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INTRODUCTION

Tsutomu Date and Masao Iri in [DI] gave an algebraic classification of
systems X = P(x, y), y= Q(x, y), where P and Q are homogeneous polyno-
mials of degree 2. For this, they used the classification of the binary cubic
forms and also the simultaneous classification of a linear binary form and
a cubic binary form given by the algebraic invariant theory.

We begin by doing a similar study for systems x = P(x, y), y = Q(x, y),
where P and Q are homogeneous polynomials of degree three (i.e., cubic
systems). The classification’s theorem of such systems is based on the
classification of fourth-order binary forms. Gurevich in [Gu] did the
classification of fourth-order binary forms on the field of complex numbers.
Since we did not find the classification on the real domain, we adapt
Gurevich’s proof to obtain it. In Section 1 we give some definitions and
preliminary results, while in Section 2 we give the theorem of classification
of fourth-order binary forms on the real domain. The method used in the
proof (Caley’s method) let us obtain canonical forms of the fourth-order
binary forms and the algebraic characteristics. Section 3 is devoted to
obtaining the algebraic classification of systems X = P(x, y), y=0(x, y),
where P and @ are homogeneous polynomials of degree 3. Given an
arbitrary system X = (P, @) with P and @ homogeneous polynomials of
degree 3, we can know the equivalence-class at which it belongs through
the algebraic characteristics.

In Section 4 we study the phase-portraits of systems x=P(x, y),
y=0(x, y), where P and Q are homogeneous polynomials of degree » and
P and Q have no common factor. Such systems have been studied by
J. Argemi in [A]. Here we give a shorter new proof of his results by using
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