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This paper is mainly devoted to the study of the index of a map at a zero, and the index of a polynomial
map over 2n. For semi-quasi-homogeneous maps we prove that the index at a zero coincides with the index
at this zero of its quasi-homogeneous part. For a class of polynomial maps with finite zero set we provide
a method which makes easier the computation of its index over 2n. Finally we relate the index and the
multiplicity.

1. Notation and statement of the results

Let f : (2n, 0)! (2n, 0) be a continuous map such that 0 is isolated in f −"(0). Then

the index ind
!
[ f ] of f at zero is defined as follows: choose a ball Bε about 0 in 2n so

small that f −"(0)fBε ¯²0´ and let Sε be its boundary (n®1)-sphere. Choose an

orientation of each copy of 2n. Then the index of f at zero is the degree of the

mapping ( f }s f s) : Sε !S, the unit sphere, where the spheres are oriented as (n®1)-

spheres in 2n. If f is differentiable, this degree can be computed as the sum of the signs

of the Jacobian of f at all the f-preimages near 0 of a regular value of f near 0.

If f is a smooth (that is a #¢) map, then consider the germ f
!

of f at 0, and the

local ring #¢

!
(2n)}( f

!
) of f

!
at 0, where #¢

!
(2n) is the ring of germs at 0 of smooth

real-valued functions on 2n, and ( f
!
) is the ideal generated by the components of f

!
.

The multiplicity µ
!
[ f ] of f at 0 is defined by µ

!
[ f ]¯dim2[#

¢

!
(2n)}( f

!
)] and we say that

f is a finite map germ if µ
!
[ f ]!¢. It is known that µ

!
[ f ] is the number of complex

f-preimages near 0 of a regular value of f near 0.

Given a map g : (2n, 0)! (2n, 0), where g¯ (g
"
,… , g

n
) with each g

i
a homo-

geneous polynomial such that 0 is isolated in g−"(0), it is well known that µ
!
[g]¯

0n

i="
d
i
, where d

i
is the degree of each g

i
.

On the other hand any smooth function f
i
: (2n, 0)! (2, 0) can be written as

f
i
¯ g

i
­G

i
, where g

i
is the first non-zero jet of f

i
. Hence, any smooth map

f : (2n, 0)! (2n, 0) can be written as f¯ g­G. It is also known that µ
!
[ f ]¯µ

!
[g]

if 0 is isolated in g−"(0). Sometimes the above construction provides a g such that 0

is not isolated in g−"(0), but a suitable selection of weights associated with any

variable (see the definitions in the sequel) makes possible a different decomposition

f¯ g«­G « satisfying µ
!
[ f ]¯µ

!
[g«].

We begin this paper by giving a similar property but one concerning indices

instead of multiplicities. In order to enunciate the result, we need some preliminary

definitions.
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We say that f is a quasi-homogeneous map with weight a¯ (a
"
,… , a

n
) `.n and

quasi-degree d¯ (d
"
,… , d

n
) `.n if

f
i
(λa

" x
"
, λa

# x
#
,… , λan x

n
)¯ λdi f

i
(x

"
,x

#
,… ,x

n
) (1)

for each i¯ 1, 2,… , n and all λ" 0. When a
i
¯ 1 for i¯ 1, 2,… , n, then f is a

homogeneous map. A function f
i

satisfying (1) is called a quasi-homogeneous

function with weight a¯ (a
"
,… , a

n
) and quasi-degree d

i
. Note that any monomial

xr
"

"
xr

#

#
Ixrn

n
is a quasi-homogeneous function with arbitrary weight a¯ (a

"
,… , a

n
)

and quasi-degree a
"
r
"
­a

#
r
#
­I­a

n
r
n
. For fixed a we say that a smooth function

has quasi-order m if all monomials in its Taylor expression have quasi-degree greater

than or equal to m.

We also recall the concept of a semi-quasi-homogeneous map (see [4]). We say that

f is a semi-quasi-homogeneous map with weight a and quasi-degree d if f¯ g­G with

g a quasi-homogeneous map with weight a and quasi-degree d such that 0 is isolated

in g−"(0), and each component G
i
of G has quasi-order greater than d

i
.

T 1.1. Let f¯ g­G be a semi-quasi-homogeneous map. Then 0 is isolated

in f −"(0) and

ind
!
[ f ]¯ ind

!
[g].

Here we assume that f is a polynomial map such that all its zeros are isolated.

Then its zero set is finite and we define ind
f
by

ind
f
¯ 3

²a :f(a)=!
´

ind
a
[ f ].

