Advanced Nonlinear Studies 8 (2008), 619-632

Hopf Bifurcation in Presence of 1:3 Resonance

Anna^{*} Cima, Jaume Libre

Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain e-mail: cima@mat.uab.cat e-mail: jllibre@mat.uab.cat

Marco Antonio[†] Teixeira

Department of Mathematics Institute of Mathematics, Statistics and Scientific Computing, P.O. Box 6065, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil e-mail: teixeira@ime.unicamp.br

> Received in revised form 22 December 2007 Communicated by Giovanni Vidossich

Abstract

Assume that the linear part at a singular point p_0 of a C^4 differential system Y_0 in \mathbb{R}^4 has eigenvalues $\pm \alpha i$ and $\pm \beta i$ such that $\beta/\alpha = 1/3$. In the main result of the paper we exhibit a one-parameter family of systems Y_{ε} for $\varepsilon \in (-\delta_0, +\delta_0)$ where is shown that the original vector field around p_0 can bifurcate in 0, 1, 2, 3 or 4 one-parameter families of periodic orbits. The tool for proving such a result is the averaging theory for non- C^1 differentiable system. Moreover, assuming now that Y_{ε} is a one-parameter family of \mathbb{Z}_{2^-} reversible polynomial vector fields of degree 5, we show that it can bifurcate in 0 or 2 one-parameter families of periodic orbits.

1991 Mathematics Subject Classification. 34C29, 34C25, 47H11. *Key words*. limit cycle, periodic orbit, Hopf bifurcation, Liapunov center theorem, averaging theory

^{*}These authors acknowledges the support of MEC/FEDER MTM 2005-06098-C02-01 and CIRIT 2005SGR 00550.

 $^{^\}dagger {\rm The}$ author acknowledges the support of FAPESP–BRAZIL grant 10246-2.