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Abstract

In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the
linear one. We give a method which lets us prove that there are planar polynomial centers of degree ¢ with at least 2[(£ — 2)/2]
critical periods as well as study concrete families of potential, reversible and Liénard centers. This last case is studied in more detail
and we prove that the number of critical periods obtained with our approach does not increases with the order of the perturbation.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the set V; of all the polynomial vector fields of the form
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F=—y+ P, y)=—y+) Pux,y),
n=2

(1)
0
F=x4 00, ) =x+ Y Oulx,y),

n=2

having a center at the origin, where P, and Q,, are homogeneous polynomials of degree n. Given a vector field X € V,
let P be the period annulus of the center, i.e. the open subset of the phase plane formed by all the periodic orbits of
X surrounding the origin. The period function T : P —> R associates with any point (x, y) € P the period of the
periodic orbit passing through (x, y). Since all the points belonging to the same periodic orbit y have the same period
we may denote by T'(y) the period of the periodic orbit. We say that T is an increasing (resp. decreasing) function
if for any couple of periodic orbits yy and y; in P with ) contained in the region surrounded by y;, we have that
T(y1) — T(yo) > 0 (resp. T (y1) — T(yo) < 0). The local maximum or minimum of the period function are called
critical periods.
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