We shall give a result similar to Theorem 1.1 which is useful in computing ind
f
.

For a fixed weight a¯ (a
"
, a

#
,… , a

n
) we say that a polynomial map f¯ ( f

"
,… , f

n
)

has quasi-degree d¯ (d
"
,… , d

n
) if each f

i
has a monomial of quasi-degree d

i
and all

its other monomials have quasi-degree less than or equal to d
i
.

T 1.2. Let f¯ g­G be a polynomial map. Suppose that G is a quasi-

homogeneous map with weight a and quasi-degree d, with 0 isolated in G−"(0) and

suppose that g has quasi-degree less than d. Then the zero set of f is finite and ind
f
¯

ind
!
[G ].

Theorems 1.1 and 1.2 will be proved in Section 3. Section 2 contains statements

of the general results that we need to prove our assertions.

Section 4 is devoted to giving bounds for ind
!
[ f ] for semi-quasi-homogeneous

maps (see Theorem 4.1) and for ind
f
for some polynomial maps (see Theorem 4.3).

These bounds generalize results of Khovanskii, see [6].

In the last part of the paper we study the relation between index and multiplicity.

In [5] the authors prove that

rind
!
[ f ]r% (µ

!
[ f ])"−"/n. (2)

They also give an algebraic method of computing the index of a finite map germ. They

prove that the index of f at zero can be computed as the signature of a certain

symmetric bilineal form defined on the local ring #¢

!
(2n)}( f

!
).
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It turns out that

ind
!
[ f ]3µ

!
[ f ] (mod2). (3)

The following question arises : for fixed n and given µ¯µ
!
[ f ], which values can

the index of f at zero take?

For the case n¯ 2, we get a full answer: the number ind
!
[ f ] is not subject to any

restrictions other than (2) and (3) (see Theorem 5.1). As far as we know, the above

result was previously known only when µ¯k# for some k `., see [5, Proposition 2.4].

If n" 2, we find that the bound given in (2) is not the best possible, although we

present an example which shows that the order of the exponential growth cannot be

improved (see Proposition 5.2).

Finally in the Appendix we study the function π
n
(1, d) introduced in Section 4.

2. Preliminary results

The next two propositions give the properties of index and multiplicity that we

need to prove our results.

P 2.1 (see [1, 4]). Let f : (2n, 0)! (2n, 0) be a finite map germ. Then

we ha�e the following.

(i) The multiplicity of f at zero does not depend on the selection of coordinates.

(ii) Let f¯ ( f
"
, f

#
,… , f

n
) and f

i
¯ f ki

i
­ higher order terms. Then µ

!
[ f ]&0n

i="
k
i

and µ
!
[ f ]¯0n

i="
k
i
if and only if the system f ki

i
¯ 0 for i¯ 1,… , n has only the tri�ial

solution in #n (here f ki
i

is the homogeneous part of f
i
of degree k

i
).

(iii) If for some i ` ²1,… , n´, the function f
i
can be described as f

i
¯ g

i
"

[g
i
#

, where

g
i
"

(0)¯ g
i
#

(0)¯ 0, then µ
!
[ f ]¯µ

!
[g

"
]­µ

!
[g

#
] where g

"
¯ ( f

"
,… , g

i
"

,… , f
n
) and

g
#
¯ ( f

"
,… , g

i
#

,… , f
n
).

(iv) Let g : (2n, 0)! (2n, 0) also be a finite map germ. Then µ
!
[ f a g]¯µ

!
[ f ]µ

!
[g].

(v) If g
i
¯ f

i
­3

j!i
Ai

j
f
j
, then µ

!
[ f ]¯µ

!
[g].

(vi) If for some i ` ²1,… , n´, the function f
i
can be described as f

i
¯ hg

i
with h(0)1

0, then µ
!
[ f ]¯µ

!
[g] where g¯ ( f

"
,… , g

i
,… , f

n
).

P 2.2 (see [7]). Let f : (2n, 0)! (2n, 0) be a continuous map such that

0 is isolated in f −"(0). Then the following hold.

(i) The index ind
!
[ f ] of f at zero does not depend on the selection of coordinates.

(ii) Assume that g is also a continuous map such that 0 is isolated in g−"(0). Let B

be a ball about 0 so small that f −"(0)fB¯²0´ and g−"(0)fB¯²0´. If f and g are

homotopic on the boundary of B, ¦B (that is, there is a continuous homotopy

H(t,x) : [0, 1]¬B!2n between f and g, such that H(t,x)1 0 for all x ` ¦B) then

ind
!
[ f ]¯ ind

!
[g].

