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We provide the natural extension, from the dynamical point of view, of the Poincaré—Hopf theorem to noncompact
manifolds. On the other hand, given a compact set K being an attractor for a flow generated by a %' tangent vector
field X on an n-manifold, we prove that the Euler characteristic of its region of attraction &/, y{.%), is defined and
satisfies Ind #(X) =(—1)"¢(). Finally we prove that y(.2/}= x(K) when K is an euclidean neighbourhood retract
being asymptotically stable and invariant. © 1997 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The Poincaré—Hopf theorem (see [2], [8] or [10] for instance) asserts that when a ¢! tangent
vector field X on a compact ¥* manifold M is pointing outward at M then

Ind(X) = x(M)

where (M) and Ind(X) denote respectively the Euler characteristic of M and the index
of X.

Until now there have been many generalizations of this result dropping the restriction that
X should point outward and allowing more general boundary conditions. In this direction
we can mention for instance the works of Gottlieb [7], Morse [11] and Pugh [12].

A different approach to the problem of generalizing the Poincaré—Hopf theorem is to con-
sider noncompact manifolds. This paper is devoted to give its natural extension to manifolds
not being necessarily compact.

An equivalent version of the Poincaré—Hopf theorem asserts that for a tangent vector
field X on a compact n-dimensional manifold M vanishing nowhere on 0M, the relation

Ind(X)=(—1)"3(M) )

is satisfied if X is never pointing outward at oM.
When M is compact the condition that X is never pointing outward at M means dy-
namically that for every xo € M the unique solution of the initial value problem

*=X(x)
x(0)=xo

has a nonempty -limit set. Considering the closure of the union of all the w-limit sets,
the mentioned condition yields the existence of a global compact attractor for the flow
associated to the above differential equation. Conversely, it is clear that a tangent vector
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field on a manifold M never points outward along éM if there is a global compact attractor
for its associated flow. Thus, the Poincaré—Hopf theorem asserts, from the dynamical point
of view, that relation (1) is satisfied if there exists a global compact attractor for the flow
generated by the tangent vector field.

In particular the Poincaré~Hopf theorem shows that for a tangent vector field on a com-
pact manifold M vanishing nowhere on M, the existence of a global compact attractor
determines its index. In this setting it is natural to investigate the case in which the compact
global attractor is generated by a tangent vector field X on an n-dimensional manifold M
not being necessarily compact. The first problem that arises is that when we deal with a
tangent vector field on a manifold not necessarily compact, neither the index of the vector
field nor the Euler characteristic of the manifold are a priori defined. In fact the definition of
the index of X does not represent any problem because, in our case (that is X nonvanishing
at ¢M and generating a compact global attractor), the critical points form a compact set not
intersecting with dM. However, since we will consider also vector fields generating compact
attractors not being global, we have adopted the following notation. Given any subset B of
M with nonempty interior such that the critical points of X inside B form a compact set
Z satisfying Z CIn(B)\éM, we define Indg(X) to be Ind(X|y), where N is any compact
n-manifold Z C N\ON and N CB. It is to be noted that if the number of critical points of
X inside B is finite then Indp(X) is equal the sum of the local index of X at these critical
points and that if B is itself a compact n-manifold then Indz(X)=Ind(X|z).

We present the following result that provides a generalization of the Poincaré-~Hopf
theorem to manifolds not necessarily compact.

THEOREM A. Let M be a 6 n-dimensional manifold and let X be a €' tangent vector
field on M vanishing nowhere on oM. If there exists a compact global attractor for the
flow generated by X then the Euler characteristic of M is defined and satisfies

Indy (X) = (—=1)"x(M).

Now, Theorem A is a generalization of the Poincaré-Hopf theorem because, when the
manifold is compact, Indy(X)=Ind(X) and the condition that the vector field is never
pointing outward along 0M is equivalent to requiring the existence of a global compact
attractor. Since this equivalence is obviously not true for noncompact manifolds it may seem
that the existence of a global compact attractor is a condition that becomes too strong for
noncompact manifolds (in the sense that a weaker condition may yield the relation between
the index and the Euler characteristic). However it does not. This is so because if it is only
required, for example, that each solution has nonempty w-limit set (and this implies that the
vector field is not pointing outward along M, if any) then the mentioned relation does not
hold anymore. Even more, it neither holds if it is required that each w-limit set is nonempty
and compact (in the literature the vector fields which generate this kind of flow are called
bounded vector fields). Indeed, in [4] is given an example of a ¥ bounded vector field on
R3, with finitely many critical points and satisfying that the sum of its local index at all the
critical points is 0 (and hence Indg:(X')=0 is not equal to —7(R¥)=~1).

Some results about bounded vector fields can be found in [3-5]. It is to be noted that
Theorem A is proved in [4] by using very different tools in the special case that M is R”
and X has finitely many critical points.

In fact we have proved a result that deals with more general situations. Thus, in
Theorem B is considered the case of an attractor compact set not being necessarily global.
Here the notion of the stabilizer of an attractor compact set K, denoted by K is introduced.
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It is defined to be the set of points of M such that its «-limit has nonempty intersec-
tion with K. This notion becomes very useful when K NdM =0 because then K is an
asymptotically stable invariant compact set with the same region of attraction as K (see
Proposition 4.4). Moreover K =X if and only if K is asymptotically stable and invariant
(see Corollary 4.5). In the statement of Theorem B, ENR stands for euclidean neighbourhood
retract.

