩
g+(z) if x ∈ D+,

g−(z) if x ∈ D−,

z otherwise.

is a diffeomorphism and g|(−ε/2,ε/2)×R = Id . This ends the proof in this particular case.
Next, we will see how to reduce the general case to one that we have already solved.
Consider a differentiable map σ : R → (0, 1) such that Dσ

.= {(x, y) ∈ R
2; |x | <

σ(y)} ⊂ D. Denote by Dσ/3
.= {(x, y) ∈ R

2; |x | < σ(y)/3}. We want to transform with
a diffeomorphism the set Dσ into the vertical strip (−1, 1) × R. Moreover, we want that
this diffeomorphism is the identity on Dσ/3. To this end, we construct a diffeomorphism
h : R2 → R

2 of the type h(x, y) = (hy(x), y) where hy : R → R is an odd diffeomorphism

satisfying hy(x) = x if 0 ≤ x ≤ σ(y)
3 and hy(σ (y)) = 1. Then, h maps diffeomorphically D

onto h(D). Moreover, h|Dσ/3 = Id and h(D) ⊃ h(Dσ ) = (−1, 1)×R.Using the first part of
the proof with any ε < 1, we can assert that there exist a diffeomorphism g : h(D) → R

2 and
a neighborhood V of {0}×R such that g|V = Id .We obtain the desired result by considering
the diffeomorphism g ◦ h and the neighborhood V ∩ Dσ/3. 
�

The last preliminary result is given in next lemma.

Lemma 2.6 Let α, β : R → R be continuous maps, such that α(y) 
= 0 for all y ∈ R. Then,
there exists a diffeomorphism F : R2 → R

2 such that F |{0}×R = Id and

(dF)(0,y) =
(

α(y) 0
β(y) 1

)

for all y ∈ R.

Proof Set R(x, y) = 1 + β(x + y) − β(y) and S(x, y) = α(x + y) − β(x+y)(α(x+y)−α(y))
R(x,y) .

We have that R(0, y) = 1 and S(0, y) = α(y) 
= 0 for all y ∈ R. By continuity, there
exists an open neighborhood V of {0} × R such that R(x, y) 
= 0 and S(x, y) 
= 0 for
all (x, y) ∈ V . Moreover, we can choose V simply connected and satisfying the following
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property: If (x, y1) and (x, y2) belong to V then (x, y) ∈ V for all y ∈ (y1, y2). Now consider
H : V → R

2 defined as

H(x, y) = (H1(x, y), H2(x, y)) =
⎛
⎝

y+x∫
y

α(s) ds , y +
y+x∫
y

β(s) ds

⎞
⎠ .

Clearly, H is C1 and H(0, y) = (0, y) for all y ∈ R.

We claim that H restricted to an appropriate open subset of V is an embedding. To prove
this fact, note first that det((dH)(x,y)) = R(x, y)S(x, y) 
= 0 for all (x, y) ∈ V . Then, H is
a local diffeomorphism. Moreover, by the Implicit Function Theorem, since ∂H2

∂y (0, b) 
= 0
it follows that for any b ∈ R, there exist an open interval Ib containing 0 and a differentiable
map φb : Ib → R satisfying the following property: For all x ∈ Ib, (x, φb(x)) ∈ V and
H2(x, φb(x)) = b. We can choose Ib maximal with respect this property. Since ∂H2

∂y (x, y) 
=
0 for all (x, y) ∈ V , it follows that Ib and φb are uniquely determined and the graph of φb(x)
tends to the boundary of V when x tends to the boundary of Ib.

For any b ∈ R denote by Jb the graph of φb and set W̃ = ∪b∈R Jb. Now, we claim that
H restricted to W̃ is globally one to one. To do this note that the equation H(x, y) = (a, b)
with (x, y) ∈ W̃ implies that (x, y) ∈ Jb. Then calling Lb(s) = H1(s, φb(s)), we need to
solve the equation Lb(s) = a. Since

L ′
b(s) = ∂H1

∂x
(s, φb(s)) + ∂H1

∂y
(s, φb(s))φ

′
b(s)

= ∂H1

∂x
(s, φb(s)) − ∂H1

∂y

∂H2
∂x

∂H2
∂y

(s, φb(s)) = S(s, φb(s)) 
= 0,

it follows that Lb is monotone and consequently H(x, y) = (a, b) has at most one solution
in W̃ .

Lastly, we claim that there exists an open neighborhoodW of {0}×R contained in W̃ . For
b ∈ R, let W̄b be an open neighborhood of (0, b) in V such that H |W̄b

is a diffeomorphism

onto H(W̄b) and let ε > 0 be such that (−ε, ε) × (b − ε, b + ε) ⊂ H(W̄b). Then, Wb =
H−1((−ε, ε) × (b − ε, b + ε)) is open. Note that

Wb =
⋃

s∈(−ε,ε)

H−1((−ε, ε) × {s}) ⊂
⋃

s∈(−ε,ε)

Js ⊂ W̃ .