(iii) Let B be a neighbourhood of 0 `2n such that f(x)1 0 for each non-zero x `B.

Let fε be a one-parameter family, smooth with respect to ε, such that f
!
¯ f. Then for ε

small enough, the sum of the indices at the zeros of fε equals the index of f at zero.

In order to compare the numbers µ
!
[ f ] and ind

!
[ f ] we give some results from [5].

T 2.3 [5]. Let f : (2n, 0)! (2n, 0) be a finite map germ. Let I be an ideal of

#¢

!
(2n)}( f

!
) which is maximal with respect to the property I #¯ 0. Then

rind
!
[ f ]r¯µ

!
[ f ]®2dim2 I.
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T 2.4 [5]. Let f : (2n, 0)! (2n, 0) be a finite map germ. Then

(i) rind
!
[ f ]r% (µ

!
[ f ])"−"/n,

(ii) ind
!
[ f ]3µ

!
[ f ] (mod 2).

The following results concern quasi-homogeneous maps (see [4]). Let f be a quasi-

homogeneous map with weight a and quasi-degree d. Let P
f
(t) be a polynomial of

degree 3n

s="
(d

s
®a

s
)¯ d such that P

f
(t)¯3d

i=!
δ
i
ti, where δ

i
is the number of

monomials of degree i which appear in any basis of #¢

!
(2n)}( f

!
). This polynomial is

called the Poincare! polynomial associated with f.

The key result about quasi-homogeneous maps is the following.

T 2.5 [4]. Let f be a quasi-homogeneous map with weight a and quasi-

degree d. Then its PoincareU polynomial can be computed as

P
f
(t)¯Pa,d

(t)¯ 0
n

s="

tds®1

tas®1
.

Notice that from the above theorem it is automatically known how many

monomials of each degree appear in any basis of #¢

!
(2n)}( f

!
).

C 2.6 [4]. Let f be a semi-quasi-homogeneous finite map germ with weight

a and quasi-degree d. Then we ha�e the following.

(i) The multiplicity of f at zero can be computed as

µ
!
[ f ]¯3

d

i="

σ
i
¯P

f
(1)¯ 0

n

s="

d
s

a
s

.

(ii) Any basis of the local ring of f at zero has exactly one monomial of quasi-degree

d¯3n

s="
(d

s
®a

s
), and any monomial of quasi-degree greater than d is zero in

#¢

!
(2n)}( f

!
).

(iii) The PoincareU polynomial of f is recurrent, that is, σ
i
¯σ

d−i
, and so

µ
!
[ f ]¯

(®1)d+"®1

2
σ
E(d/#)

­2 3
E(d/#)

i="

σ
i
.

Finally we recall the Poincare! definition of the index for n¯ 2 (see [2]).

Let C be a simple closed curve of 2#, let f be thought of as a vector field defined on

a simply connected open region of 2# which contains the curve C and let r be some

straight line in the (x, y)-plane. Suppose that there exist only finitely many points M
k

(for k¯ 1, 2,… , n) on C at which the vector f(M ) is parallel to r. Let M be a point

describing the curve in the counterclockwise sense, and let p (respectively q) be the

number of points of M
k
at which the vector f(M ) passes through the direction of r in

the counterclockwise (respectively clockwise) sense. Points M
k

at which the vector

field f(M ) assumes the direction of r while moving, say, in the clockwise sense and

then begins to move in the opposite sense (or vice versa) are not counted. Then, the

index of C, i(C ), is defined by i(C )¯ (p®q)}2. If we have a zero M of f, we define

the index ind
M
[ f ] of f at M by ind

M
[ f ]¯ i(C ), where C is a simple closed curve on

which there are no zeros of f and which is such that it surrounds only the point M.
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3. Proof of the main results

We prove only Theorem 1.1. The proof of Theorem 1.2 follows by using similar

arguments.

Proof of Theorem 1.1. Let h
t
(x) be defined as h

t
(x)¯ g(x)­tG(x), for t ` [0, 1]. We

claim that in a neighbourhood of 0 the inequality h
t
(x)1 0 holds for all t. This

shows that

(i) 0 is isolated in f −"(0),

(ii) f and g are homotopic in the boundary of a ball of sufficiently small radius.

From (i), (ii) and Proposition 2.2(ii) Theorem 1.1 follows.

In order to prove the claim, assume that h
t
(x)¯ 0 arbitrarily near to the origin.