TueoreM B. Let K be an attractor compact set for the flow generated by a €' tangent
vector field X on a €* n-dimensional manifold M and let o/ denote its region of attraction.
Then the Euler characteristic of <f is defined and satisfies

Ind (X )=(—1)"y(o)

if X is nonvanishing on K N oM. In case that K N\ OM = the following additional relations
are satisfied.

(a) y(K)=x(s4) if K is ENR
(b) x(K)=y(<Z) if K is ENR, asymptotically stable and invariant.

Notice that when X has finitely many critical points in X Theorem B shows that the local
index of X at all these critical points equals (—1)" (/). This is so because X contains all the
critical points of X inside /. Notice also that in fact Theorem A follows immediately from
applying Theorem B because the region of attraction of a global attractor is by definition
the whole manifold.

It is to be noted that the hypothesis in (b) of Theorem B cannot be weakened. This
is so because if K is a compact ENR being only attractor and invariant then the relation
x(K)= x(2#) does not hold anymore. After proving Theorem B we will show an example
in which this relation is not satisfied.

We shall now present some interesting qualitative consequences of these theorems. For
instance, Theorem A implies that a global compact attractor must contain at least one critical
point if y(M)# 0. This explains why a periodic orbit can be a global attractor in S!' x R”
but it cannot in R”. In R? this is obvious since a periodic orbit in the plane contains at least
one critical point in its interior. On the other hand Theorem B shows that an asymptotically
stable critical point in R” has always local index equal to (—1)". This property was also
proved by Thews in [13].

2. DEFINITIONS AND NOTATION

Let M denote a %2 n-dimensional manifold and let X be a %' tangent vector field
on M. For each xg € M we will denote the unique solution of the initial value problem

$=X(x)

x(0)=xg 2)

by @(xo,t) and its maximal interval of definition by J(xo).
In the sequel given a nonempty set Q of M we will denote its topological boundary by
ouQ, its closure by Q, its interior by Int(Q) and its complement by M\Q.

Definition 2.1. The w-limit set (respectively a-limit set) of xo € M, denoted here by w(xo)
(respectively %(xp)), is the set of points y € M such that there exists #, / + oo (respectively
t, \,—00) as n — oc satisfying ¢(xo,,) — y as n —oc.
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Notice that if w(xo)# 0 (respectively a(xo)#®) then by definition J(x;) contains R*
(respectively R™). On the other hand it is well known that w(xg) is a closed set and that if
y€w(xo) then J(y)=R and ¢(y,t) € w(xq) for all ¢ € R. Finally, the w-limit set of ¢(xo,?)
is the same for any t € J(xp). Clearly any o-limit set satisfies similar properties.

Definition 2.2. Let K be a nonempty compact subset of M. The set of points x € M
satisfying w(x)# 0 and w(x) C K is called the region of attraction of K and in what follows
it will be denoted by /.

The region of attraction ./ of a compact set may be empty but, when it is not, notice
that if p € .o/ then @(p,t) € o/ for all t€J(p) and that by definition R* CJ(p).

Definition 2.3. Given a compact set K with region of attraction ./ we will say that K
is an attractor if there is an open neighbourhood of X inside /. That is, if K C Int(s/).
A compact set is said to be a global attractor when its region of attraction is M.

It is easy to see that the region of attraction of an attractor compact set is open when
M is a boundaryless manifold or when X never points outward at oM.

lzeﬁnitl’on 2.4. Given an attractor compact set K we define the stabilizer of K, denoted
by K, as the set of points p € M such that a( p) N K # 0.

Definition 2.5. Let K be a nonempty compact subset of M. We shall say that K is stable
if for each open neighbourhood U of K there is an open neighbourhood ¥V C U such that
for all x€ V we have R* CJ(x) and ¢(x,t)c U for all ¢ = 0.

Definition 2.6. We shall say that a compact set is asymptotically stable when it is at-
tractor and stable simultaneously.

For more details about these definitions the reader is referred to [1].

Definition 2.7. 1f xo ¢ OM is an isolated critical point of X, one defines the local index
of X at xo as follows. Select a coordinate neighbourhood U of x3, homeomorphic to an
open n-disk, which contains no other critical points of X. Within U choose an (n—1)-
sphere about x. At each point of this sphere the associated vector of X must be nonzero.
Transferring this into R* and normalizing the vectors defines a map from $"~! to §"~!. The
degree of this map is the local index of X at xy (see [10] for more details).

Definition 2.8. Let N be a compact manifold and let X be a continuous tangent vector
field on N vanishing nowhere on dN. The index of X, denoted here by Ind(X), is defined
as follows. Take any continuous tangent vector field ¥ on N, close to X (relative to the
% -topology) and having finitely many critical points, none of them in éN. Then Ind(X) is
the sum of the local index of Y at all its critical points (see [9] for details).

Definition 2.9. If B is a subset of M with nonempty interior such that the critical points
of X inside B form a compact set Z satisfying Z C Int(B) and ZNdM =@ then we define
Indz(X) to be Ind(X|y), where N is any compact n-manifold with ZC N\éN and N CB.
For a proof of the consistence of this definition the reader is referred to [8], where Indp(X)
is defined exactly in the same way but assuming that B is also open in M. Note that when
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X has finitely many critical points in B then Indp(X) equals to the sum of the local index
of X at these critical points.

It must be pointed out that this definition is only a trivial extension of the one appearing
in [8]. We extend it because the region of attraction of an attractor compact set is not
necessarily open in M when éM # 0. Anyway if B and X fulfil the conditions of Definition
2.9 then Indp(X) is no more than the index, according to [8], of X at Int(B).

