INTERNATIONAL PUBLICATIONS (USA)

Communications on Applied Nonlinear Analysis Volume 17(2010), Number 2, 15–24

New Family of Centers for Polynomial Vector fields of Arbitrary Degree

Anna Cima and Jaume Llibre Universitat Autònoma de Barcelona Departament de Matemàtiques 08193 Bellaterra, Barcelona, Spain cima@mat.uab.cat and jllibre@mat.uab.cat

João C. Medrado Universidade Federal de Goiás Instituto de Matemática e Estatística 74001–970 Goiânia, Goiás, Brazil medrado@mat.ufg.br

Communicated by Carmen Chicone (Received October 2005; Accepted February 2007)

Abstract

For all integer n > 1 we study the center variety of the 4–parameter family of real planar polynomial vector fields of degree n given, in complex notation, by $\dot{z} = iz + Az^n + B\bar{z}^n$, where z = x + yi and $A, B \in \mathbb{C}$.

Key words: centers, polynomial vector fields, reversibility.

AMS Subject Classification: Primary 34C05, Secondary 58F14

1 Introduction

Poincaré in [7] defined the notion of a *center* for a vector field on the real plane; i.e. a singular point p for which there exists a neighborhood U such that $U \setminus \{p\}$ only contains closed orbits.

For planar polynomial vector fields an usual method to look for nondegenerate centers (i.e. having purely imaginary eigenvalues) is, first to translate the singular point candidate