Then there exist two sequences, ²x
m
´ tending to zero and ²t

m
´ with t

m
` [0, 1] such that

h
tm

(x
m
)¯ 0, that is, h

it
m

(x
m
)¯ 0 for i¯ 1, 2,… , n.

Since 0 is isolated in g−"(0), there exists a subsequence of ²x
m
´ (let us call it also

²x
m
´) and a subindex i ` ²1, 2,… , n´ such that g

i
(x

m
)1 0. Without loss of generality we

can assume that i¯ 1. By dividing the equation h
"t

m

(x
m
)¯ 0 by g

"
(x

m
) we obtain

1­t
m

G
"
(x

m
)

g
"
(x

m
)
¯ 0.

Now given a point x such that 3n

i="
x(#a"

Ian)/ai
i

¯ r#a"Ian, we consider the point u with

u
i
¯x

i
}rai, so that u `SF3n−" with S¯²u `2n : 3n

i="
u(#a"

Ian)/ai
i

¯ 1´.
Given the sequence ²x

m
´¯ ²(x

"m

,… ,x
nm

)´ we consider the corresponding sequence

²u
m
´¯ ²(u

"m

,… , u
nm

)´ contained in S. Then there exists a convergent subsequence of

²u
m
´ (let us call it also ²u

m
´) with limit u*. We claim that g

"
(u*)¯ 0. If not, since rt

m
r

% 1 and G
"
(rau

m
)}rd" ! 0 as r! 0, the expression

1­t
m

G
"
(rau

m
)

rd"g
"
(u

m
)
,

has limit 1, and we get a contradiction.

We consider g
#
. Then either there exists m

!
such that g

#
(x

m
)¯ 0 for m"m

!
or

there exists a subsequence of ²x
m
´ with g

#
(x

m
)1 0 for all m. In the first case we have

that g
#
(u*)¯ 0. In the second case we apply the above process and we again have that

g
#
(u*)¯ 0.

Doing the same with the other components of g we can assert that there exists a

point u* with g(u*)¯ 0. Since g is a quasi-homogeneous function, we see that

g
i
(tau*)¯ g

i
(ta"u$

"
,… , tanu$

n
)¯ tdig

i
(u*)¯ 0 for all i, that is, g¯ 0 on the curve tau*

and 0 is not isolated in g−"(0).

It is easy to give examples that show that Theorem 1.1 cannot be extended to the

case that g is non-quasi-homogeneous. Consider a¯ (1, 1), and g¯ (y#, y®x%) that

has index 0 at 0. On the other hand g­(®x$y, 0) or g­(®x&, 0) have index ®1 at the

origin.

R 3.1. Notice that the statement equivalent to Theorem 1.1, with

multiplicity instead of index, can be proved by reducing the problem to the

homogeneous case. It suffices to compose the map with (x
"
,… ,x

n
)! (xa

"

"
,… ,xan

n
) and

apply Proposition 2.1(iv).
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This approach does not work when we are interested in the index, because there

is no result similar to Proposition 2.1(iv) concerning indices instead of multiplicities.

To end this section we give an example in which the choice of a suitable weight

is useful in order to study the index of a point. Let f(x, y) be defined by

f(x, y)¯ (y#®x$­2x#y, y%­x$y#®x'­4x$y$).

Then f¯ g­G where g(x, y)¯ (y#®x$, y%­x$y#®x') and G(x, y)¯ (2x#y, 4x$y$).

Here g is a quasi-homogeneous map with weight a¯ (2, 3) and quasi-degree d¯
(6, 12) such that 0 is isolated in g−"(0). The map G has quasi-degree d«¯ (7, 15) which

is greater than d. So by Proposition 2.1, µ
!
[ f ]¯µ

!
[g] and by Theorem 1.1, ind

!
[ f ]¯

ind
!
[g].

By Corollary 2.6(i) we have that

µ
!
[g]¯ 0

#

s="

d
s

a
s

¯ 12.

On the other hand since 3 d
s
®3 a

s
¯ 13J 0 (mod2), Theorem 4.1 (see Section 4)

implies that ind
!
[g]¯ 0. Notice that taking the weight a¯ (1, 1), the map g would be

g(x, y)¯ (y#, y%) and 0 would not be isolated in g−"(0).

4. Bounds for the indices

Given n `. and a, d in .n we define

π
n
(a, d)¯

1®(®1)d+"

2
σ
E(d/#)

,

where E denotes the integer part function, d¯3n

i="
(d

i
®a

i
) and the σ

s
are the

coefficients of the following polynomial associated with a, d :

pa,d
(t)¯ 0

n

i="

tdi®1

tai®1
¯ 3

d

i="

σ
i
ti.