Definition 2.10. A topological space K is called an euclidean neighbourhood retract
(ENR) if there exists a positive integer k¥ and ¥ CR¥, Y being homeomorphic with K,
such that there is an open set U, ¥ C U C R¥ and Y is a retract of U. For instance any finite
CW-complex is an ENR (see Example E.8. in [2]).

Definition 2.11. Given a topological space A in what follows y(4) will denote, provided
that the number is defined, the Euler characteristic of A. For instance the Euler characteristic
of any compact ENR is defined (see Section V.4.11 in [6]).

We conclude this section by recalling some well known facts that will be frequently used
henceforth. If M is a boundaryless manifold then the set Q= {(x,#): x €M, t €J(x)} is open
in M x R and the flow

0 Q- M
(x,1) = o(x,1)

is a ' map. If OM #0 and X is tangent to M everything is as before.

The preceding results are not always true when X has general boundary conditions.
However some of them can be used if we first embed M as a closed submanifold of a &>
n-dimensional manifold # without boundary, such as the double of M, and then extend X
to a €' tangent vector field on M. By using this extension it is easy to see for example that
(2) has continuity with respect to initial conditions in the following case:

Remark 2.12. If pye M and ty € J(po) are such that ¢(po,t) € M\OM for all ¢+ between
0 and #, then for each open neighbourhood V of ¢(po,#) there is an open neighbourhood
U of pg such that if pe U then o(p,t0)c V.

Notice that if ¢(py,t) € M for some ¢ between 0 and £y then we cannot even assert the
existence of some open neighbourhood U of pg such that 7y €J(p) for all pe U.

On the other hand, when we deal with the region of attraction =/ of a compact set there
is also some sort of continuity with respect to initial conditions of (2) in the following sense
(recall that Rt CJ(p) for all p& /).

Remark 2.13. If py€ .o/ and 1, >0 then for each open neighbourhood ¥V of ¢(po, )
there is an open neighbourhood U of py such that @(p,5)€ V for all pc UN .o,

3. THE ASYMPTOTICALLY STABLE CASE

This section is entirely devoted to prove the next theorem.

TueoreM 3.1. Let K be an asymptotically stable invariant compact set for the flow
generated by a €' tangent vector field X on a 6* n-dimensional manifold M and let o
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denote its region of attraction. If KN OM =0 then the Euler characteristic of o/ is defined
and satisfies the following relations:

(@) Indg(X)=(—1)"x().
(b) If K is an ENR then y(K)=y().

We will show first some relations between an attractor compact set and its stabilizer.
In particular Lemma 3.3 provides a criterion that turns out to be a very useful tool when
we deal with an asymptotically stable compact set.

Remark 3.2. Notice that if 4 is a compact set with ANEM =0 and p€ 4 is such that
o(p,t)c€A for all tec R~ NJ(p) then ap) is a nonempty subset of 4. Thus, if K is an
attractor compact set with K NdM =0 then K contains all the negatively invariant subsets
of K. In particular K CK when K is an attractor compact set negatively invariant and
KnoM =0.

Lemma 3.3, Let K be an attractor positively invariant compact set with KoM =0.
Then K CK if and only if K is stable.

Proof. Assume that K CK and let V be an open neighbourhood of K. In order to show
that K is stable we must prove that there is an open neighbourhood U of K satisfying that
if peU then R* CJ(p) and @(p,t)€V for all t20. It is clear that there is no loss of
generality in assuming that V' is compact and inside 2/\oM.

Consider any point y € Oy V. Then KcKcvVv implies y ¢ K and this means that a(y)n
K =0. Then there exists t<0 such that ¢(y,t)¢ V. Otherwise, since ¥ is a compact set
inside M\OM, a(y) would be a nonempty invariant compact subset of ¥\K and this ob-
viously contradicts ¥ C .o/. Thus, using that ¥ C M\@M, we can choose t(y)<0 such that
o(3,7(¥)) ¢ V and ¢(y,t) € M\3M for all t € [1(y),0]. By Remark 2.12 we can take B(y)
as an open neighbourhood of y such that if p€ B(y) then o(p,t(y)) ¢ V.

Since dy ¥V is compact there exist py, pa,..., pr € du ¥V such that

k
omV < | B(p). 3)
J=1

We define U = V\U§:1N(pj) where, for j=1,2,...,k,

N(p)={9(p.1): peB(p)NiuV, teu(p),0]}.

Then U is open and, since K is positively invariant, K C U. Moreover it is clear that
R* CJ(x) for all x€ U since U CV C.o/. Next we will show by contradiction that U
satisfies the required condition. Assume that xo € U is such that ¢(xo,t) ¢ V for some ¢>0.
Define

to=inf{t=0: o(xg,t) ¢ V}.
Then ¢(xo,29) € oMV and, since xg € U C ¥, £, >0. Saying yo = ¢(x0,%), it is clear that (3)
implies yo € B(p;,)NomV for some jo€{1,2,...,k}. Notice that by construction we have

that @(yo,t(p;,)) ¢ V. Thus, since

o(yo,t)EV  for all t €[—t,0]
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it follows that 7(p;,) <—f. Then by definition xo € N(pj,) because xo = @(yo, —#y) with
Yo €B(pj,)N oMV and 1(pj,) < — ty<0. Therefore xo ¢ U. This is a contradiction since we
took xp € U.