Therefore, the claim is proved by selecting W ⊂ ∪b∈RWb with the following properties: W
is open, connected, simply connected and contains {0}×R. Thus, we will have that H |W is a
diffeomorphism onto H(W ). Therefore, H(W ) is also connected and simply connected. By
Lemma 2.3, there exist open sets V1 ⊂ W, V2 ⊂ H(W ) and diffeomorphisms ϕ1 : W → R

2

and ϕ2 : H(W ) → R
2 such that ϕ1|V1 = Id and ϕ2|V2 = Id . Then, F = ϕ2 ◦ H ◦ ϕ−1

1 :
R
2 → R

2 is a diffeomorphism, and for any (x, y) ∈ V1 ∩ H−1(V2), we have

d(F)(x,y) = d(ϕ2)H◦ϕ−1
1 (x,y) ◦ d(H)

ϕ−1
1 (x,y) ◦ d(ϕ−1

1 )(x,y) = Id ◦ d(H)(x,y) ◦ Id .

In particular, we obtain that

d(F)(0,y) = d(H)(0,y) =
(

α(y) 0
β(y) 1

)
,

for all y ∈ R, as we wanted to prove. 
�
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3 Proof of Theorem A

We will use the classical Kerékjártó Theorem and the Montgomery–Bochner Theorem, see
[9]. We also include the proof of the second result because it is very simple and explains
what is understood by a locally linearizable map.

Theorem 3.1 (Montgomery–Bochner Theorem, see [9]). Let U ⊂ R
n be an open set and

let F : U → U be a class Cr , r ≥ 1, m-periodic map, having a fixed point p ∈ U . Then,
there is a neighborhood of p, where F is Cr -linearizable and conjugated to the linear map
L(x) := d(F)p x.

Proof Consider the map from U into R
n, ψ = ∑m−1

i=0 L−i ◦ Fi . Since both, F and L , are
m-periodic it holds that L ◦ ψ = ψ ◦ F. Moreover, since d(ψ)p = m Id, by applying the
Inverse Function Theorem, we get that ψ is locally invertible and has the same regularity
as F . 
�
Proof of Theorem A By the Kerékjártó Theorem, the map F is C0 conjugated to a linear
involution. Hence, it is conjugated either to S(x, y) = (−x, y) or to − Id. First, we consider
the case when F is C0-conjugated to S. Let g : R2 → R

2 be the homeomorphism such that
F ◦ g = g ◦ S. Then, since g is a homeomorphism, we know that L := g({0} × R) is a
non-compact, closed and connected topological submanifold of R2 which is fixed by F. We
claim that L is a differentiable submanifold of R2. To do this, we will show that L is locally
the graph of a C1 function.

Let (a, b) ∈ L . Then, (a, b) is a fixed point of F , and by the Montgomery–Bochner
Theorem, d(F)(a,b) is conjugated to S. Then, d(F)(a,b) − Id 
= 0. If we write F = (F1, F2),
this implies that at least one of the functions F1(x, y) − x and F2(x, y) − y has nonzero
gradient at (a, b). Assume for instance that ∂(F1(x,y)−x)

∂x (a, b) 
= 0. By the Implicit Function
Theorem, there exist neighborhoods V of (a, b) andW of b and a C1- map ψ : W → R such
that L ∩ W = {(ψ(t), t) : t ∈ W }. This proves the claim.

By Lemma 2.5, there exists a diffeomorphism ϕ : R2 → R
2 such that ϕ(L) = {0} × R.

Therefore, F̃ = ϕ ◦ F ◦ ϕ−1 is a C1- involution that has {0} × R as a line of fixed points.

Then, F̃(0, y) = (0, y). Thus, d(F̃)(0,y) =
(
A(y) 0
B(y) 1

)
for some A, B : R → R continuous.

Moreover, since d(F̃)(0,y) must be conjugated to S, it follows that A(y) = −1 for all y ∈ R.

Now, using Lemma 2.6, we choose φ : R2 → R
2 a diffeomorphism such that φ|{0}×R2 =

Id and

d(φ)(0,y) =
(

1 0
B(y)/2 1

)
.

Lastly define

�(x, y) =
{

φ(x, y) if x ≥ 0,
F̃(φ(S(x, y)) otherwise.

which is C1 because

lim
x→0+ d(�)(x,y) =

(
1 0

−B(y)/2 1

)

=
( −1 0
B(y) 1

) (
1 0

−B(y)/2 1

) (−1 0
0 1

)
= lim

x→0− d(�)(x,y).
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Since det(d(φ)(0,y)) = 1, it follows that φ preserves orientation. In addition, we know
that all points on the line x = 0 are fixed and then φ({x, y) ∈ R

2 : x ≥ 0}) = {(x, y) ∈ R
2 :

x ≥ 0}. Thus, we obtain that � is a diffeomorphism. Computing directly �−1 we have

�−1(x, y) =
{

φ−1(x, y) if x ≥ 0,
S(φ−1(F̃(x, y)) otherwise.