It is proved in [4] that the above polynomial coincides with the Poincare! polynomial

(see Theorem 2.5). In the Appendix we give an expression for π
n
(1, d) when n¯ 2

and n¯ 3, and present some properties of this function. Here we notice that if

3
i
d
i
J3n

i="
a
i
(mod 2), then π

n
(a, d)¯ 0. We have the next result.

T 4.1. Let f be a semi-quasi-homogeneous map with weight a and quasi-

degree d. Then

(i) rind
!
[ f ]r%π

n
(a, d),

(ii) ind
!
[ f ]30n

s="
d
s
}a

s
(mod 2).

Proof. Since f is semi-quasi-homogeneous the hypothesis of Corollary 2.6 holds.

Let J be the ideal of #¢

!
(2n)}( f

!
) which is spanned by the monomials of quasi-degree

greater than "

#
d¯ "

#
3n

s="
(d

s
®a

s
). Then, from the definition of the Poincare! polynomial

associated with f, P
f
(t)¯3d

i=!
σ
i
ti, it is clear that

dim J&µ
!
[ f ]® 3

E(d/#)

i=!

σ
i
.
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By Corollary 2.6(ii) we know that J #¯ 0 and, by applying Theorem 2.3 and the above

inequality, we get

rind
!
[ f ]r%µ

!
[ f ]®2dim J% 2 3

E(d/#)

i=!

σ
i
®µ

!
[ f ].

By Corollary 2.6(iii) we obtain that

rind
!
[ f ]r%

1®(®1)d+"

2
σ
E(d/#)

¯π
n
(a, d).

Part (ii) of the theorem follows directly from (3) and Corollary 2.6.

The inequality (i) of Theorem 4.1, when a¯ 1 (that is, a
i
¯ 1 for all i¯ 1,… , n)

and f is homogeneous, was proved by Arnold in [3] and called by him the

Petrovskii–Oleinik inequality. Also for the same cases, Khovanskii in [6] gives a more

general proof and presents examples of f with multiplicity µ
!
[ f ] and index ind

!
[ f ]

satisfying (i) and (ii) of Theorem 4.1.

Given n `. and d `.n, let d be defined as d¯3n

i="
(d

i
®1). If d is an odd number

then we define

O
n
(d )¯σ

(d−")/#
,

where (0n

i="
(tdi®1))}(t®1)n ¯3d

i=!
σ
i
ti. The next result was proved by Khovanskii.

T 4.2 [6]. Let f¯ ( f
"
, f

#
,… , f

n
) be a polynomial map from 2n to 2n, where

the degree of f
i
equals d

i
, such that all the zeros of f are isolated. Then the following hold.

(i) If all the zeros of f are finite and simple, then rind
f
r%π

n
(1, d).

(ii) Let d be defined by d¯3n

i="
(d

i
®1). If d3 0 (mod 2), then rind

f
r%π

n
(1, d). If

dJ 0 (mod 2), then rind
f
r%O

n
(d).

Next we give a generalization of Theorem 4.2(i), by considering quasi-

homogeneous maps.

T 4.3. Let f be a polynomial map such that f¯ g­G, where G is a quasi-

homogeneous map with weight a and quasi-degree d such that 0 is isolated in G−"(0) and

g has quasi-degree less than d. Then

(i) rind
f
r%π

n
(a, d),

(ii) ind
f
30n

i="
d
s
}a

s
(mod 2).

Proof. By using Theorem 1.2 we have that ind
f
¯ ind

!
[G ]. Applying Theorem

4.1 to G the result follows.

In some cases the bound given in Theorem 4.2(ii) can be improved by applying

Theorem 4.3. Consider the map f¯ (x®x$, y­x$). By using Theorem 4.2 we get that

rind
f
r%O

#
(3, 4)¯ 3. On the other hand if we consider the weight a¯ (1, 4), Theorem

4.3 implies that rind
f
r%π

#
((1, 4), (3, 4))¯ 1. In fact it is easy to prove that ind

f
¯®1.

5. On the relation between index and multiplicity

T 5.1. For each µ `. and i `: satisfying rir%oµ and i3µ (mod 2), there

exists a map germ f : (2#, 0)! (2#, 0) such that µ
!
[ f ]¯µ and ind

!
[ f ]¯ i.
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Proof. It is necessary only to see that for all k and m satisfying k&m#, k3m

(mod 2) there exists a vector field f with µ
!
[ f ]¯k and ind

!
[ f ]¯m.