Finally we will show that if the relation K CK is not satisfied then K is not stable. So
assume that there is xo € K with a(xo)NK # 0. Since K is a closed set we can take an open
neighbourhood ¥ of K such that xy ¢ V. In this case there is no open neighbourhood U of
K such that if p€ U then ¢(p,t) €V for all t € Rt NJ(p). This is so because a(xg) N K #
implies that there exist some yp € K and ¢, ™\, — oc satisfying that ¢(xg, ) — yo. ]

We will need some results concerning isolated invariant sets and Lyapunov functions.
A compact set K of M is called isolated invariant set if it is invariant and there is a compact
neighbourhood N of K such that K is the largest invariant set in N. In this case N is called
an isolating neighbourhood for K. A continuous function ¥V : Q — R, where 2 is an open set
of M, is called a generalized Lyapunov function for the flow ¢ if

Ve, 1)) — V(x)
t

Vo)~

exists and is continuous at every point x € Q. Clearly when ¥ is a €' function then V always
exists and satisfies

V(x)=(DV) X(x).

That is, ¥(x) is the derivative of ¥ at x in the direction X (x).

The following theorem has been proved by Wilson and Yorke in [14]. In its statement
we shall need some new notation. Let N be an isolating neighbourhood for the isolated
invariant set X and let ) be an open subset of N. Then € (respectively (2_) denotes the
set of all x € for which ¢(x,1)€ N for all >0 (respectively ¢t<0).

THEOREM 3.4. Let K be an isolated invariant set for the €' flow ¢ and let N be an
isolating neighbourhood for K. Then there is an open neighbourhood Q) of K in N and
there are generalized Lyapunov functions V.. :§2 —[0,4+00) and V_ :Q — (—00,0] with the
properties:

(a) Vo(x)=0 if and only if x€Q,,
(b) Vi(x)>0 if x€ O\,
(c) Vilovq. is a €* function.

V. satisfies similar properties with respect to Q_.

The next result is an easy application of the above theorem. However it must be pointed
out that it will be assumed that M is a boundaryless manifold in order to assure the required
smoothness of the flow (recall the concluding observations of Section 2).

COROLLARY 3.5. Assume that M is a boundaryless manifold and that K is an asymptot-
ically stable invariant compact set of M. Let s/ denote its region of attraction and let
N be a compact neighbourhood of K in /. Then there exists an open neighbourhood
of K in N and a generalized Lyapunov function V : €1 — (—00,0] satisfying the following
properties:

(a) ¥(x)=0 if and only if x€K,
(b) P(x)>0 if x e Q\K,
(c) Vi is a €* function.
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Proof. Let E be any negatively invariant subset of N and consider any p € E. Since N
is a compact set it follows that a(p) is a nonempty invariant compact subset of E. Due to
E CNCs/ we conclude that 2(p)N K # 0. Then, making use of Lemma 3.3, p€K. Thus
K contains all the negatively invariant subsets of N. In particular this shows that K is an
isolated invariant set and that NV is an isolating neighbourhood. Therefore, using Theorem 3.4,
in order to prove Corollary 3.5 it suffices to show that in this case 2_ =K. The relation
K CQ_ is obvious since X is invariant. On the other hand 2_ C K, because Q_ is clearly
a negatively invariant subset of N and we have seen that K contains all of them. Therefore
Corollary 3.5 is proved. [ ]

We are now able to construct a family of smooth compact manifolds satisfying very
pleasant properties.

ProrosiTion 3.6. Let K be a compact set asymptotically stable and invariant for the flow
generated by a €' tangent vector field X on a €* n-dimensional manifold M and let of
denote its region of attraction. If KNOM =0 then there exists a family of 6 compact
n-dimensional manifolds {Sy}ren that for each k € N satisfies:

(a) K C8;\0S; and Sy C A\3M,
(b) Sk+1 CSk\aSk and ﬂio:] Sy =K,
(c) The vector field X points inward at all the boundary points of Sk.

Proof. We will first prove it assuming that M is a boundaryless manifold. In this case
we can apply Corollary 3.5 and consider the open neighbourhood 2 of K, with a compact
vicinity inside <7, and the generalized Lyapunov function ¥ : 2 — (—oc,0] that we get. By a
compactness argument it follows that we can take ¢ >0 small enough satisfying that ¥ ~!(—¢)
is nonempty and that the closure of ¥ ~'([—¢,+00)) is inside 2. For each k € N we define

Si =V~ ([~¢/k, +00)).

Fix any k € N. Since V[q\x is a ¥ function and ¥ ~'(—¢/k) is a nonempty subset of Q\K,
in order to prove that S; is a 4 n-manifold with boundary 8S; = ¥ ~!(—¢/k) it is enough
to show that —&/k is a regular value. But clearly this fact follows from

V(x)=(DV ) X(x)#0 4)

for all x€ Q\K. On the other hand S is closed in { because in fact S; = V=1([—¢/k,0]).
Thus, since S; C £, we conclude that Sy is closed. Now, that S is compact and inside .o/
it is due to the fact that ) has a compact vicinity inside .«¢. Finally notice that ¥ ~1(0)=K
implies X C S;\0Sk. This proves (a), and property (b) follows easily from the definition of
the sets S;.

In addition, (4) implies that X is never tangent to 8S; since V' is constant in ¢S;. Thus
if we show that S; is a positively invariant set with respect to the flow ¢ then (c) would
follow. Consider any xo € 0S; and let U be an open neighbourhood of xp in Q\K. Take
8>0 such that ¢(xg,t)€ U for all 1€[0,5). Then

V(p(xo, 1)) = Vixo)= — ¢e/k

for all ¢ €[0,8) since ¥(x)>0 for all x € Q\K. Thus for each x € 8S; there exists 6 >0 such
that @(x,t) € S; for all ¢ € [0,8). This shows that Sy is a positively invariant set because dmSk
coincides with &S;. Therefore Proposition 3.6 is true when M is a boundaryless manifold.
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Now assume that M is a manifold with boundary. Embed M as a closed submanifold of
a % n-dimensional manifold # without boundary and let X be a &' tangent vector field
on M satisfying

Xy =X (5)

Notice then that K is asymptotically stable and invariant with respect to the flow generated
by X. This is so because K N &M =0 and its region of attraction, say o/, contains .«/. Since
we have already proved Proposition 3.6 for boundaryless manifolds we can assert that there
is a family of compact 2 n-manifolds {§k}k€N satisfying (a), (b), and (c) with respect to
X and <.