Finally, again a direct computation gives that �−1 ◦ F̃ ◦ � = S. Since F̃ = ϕ ◦ F ◦ ϕ−1,
the map �−1 ◦ ϕ is the desired C1-conjugation. This ends the proof for this case.

Now, we consider the case when F is C0-conjugated to − Id . Then, F has a unique
fixed point p. By the proof of Theorem 3.1, the map Id−F conjugates F to − Id in a
neighborhood W of p. By Theorem 2.1, the embedding (Id−F)|V can be extended to be a
global diffeomorphism π : R2 → R

2 such that π |V = (Id−F)|V for some neighborhood
V ⊂ W of p. Since F is topologically conjugated to− Id, we can select V so that F(V ) ⊂ V .
Consider now F̃ = π ◦ F ◦ π−1. The map F̃ has 0 as a fixed point and F̃ |π(V ) = − Id .

Let γ : R
2 → R

2 be the homeomorphism such that γ −1 ◦ F̃ ◦ γ = − Id and consider
L = γ ({0} × R). Then, L is a connected, closed and non-compact topological submanifold
of R2 invariant by F̃ . Our next objective will be to modify L for obtaining a C1 submanifold
with the same properties.

Let r > 0 be such that Br = {x ∈ R
2 : |x | < r} ⊂ π(V ) and set t0 = max{t ∈ R :

|γ (0, t)| = r}. Then, L1 = γ ({0} × (t0,∞)) does not intersect Br . Since F̃ |Br = − Id, it
follows that F̃(L1) = γ ({0}×(−t0,−∞)) neither cuts Br . Set L0 = {tγ (0, t0); t ∈ [−1, 1]}
and

L̃ = L1 ∪ L0 ∪ F̃(L1).

Clearly, L̃ is also a connected closed and non-compact topological submanifold of R2 invari-
ant by F̃ .Hence, it dividesR2 in two connected and open regions A and B that are permuted by
F̃ . Consider now a differentiable map f : (0,∞) → R

2 satisfying the following properties:

1. f (t) = tγ (0, t0) if t ≤ 1/2,
2. f (t) ∈ A for all t > 1/2,
3. limt→∞ | f (t)| = ∞,

4. f is one to one.

Denote by M0 = f ((0,∞)). By construction, M0 is a connected and differentiable sub-
manifold ofR2 andM0∩F̃(M0) = ∅.Thus,M = M0∪F̃(M0)∪{(0, 0)} is a connected, closed
and non-compact differentiable submanifold of R2 which is invariant by F̃ . By Lemma 2.5,
there exists a diffeomorphism ϕ : R2 → R

2 such that ϕ(M) = {0} ×R. Therefore, the map

F̂ = ϕ ◦ F̃ ◦ ϕ−1

is a differentiable involution that has {0} ×R as an invariant line. Thus, F̂(0, y) = (0, g(y))
for a certain one dimensional differentiable involution g : R → R. In this case, the map
h(y) = y−g(y) is a global diffeomorphism that conjugates g with− Id . Therefore, the map
ϕ̃ : R2 → R

2 defined by ϕ̃(x, y) = (x, h(y)) is a diffeomorphism that conjugates F̂ with an
involution F̄ that satisfies that F̄ |{0}×R = − Id . Therefore

d(F̄)(0,y) =
(
A(y) 0
B(y) −1

)
,

for some continuous functions A and B with A(0) = −1 and B(0) = 0. Note that since
A(0) = −1 and F̄ is a diffeomorphism, it follows that A(y) < 0 for all y ∈ R. On the other
hand, since F̄2 = Id, we will have
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d(F̄)(0,−y) ◦ d(F̄)(0,y) = Id,

which implies that

A(−y) = 1

A(y)
and B(−y) = B(y)

A(y)

for all y ∈ R.

Consider now the continuous maps a, b : R → R defined as follows:

a(y) =
{
1 if y ≥ 0,

− 1
A(y) otherwise,

and b(y) =
{
0 if y ≥ 0,

− B(y)
A(y) otherwise.

Direct computations show that

a(y) = −A(−y)a(−y) and b(y) = b(−y) − B(−y)a(−y),

for all y ∈ R.

Since a(y) 
= 0 for all y ∈ R, by Lemma 2.6, we can choose a diffeomorphism
φ : R2 → R

2 satisfying that φ|{0}×R = Id and

d(φ̃)(0,y) =
(
a(y) 0
b(y) 1

)
.

As in the previous case, we define the map

�(x, y) =
{

φ(x, y) if x ≥ 0,
F(φ(−x,−y)) otherwise,

satisfying

lim
x→0+ d(�)(x,y) =

(
a(y) 0
b(y) 1

)
=

(−A(−y)a(−y) 0
b(−y) − B(−y)a(−y) 1

)

=
(
A(−y) 0
B(−y) −1

) (
a(−y) 0
b(−y) 1

) (−1 0
0 −1

)
= lim

x→0− d(�)(x,y).

The same considerations as in the previous case show that � is a C1-diffeomorphism that
conjugates F̄ and − Id . Since F̄ and F are C1-conjugated, this fact ends the proof of the
theorem. 
�
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