Let P(x, y) and Q(x, y) be homogeneous polynomials of degree m®1 of the form

P(x, y)¯ (y®p
"
x)[…[(y®p

m−"
x), Q(x, y)¯ (y®q

"
x)[…[(y®q

m−"
x)

with 0! p
"
! q

"
! p

#
! q

#
!I! q

m−"
, and let f be defined as

f¯ (xP(x, y),xQ(x, y)­εyk−m(m−")).

By using the properties described in Proposition 2.1, we have

µ
!
[ f ]¯µ

!
[(x,xQ(x, y)­εyk−m(m−"))]­µ

!
[(P(x, y),xQ(x, y)­εyk−m(m−"))]

¯µ
!
[(x, εyk−m(m−"))]­3m−"

i="
µ
!
[(y®p

i
x,xQ(x, y)­εyk−m(m−"))]

¯k®m(m®1)­m(m®1)¯k.

In order to see that ind
!
[ f ]¯m, we shall use the Poincare! definition of the index

(see Section 2). Let C¯²x#­y#¯ δ #´ with δ small enough so that C surrounds only

the point 0. We choose the vertical direction as r and we obtain the intersection points

of C and x¯ 0, y¯ p
i
x for i¯ 1,… ,m®1. Then

f r
x=!

¯ (0, εyk−m(m−")),

f r
y=pix

¯ (0,xm(p
i
®q

"
)[…[(p

i
®q

m−"
)­ε(xp

i
)k−m(m−")).

Let ε be taken as

ε¯
1

2

min
j=",

…,m−"

)0m−"

i="

(p
j
®q

i
))

max
j=",

…,m−"

rp
j
rm

.

We claim that the sign of xm(p
i
®q

"
)[…[(p

i
®q

m−"
)­ε(xp

i
)k−m(m−") equals the sign of

xm(p
i
®q

"
)[…[(p

i
®q

m−"
). Since k&m# we first consider k"m#. Then the exponent

k®m(m®1) is greater than m. Since x#­y#¯ δ #, it is clear that, taking δ small enough,

the sign of xm(p
i
®q

"
)[…[(p

i
®q

m−"
) will be the same as the sign of

xm(p
i
®q

"
)[…[(p

i
®q

m−"
)­ε(xp

i
)k−m(m−"). If k¯m#, we have that k®m(m®1)¯m

and from the definition of ε we see that rεpm

i
r! r0m−"

j="
(p

i
®q

j
)r for each i¯ 1,… ,m®1.

The claim is proved.

From the choice of p
"
,… , p

n
and q

"
,… , q

n
, the second component of f evaluated

at (x, p
i
x) will alternate its sign, being positive in (0, δ ). By studying the behaviour of

f near these points we can see that ind
!
[ f ]¯m.

P 5.2. (i) Let f : (2n, 0)! (2n, 0) be a finite map germ with µ
!
[ f ]¯ 2n.

Then rind
!
[ f ]r!µ

!
[ f ]"−"/n for each n" 2.

(ii) Take n and m to be positi�e integer numbers such that n(m®1)3 0 (mod 2).

Gi�en µ¯mn there exists a finite map germ such that µ
!
[ f ]¯µ and ind

!
[ f ]¯

3n−"
i=!

p
i
µi/n, where the p

i
are non-negati�e rational numbers, 3n−"

i=!
p
i
¯ 1 and p

n−"
1 0.

Proof. (i) Let f¯ ( f
"
, f

#
,… , f

n
) and assume that the Taylor expression of f

i
begins

with terms of order k
i
. Let fki

i
be the homogeneous part of degree k

i
of f

i
. If µ

!
[ f ]¯

2n, then either k
i
& 2 for all i ` ²1, 2,… , n´ or there exists some i ` ²1, 2,… , n´ with

k
i
¯ 1.

First assume that k
i
& 2 for all i¯ 1, 2,… , n. If there exists some i ` ²1, 2,… , n´

with k
i
" 2, then from Proposition 2.1(ii), µ

!
[ f ]" 2n. So, k

i
¯ 2 for all i¯ 1, 2,… , n.
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Applying Proposition 2.1(ii) again we know that the system f #
i
¯ 0 for i¯ 1, 2,… , n

has only the trivial solution. Therefore we can apply Theorem 1.1 and assert that

ind
!
[ f ]¯ ind

!
[ f # ], where f #¯ ( f#

"
, f #

#
,… , f #

n
). From Theorem 4.1 we have that

rind
!
[ f ]r%π

n
(a, d), with a¯ (1, 1,…, 1) and d¯ (2, 2,…, 2). By using the definition of

π
n
(a, d) we have that

π
n
(a, d)¯

n !