Since K C Int(.27)\éM, using that ﬂf’ . Sy =K and that Sie1 C S for all k € N, it follows
that there exists ko € N such that SkCM\BM for all k>%y. For each £ €N we define
Sy = Sk+k0 It is clear that (5) shows that {S;},cn satisfies the required conditions with
respect to X and .. Therefore Proposition 3.6 is also true for manifolds with boundary.

The next result will further clarify the structure of each manifold S; in relation to the
attractor set and its region of attraction.

LemMA 3.7. Let o/ be the region of attraction of a compact set K asymptotically stable
and invariant and let {S }ren be the family of compact manifolds that we get from applying
Proposition 3.6. Then for each k € N the following properties are satisfied:

(a) 0Sy is a strong deformation retract of Sy\K.
(b) Sk is a strong deformation retract of <.

Proof. Fix any k € N. First of all recall that K C §;\8S and that S, C «/\oM.

Consider any point xq € S;\K. By applying (c) in Proposition 3.6 we have that ¢(xg,¢) ¢
0S8y for all #>0. On the other hand notice that @(xp,7) ¢ S for some ¢ <0. Otherwise, using
that Sy is a compact subset of &/\dM, it would easily follow that «(xo)NK #0 and this
contradicts Lemma 3.3 since xo ¢ K. Thus, making use of (¢) in Proposition 3.6 again, there
exists a unique t(xp) <0 such that ¢(xo, 7(x¢)) € 0S;. Moreover notice that ¢(xo,?) € S;\K
for all t €[7(x),0].

Consider now any point xo € 2/\Sk. Since S; is a neighbourhood of K and w(xy) CK it
follows that @(xo, ) € S;\8S; for some #>0. Thus, using (c) in Proposition 3.6, there exists
a unique t(x9)>0 such that ¢(xg,(x0)) € 6S¢. On the other hand, by making use of (¢) in
Proposition 3.6 again, it follows that ¢(xo,¢) & &S, for all t€ R~ NJ(xp).

In brief we have shown that for each x € &/\K there exists a unique z(x)€J(x) such
that ¢(x, 7(x)) € éS; and also that the following properties are satisfied:

(1) If x € o7 \S; then 7(x)>0 and @(x,2) € /\S; for all ¢ € [0,7(x)).
(2) If x€8;\K then 7(x)<0 and ¢(x,t) € $;\K for all € [t(x),0].
(3) ©(x)=0 if and only if x € 35;.

Next it will be proved that the mapping that applies (x) to each point x € &/\K is
continuous. Consider any po € 2/\K and any ¢>0. We must find an open neighbourhood V
of po such that |t(p) — ©(po)| <e for all pe V N[L\K].

We will consider first the case t( pg)<0. That is, when po € S;. Due to Sy C M\dM,
taking £>0 smaller, we can assume without loss of generality that ¢( pg,t) € M\6M for all
t€[t(po)—¢,7( po)]- Let U’ be an open neighbourhood of ¢( py, t( po)+¢) in S;\OS;. Since
@(po,t) €Sy CM\AM for all ¢ between 0 and 1( po) + ¢, by making use of Remark 2.12,
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we can take an open neighbourhood ¥’ of pg such that if p€ V' then o(p,t(po)+e)e U’
This easily implies that ©(p)<t(pg) + ¢ for all pe V’. Let U” be an open neighbourhood
of @(po,1(po) — &) in M\S;. Since ¢@(po,t) e M\OM for all 1€ [z(pp) — &0], by using
Remark 2.12, we can take an open neighbourhood V" of py such that if pc V" then
@(p,1(po)—e)€ U". This shows t( p)>1(py)—e for all p€ V", Hence, taking V = V' N V"
it follows that |t(p) — ©(po)| <e for all pe V.

Consider now the case t( po)>0. This means pg € &/\S;. It is clear that there is no loss
of generality in assuming that 7( pg)>e¢. Let U’ be an open neighbourhood of ¢( pg, ©( po)+¢)
in S;\8Sk. Since 7( py)+e>0, Remark 2.13 shows that we can take an open neighbourhood
V' of pg such that if pe V' N.o then ¢( p,7( po)+¢) € U’. This shows that 1( p)<t(pg)+¢
for all p€ V' N.o/. Similarly, let U” be an open neighbourhood of ¢( po, ( po)—e&) in M\S;.
Due to ( po)—&>0, by Remark 2.13 we can take an open neighbourhood V" of pg such that
if pe V"N then @(p,1(po) —e)€ U”. This shows t(p)>1(py) — ¢ for all pc V"' N .
Thus, taking ¥ =V'NV" it follows that |t( p) ~ ©( pg)| <e for all pe ¥V N.o/.

From (2) it follows clearly that the homotopy

H :SA\K % [0,1] — Si\K
(p,t) = ¢(p,1t(p))
is well defined. Moreover, the continuity of t and Remark 2.12 imply that /; is also con-
tinuous. Thus, by making use of (3), it shows that dS; is a strong deformation retract of
Sk\K. Hence (a) is proved. On the other hand it is clear that the mapping
9/ — [0,+00)
0 if pesS;
pr :
wW(p) if peS\S;
is continuous and, by making use of (1), that the homotopy
Hy: o x[0,1] —» o
(p.t) = o(p,t'(p))

is well defined. Moreover Remark 2.13 and the continuity of 7’ imply that H, is also contin-
uous. Finally H, shows, by using the definition of 7/, that Sy is a strong deformation retract
of o/. This proves (b). ]

We have already developed the tools that will allow us to prove the main result of this
section.

Proof of Theorem 3.1. Consider the family of compact €2 n-manifolds {Si}ren that
we get from applying Proposition 3.6. Fix any £ € N. By (b) in Lemma 3.7, S; is a strong
deformation retract of /. Consequently y(.</) is defined and satisfies the relation

2(A) = x(Sk). (6)

Notice that X|s, is obviously a tangent vector field on S; since M and S; have the same
dimension. On the other hand notice also that it is nonvanishing on &S; since, by (a) in
Proposition 3.6, 8S; C o/\K. Thus, by the Poincaré—Hopf theorem, we can assert that

Ind(X |5, ) =(—1)" (k)

since, by (c) in Proposition 3.6, X points inward along Si. Substitution of (6) in the above
expression shows that

Indg (X)) =(—1)" x()
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because K contains all the critical points of X inside .« and, by (a) in Proposition 3.6,
K C 5;\0S; and S; C &/. This proves (a).

Recall now that, by (a) in Lemma 3.7, 0S; is a strong deformation retract of S;\K. There-
fore y(S;\K) is defined and equals to y(0S;). Since S is a compact n-manifold, applying
also VIII 8.8 in [6], we conclude that

HSANK) = 2(880) = (1 + (=1 ) 2(Sp). (7)

Assume now that X is an ENR. Then, according to VIII 8.6 in [6], the relation

X(Sk) = x(S\K) + (=1)" ¢(K)

must be satisfied. Substitution of (7) in the above expression produces

1(Sk) = 1(K). (8)

Combination of (6) and (8) shows that y(.&/)= x(X) and therefore (b) is proved. |

4. THE REGION OF ATTRACTION

This section is completely devoted to show Theorem B. We will first prove two technical
results that will turn out to be very useful when we deal with a region of attraction.

Lemma 4.1, Let o/ be the region of attraction of a compact set. If p € Int(o/)\OM then
o(p,t) € Int(LWN\EM for all t=0.

Proof. Embed M as a closed submanifold of a ¥? n-dimensional manifold M without
boundary and consider a %’ tangent vector field X on M satisfying

Xy =X, )
For each xg € M denote by ®(xo,¢) the unique solution of the initial value problem

x=X(x) (10)
x(0) = xq.
0n51der po € Int(/)\OM and K >0. Clearly we can take an open set V of M with
Po € V C o Notice that if pe V then o(p,t)e o/ CM for all t=0. Therefore, from (9), if
pe V then

o(p,t)=0p(p,t)e o/ for all 1€[0,5].

Due to the continuity with respect to initial conditions of (10) there exists an open set U
of M containing @( po,f) such that if p € U then ¢( p,—to) € V. Since U is an open set of
M containing ¢( po,to) o( po, to), notice that in order to prove that o( po, to) € Int(/ )\OM
it is enough to show U C.o7. But this is clear because if y € U then y=(x,t) for some
x€ 7V and, due to VCa, o(x,80) = @(x,t0) € . [ ]

LemMa 4.2. Let K be an attractor compact set with region of attraction </ and let O,
be any compact neighbourhood of K in of. Then there exists a compact neighbourhood
0, of K in o such that if p€ Q, then ¢(p,t)€ Qs for all t=0. Moreover if KN oM =,
taking Q) C Int(Z)\éM then Q, C Int(Z )\OM.



272 A. Cima et al.

Proof. Consider any y € dmQ;. Then there is 7(y)>0 such that ¢(y,t(y)) € Int(Q;)
since w(y) CK and K CInt(Q;). By Remark 2.13 we can take U(y) being an open neigh-
bourhood of y such that if p€ .o/ NU(y) then @ p,1(y)) € Int(Qy). We define

M)={eo(p,t): peU)NemQ, t€[0,1(»)]} U Q..

Notice that M(y) is a compact neighbourhood of K in ./ because Q) C o/ and if p€ of
then @( p,t) € o for all 0.

Since dMQ; is compact we can take pi, pa,..., pr € O0mQy with dyQ; C U’.‘=1 U(p)).
We define

k
0:=J M(p).
j=1
Then Q) is a compact neighbourhood of X in &/ and, using that any orbit leaving Q) in
positive time has a point in dm(), it is easy to see that by construction 0, satisfies the
required condition.

Assume now that KNoM =0 and that we have chosen (J; being a compact neigh-
bourhood of K in Int(.«/)\0M. In this case, by making use of Lemma 4.1, it follows that
O1 CM(y)CInt(/)\eM for all y € dy Q. Therefore O, is a compact neighbourhood of K
in Int(.e/ )\OM. |

The next result shows that in order to prove that y(.«/) is defined and satisfies Ind (X))
=(—1)"2(&7), it can be supposed without loss of generality that K does not intersect oM.

ProposiTioN 4.3. Let Ky be an attractor compact set for the flow generated by a €' tan-
gent vector field X, on M and let </ denote its region of attraction. If KN\ OM contains
no critical point of X\ then there exists a €' tangent vector field X, on M and a compact
set K, such that:

(a) Xy and X, have the same critical points and both vector fields coincide in a neigh-
bourhood of them.