[(n}2) !]#
if n is even

π
n
(a, d)¯ 0 if n is odd.

If n is odd then clearly ind
!
[ f ]¯ 0 and the result follows. If n is even, n" 2, then

n !

[(n}2)!]#
! 2n−"¯µ

!
[ f ]"−"/n,

and the result follows again. Furthermore notice that the number n !}[(n}2) !]# satisfies

n !

[(n}2)!]#
% 2n(n−#)/(n−") ¯ (2n)"−"/(n−") ¯µ"−"/(n−").

Now assume that there exist some i with f
i
¯ f "

i
­f #

i
­. . . and f "

i
J 0. We can

suppose that i¯ 1 and that f "

"
¯ a

""
x
"
­a

"#
x
#
­. . .­a

"n
xn with a

""
1 0. Then, near the

origin, the equation f
"
(x

"
,… ,x

n
)¯ 0 can be written as x

"
¯x

"
(x

#
,… ,x

n
). So, we can

consider the change of coordinates (x
"
(x

#
,… ,x

n
),x

#
,… ,x

n
). With that change the map

can be written as F¯ (x
"
,F

#
,… ,F

n
). From the invariance properties of the index and

multiplicity (Propositions 2.1 and 2.2), we get ind
!
[ f ]¯ ind

!
[F ] and µ

!
[ f ]¯µ

!
[F ]. On

the other hand it is easy to prove (by taking preimages, for instance) that ind
!
[F ]¯

ind
!
[G ] and µ

!
[F ]¯µ

!
[G ] where G : 2n−"!2n−" is defined by

G¯ (F
#
r
x
"
=!

,… ,F
n
r
x
"
=!

).

Since we have reduced the dimension of the space, from Theorem 2.4 we obtain the

inequality

rind
!
[G ]r%µ

!
[G ]"−"/(n−").

Therefore, rind
!
[ f ]r%µ

!
[ f ]"−"/(n−") and (i) is proved.

(ii) Consider the vector field

f
i
¯ 0

!
%k!d

"

0d®1

2
x
i
®k03

n

j="

x
j
­111 for i¯ 1, 2,… , n,

where d¯ n(d
"
®1). This vector field was given by Khovanskii [6] in order to see that

the bound π
n
(1, d) for the sum of the indices always is attained. That means that

rind
f
r¯π

n
(1, d) where d¯ (d

"
, d

"
,… , d

"
).

Now let us consider the homogeneous part of maximal degree of f
i
, namely,

G
i
¯ 0

o%k!d
"

0d®1

2
x
i
®k 3

n

j="

x
j1 ,

and let g be determined by f¯ g­G. It is easy to see that the system G
i
¯ 0 for i¯

1, 2,… , n has the unique solution x¯ 0, and so 0 is isolated in G−"(0). From Theorem

1.2 we deduce that rind
f
r¯ rind

!
[G ]r¯π

n
(1, d). Now from the Appendix we know
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that π
n
(1, d) is a polynomial in d

"
of degree n®1, that is, π

n
(1, d)¯3n−"

i=!
p
i
di

"
with

3n−"
i=!

p
i
¯ 1. Furthermore, from Proposition 2.1(ii) we know that µ¯µ

!
[G ]¯ dn

"
.

Consequently,

rind
!
[G ]r¯ 3

n−"

i=!

p
i
µi/n,

and the result follows.

For values of µ
!
[ f ] less than 2n we can improve the bound given in (2) in a natural

way.

P 5.3. Let f : (2n, 0)! (2n, 0) be a finite map germ with µ
!
[ f ]¯

µ% 2n. Then the following inequalities hold:

rind
!
[ f ]r%

1

2
3

4

1 if 1%µ! 4,

µ"−"/# if 4%µ! 8,

]

µ"−"/(n−") if 2n−"%µ% 2n.

Proof. Let f¯ ( f
"
,… , f

n
) and write f

i
¯ f ki

i
­f ki+"

i
­ . . ., where fki

i
is the

homogeneous part of f
i
of degree k

i
.

The case µ
!
[ f ]¯ 2n has been studied in the proof of Proposition 5.2(i). Assume

here that µ
!
[ f ]! 2n. Then there exists some i with f

i
¯ f "

i
­f #

i
­I and f "

i
J 0. By

applying the same argument as in the proof of Proposition 5.2, we see that f "
i
J 0

implies that rind
!
[ f ]r%µ

!
[ f ]"−"/(n−"). By iterating that process (if it is necessary), we

obtain the desired result.