(b) Ky is an attractor compact set for the flow generated by X, and its region of
attraction is .

(c) KhanoM =0.

Proof. Tt is obvious that there is nothing to be done when K3 N oM ={. So assume that
KiyNéM #0. Since X, has no critical points in K; N dM we can choose an open neighbour-
hood U of Ky NdM in Int(/) such that its closure U is compact and X; has no critical
points in U.

Let Y be a ! tangent vector field on M pointing inward at M and nonvanishing in U.
Let p:M —[0,1] be a €' map satisfying

p H(0)=M\U and p~'(1)=K NiM.

Let us suppose that M has been endowed with a Riemannian metric. Denoting its corre-
sponding norm by || || and saying

a=inf{|X(p)l: p€T} and b=sup{||Y(p)|: pT}

we define for each pe M
a

T p(p)Y(p)+Xi(p)

X(p)=
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Then X is a %! tangent vector field on M that satisfies

Ximu =X2lin\u (11)

and it is easy to Check that X, has no critical points in U. Hence, this shows a).

Notice that X at ./ N M must point inward to M or be tangent to dM. Since Y points
inward to M -at éM and p >0, it is clear then that X; at o/ N dM points inward to M or is
tangent to @M. Moreover X, points inward to M at U NJM because p~'(0)=M\U.

Given xo € M, for each i€ {1,2} we denote the unique solution of the initial value
problem

i =X(x)
x(0)=x

by @i(xo,t), its maximal interval of definition by J;(xo) and its w-limit set by w;(xo).

Let Q) be a compact neighbourhood of K; UU in . By Lemma 4.2 there exists
a compact neighbourhood @, of K;UU in & such that if pe Q) then ¢\(p,t)€Q, for
all £>0. We claim that if p € o/ then w,(p) is nonempty and inside Q.

In order to prove the claim we will show first that for all pp € &/\Q; there exists
to € R* NJa( po) such that @z( po,to) € Oi. Since po € o it follows that w( pe) C K. Hence,
using that K| C Int(Q)), there exists some ¢ >0 such that ¢,( po,?) € Q1. Due to U CInt(Qr)
and po¢& Q) we can take £ >0 satisfying @1(po,t)¢ U for all t€(0,] and that
©1( po,to) € Q1. From (11) it follows then

©1(po,1) =2 po,t) for all t €[0, 1]

and therefore @,( po, %) € Q1.

It is obvious then that we must only prove the claim when py€ O;. If we show that
©2( po,t) € Oy for all t € RY NJ2(po) then, using that X, at &/ N3M points inward to M or
is tangent to dM, it will follow that wy(po) is a nonempty subset of Q. We will assume
that it is false and we will get a contradiction. So assume that @2(po,to) ¢ Q, for some
to>0. Since U C Q1 C 0 it is clear that there exists £, € [0, %) such that ¢2( po, 1) € O and
that @( po,2) ¢ U for all t €[, 1]. Then from (11) it follows that @2 po,t)=@1( po,t) for
all ¢ € [#),]. This contradicts the choosing of 0> since ¢i( post) € 01, ¢1(po,to) € @2 and
to>t}. Hence the claim is proved.

Recall that if p € wa(po) then Jo(p)=R and @2(p,t) € wa(po) for all t€R. Conse-
quently if we say

W= U w2 p)

pesd

then W C Q, and for each p € W it follows that J,( p) =R and that ¢2(p, e w forall teR.
We define K, being the closure of W. Then K; is a compact set inside O, C /. Moreover
notice that the region of attraction of K3, with respect to the flow generated by X, is /.
That it contains 7 is obvious from the definition of K; = W and that it is exactly &/ follows
easily from (11).

Our next objective is showing that K, C Int(.2/ )\dM. This will prove that K is an attractor
and that it does not intersect the boundary oM.

We assert now that for each po€ .« N[dus/ UJM] there exists 7(po)>0 such that
@2( po, 1( po)) € Int(2/)\OM. Its existence is obvious when

o€ UNZ N[O UM =UNM
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since X2( po) points inward to M and U C Int(.<#). Hence it is enough to consider when
po € & N[Omef UIMN\U.

Notice that in this case it is not possible that @2( po,?) € [ém/ UOM\U for all >0 because
according to (11) it would follow ( po) C [émeZ UIM\U. This is clearly a contradiction
because @;( po) C Int(s7) and on the other hand if w;( pg) C IM then w( py) CK NOM C U.
Therefore there exists ¢/ >0 such that @2( po,t') & [om UIMNU. If @2 po,t') & Om.of UM
we choose t( po) =¢' and if @2( po,t') € U CInt(o/) we choose 1( pg) = t(@2( po,t’)) in case
that @y( po,t')€ UNOM and t( pg) =1¢" otherwise. Hence the assertion is true.

For each pe &/ N{ome/ UAM], by using Remark 2.13, we can define U( p) as an open
neighbourhood of p such that if y € o/ NU(p) then @2(y,1( p)) € Int( =/ )\ oM.

Since 0, C .o is compact, so it is Q> N[6m./ UM and hence there exist py, pa,..., px
in O, N[dmZ UCM] satisfying that

k
Q2 N[oms UaM]C | ) U(py).
J=1

We define 7 =max {t( p;):j=1,2,...,k}. Then, since T >0 and .« is the region of attraction
of the compact set K> with respect to the flow generated by X3, by making use of Lemma 4.1
we can assert that

{020p, T): peQy} CInt(#)\oM. (12)

Since {@2(p,T): p€ O2} is compact and W C Q,, by using (12) we conclude that

{02(p, T): pE W} CInt(sf)\oM. (13)

On the other hand, making use that for each p€ W we have L(p)=R and ¢2(p,t)c W
for all t € R, it follows that

W={p:p.T) pEW}. (14)

The combination of (13) and (14) shows that K>, the closure of W, is inside Int(.o/)\oM.
This shows K, MdM = and consequently (c) is proved. On the other hand K; is an attractor
compact set due to the fact that K; C Int(.«/). Then (b) is also proved since we had already
showed that its region of attraction is /. [ ]

Once we have proved the following result we will be in position to show Theorem B.
It shows that the stabilizer of an attractor compact set is an asymptotically stable invariant
compact set with the same region of attraction.

ProposiTION 4.4. Let K be an attractor compact set with KN oM =0 and let o/ denote
its region of attraction. Then the following properties are satisfied:

(a) KnéM =0.
(b) K is an asymptotically stable invariant compact set with region of attraction of.

Proof. Notice first of all that K is obviously invariant because for each xo €M the
a-limit set of ¢(xg,t) is the same for all /€J(xo). Due to KNdM =0 we can take
a compact neighbourhood Q) of K in Int(.27 )\éM. By making use of Lemma 4.2, there exists
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a compact neighbourhood @, of K in Int(o7)\éM such that if pe Q) then ¢(p,t)€ Q, for
all £>0. Therefore it is clear that p ¢ O, implies p ¢ K. This shows

K C O, C Int(/)\oM (15)

and hence K N M =§. Thus, (a) is proved.

We will prove that K is closed by showing that M \E is open. Consider any pogélz .
If po¢ O, from (15) it follows that we can take an open neighbourhood U of pg such that
vcMm \E . Thus, it suffices to consider when pg € Q>. Notice that x( po) N K = @) implies that
it exists 1o <0 such that @( po,t) & Q>. Otherwise, since Q, is a compact set inside M\éM,
a( po) would be a nonempty invariant compact subset of 0>\K and this clearly contradicts
Q2 C /. Since py € O, and O, C M\OM we can take #) € [#,0) such that ¢( po,1) € M\OM
for all ¢ € [#,0] and @( po,2y) ¢ Q2. Let V be an open neighbourhood of ¢( po, ) in M\Q-.
Notice then that from (15) it follows V C M \I? . According to Remark 2.12 we can take U
as an open neighbourhood of po such that if pe U then ¢(p,))€ V. Since K is invariant
and ¥ C M\K it is clear that U C M\K. Hence M\K is open.

We can assert now that K is compact since we have just showed that it is closed and
from (15) it has a compact neighbourhood.

We will prove next that K is an attractor with region of attraction /. Consider any
po € /. Since K is an attractor with region of attraction .o/ it follows that w(po) C K.
Due to the invariance of w(py) and K C M\CM, we can assert by using Remark 3.2 that
w( po) C K. This shows that the region of attraction of K contains ./ and the fact that it is
exactly o/ is obvious. Now we conclude that K is an attractor by using that, according to
(15), K C Int(.).

Since we have already proved that K is an attractor invariant compact set satisfying
KN éM =0, we can make use of Lemma 3.3 to show that it is stable. Let py € M be such
that o( po)ﬂlz # (). Then af po)ﬂf is a nonempty invariant compact set and, making use
of (15), this implies

[ po) NKINK #0.

Hence a po) NK #0, and this means that pg € K. By applying Lemma 3.3 we conclude that
K is stable.

In brief, we have showed that K is an asymptotically stable invariant compact set with
region of attraction /. Hence (b) is proved. [ ]

CoROLLARY 4.5. Let K be an attractor compact set with KN M =0. Then K is asymp-
totically stable and invariant if and only if K =K.

Proof. If K is an asymptotically stable invariant compact set with KNJM =0 then
K =K follows from the combination of Remark 3.2 and Lemma 3.3. The implication in the
other direction follows from applying Proposition 4.4. [ |

Proof of Theorem B. We will prove first that if X is nonvanishing on K NoM then
y(s#) is defined and satisfies Ind(X)=(—1)"x(#7). In this case, using Proposition 4.3,
we may assume without restriction that K N @M =0. Then, from Proposition 4.4, K is an
asymptotically stable invariant compact set with region of attraction o and K NéM =4.
Now the result follows from applying Theorem 3.1 to K.

Assume finally that K does not intersect M. Then, by Proposition 4.4, K is an asymp-
totically stable invariant compact set with region of attraction ./ and K NoM =0. Thus, if
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Fig. 1.

K 13 an ENR then the relation y(</ ):X(IZ ) follows from applying (b) of Theorem 3.1
to K. This proves (a). On the~other hand, if K is asymptotically stable and invariant then
Corollary 4.5 shows that K =K. Therefore (b) follows from (a). [ ]

In view of (b) in Theorem B one may wonder whether it is true that for an attractor
compact set K with region of attraction <, the relation y(K)= y(./) is satisfied if K is an
ENR with K NéM =0. It is not even satisfied when K is also invariant, and we will show
it by means of the following example.

The figure below is the phase portrait of a ' vector field in R? with two critical points, p;
and p,. It is clear that K = { p»} is an attractor invariant compact set with region of attraction
o =R*\{p1}. Here K is an ENR with y(K)=1 but y(«#/)=0. On the other hand notice
that K is {p2} Uy, an asymptotically stable invariant compact set with region of attraction </,
Moreover it is to be noted that in this example we can check all the relations given in
Theorem B because X is an ENR and Ind 2(X) is easy to compute. Thus the local index of
the vector field at p; is O, x(E) =0 and y(«/)=0.
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