From Proposition 5.2 we know that the bound µ
!
[ f ]"−"/n is not always attained.

To end this section we give an example in 2$ such that 0 has multiplicity µ and the

absolute value of the index of f at 0 is the largest integer less than µ#/$.

Consider the map f : (2$, 0)! (2$, 0) given by

f
t
(x, y, z)¯ (2x(x®2y®2z), 2y(y®2x®2z),®z(z®2x®2y) (z­4x­4y)­tx(y­z)).

First we prove that µ
!
[ f

t
]¯ 10 for any t1 0 small enough. Notice that f

!
has

µ
!
[ f

!
]¯ 12 and by using the formula of [5] it is not difficult to show that

ind
!
[ f

!
]¯ 4. Consider the map f

t
: the system f

t
¯ 0 has three solutions for t1 0, p

"
¯

(®%t

#(
, 0, ®#t

#(
), p

#
¯ ( %t

"$&
, %t

"$&
, ® #t

"$&
) and the origin. From the definition and

properties of multiplicity we obtain that, for t1 0, µ
!
[ f

t
]¯ 10, µ

p
"

[ f
t
]¯ 1 and

µ
p
#

[ f
t
]¯ 1.

On the other hand, since the determinant of f
t
is kt% with k" 0 at p

"
and k! 0 at

p
#
, we know that ind

p
"

[ f
t
]¯ 1 and ind

p
#

[ f
t
]¯®1. So, from Proposition 2.2(iii) we

have
ind

!
[ f

t
]¯ ind

!
[ f

!
]¯ 4,

for t1 0 small enough.

Appendix. The function π
n
(1, d)

The goal of this Appendix is to give some properties of the function π
n
(a, d)

defined in Section 4 when a¯ (1,…, 1)¯ 1. Given n `., d `.n and k `:, we define

the function R(n, d,k) by the cardinal of

((x"
,x

#
,… ,x

n
) `:n : 0%x

i
! d

i
, 3

n

i="

x
i
¯k* .
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From this definition since π
n
(1, d)¯0n

i="
(1­t­I­tdi−"), it is easy to prove

that

π
n
(1, d)¯R 0n, d,

1

203
n

i="

d
i
®n11 .

By using the above expression it is not difficult to study some properties of

π
n
(1, d) by induction because of the equality

R(n, d,k)¯ 3
k

j=k−d
"

R(n®1, (d
#
,… , d

n
), j).

Before we state our result we introduce the following notation. Let S be any subset

of ²1, 2,…, n´. Define d
S
¯3

i`S
d
i
, and dW ¯ 0. We define $¯5

S`0(²",…,n´)
d
S
.

P A.1. (i) Gi�en d `.n, we set R(n, d,k) to be a continuous piece-wise

polynomial of degree n®1 in the �ariables k, d
"
,… , d

n
with all its non-smooth points in

$. Furthermore its expression on each inter�al of [0, d
"
­I­d

n
] c$ depends on the

ordering of the points of $.

(ii) When "

#
(3n

i="
d
i
®n) is a natural number, the function π

n
(1, d) is a polynomial of

degree n®1 in the �ariables d
"
,… , d

n
. Furthermore, its expression depends on the

ordering of the points of $.

As an illustration of Proposition A.1(ii), and assuming that d
"
% d

#
%I% d

n
, we

have that π
#
(1, d)¯ d

"
, and

π
$
(1, d)¯

1

2
3

4

d
"
d
#

when d
"
­d

#
% d

$
,

"

%
(1­2(d

"
d
#
­d

"
d
$
­d

#
d
$
)®d#

"
®d#

#
®d#

$
) when d

"
­d

#
& d

$
.

When d
i
¯ d for all i¯ 1,… , n, it follows that $¯²0, d, 2d,… , nd ´, and then only

one ordering is possible. In this case the expression for π
n
(1, d), for low values of n,

is

π
#
(1, d)¯ d,

π
$
(1, d)¯ (

0

"

%
(1­3d #)

when d is even,

when d is odd,

π
%
(1, d)¯ "

$
(d­2d $),

π
&
(1, d)¯ (

0

"

"*#
(27­50d #­115d %)

when d is even,

when d is odd,

π
'
(1, d)¯ "

#!
(4d­5d $­11d &),

π
(
(1, d)¯ (

0

"

""&#!
(1125­1813d #­2695d %­5887d ')

when d is even,

when d is odd,

π
)
(1, d)¯ "

$"&
(45d­49d $­70d &­151d ().
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