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In this paper we study isochronous centers of analytic Hamiltonian systems
giving special attention to the polynomial case. We first revisit the potential systems
and we show the connection between isochronicity and involutions. We then study
a more general system, namely the ones associated to Hamiltonians of the form
H(x, y)=A(x)+B(x) y+C(x) y2. As an application we classify the cubic polyno-
mial Hamiltonian isochronous centers and we give examples of nontrivial and
nonglobal polynomial Hamiltonian isochronous centers. � 1999 Academic Press

1. INTRODUCTION

In this paper we study isochronous centers of analytic Hamiltonian
systems giving special attention to the polynomial case.

The problem of characterizing isochronous centers has attracted the
attention of several authors. However there are very few families of polyno-
mial differential systems in which a complete classification of the
isochronous centers has been found. Quadratic systems were classified by
Loud [8] and cubic systems with homogeneous nonlinearities by Pleshkan
[11]. Kukles' systems were classified in [3]. Some other results can be
found in [1]. Concerning Hamiltonian systems there are also very few
results. It is proved in [2] that in the potential case the unique polynomial
isochronous center is the linear one. Several authors (see [3, 5, 13]) proved
that there are not Hamiltonian systems with homogeneous nonlinearities
having an isochronous center at the origin. Apart from few other special
cases, the knowledge of polynomial systems with isochronous centers is
slight. For some other results on isochronicity we refer the reader to [3, 6,
9, 10] and references there in.
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There is a simple method to generate polynomial Hamiltonian isochronous
centers. Take two polynomials P and Q in two variables with P(0, 0)=
Q(0, 0)=0 such that the determinant of the Jacobian of the mapping
(x, y) [ (P(x, y), Q(x, y)) is constant. A couple of polynomials such that
is called a Jacobian pair. It is readily seen that the Hamiltonian system
associated to

H(x, y)=
P(x, y)2+Q(x, y)2

2

is linearizable by means of the canonical change of coordinates u=P(x, y),
v=Q(x, y) and hence that the origin is an isochronous center. We call
trivial isochronous centers the centers constructed with this method. One of
the main motivations of this work was the following question.

Question 1. Are there polynomial Hamiltonian nontrivial isochronous
centers?

In Section 3 we present some examples which give a positive answer to
Question 1. On the other hand, Sabatini gives in [12] a relationship
between the polynomial Hamiltonian isochronous centers and the Jacobian
conjecture in dimension two. He proved that this last conjecture is equivalent
to the following.

Conjecture. Any Jacobian pair produces an isochronous global center
at the origin.

Here the word global means that every solution of the Hamiltonian
system is a periodic orbit surrounding the origin. Related to the above
problem it arises in a natural way the following question.

Question 2. Are there polynomial Hamiltonian isochronous nonglobal
centers?

The examples in Section 3 give also a positive answer to Question 2.
Turning now to the problem of characterizing isochronicity, the lowest
degree polynomial Hamiltonian family which is not yet completely
classified is the family of cubic Hamiltonian systems. This type of systems
have been studied in [9]. In that paper the authors proved that any cubic
Hamiltonian isochronous center which is Darboux linearizable is a trivial
isochronous center in the sense mentioned before. In the last part of this
paper we complete the classification proving that every cubic Hamiltonian
isochronous center is a trivial isochronous center.

We now recall briefly some general notions that will be used frequently
and we introduce the notation used henceforth.

374 CIMA, MAN� OSAS, AND VILLADELPRAT



For any center p of a planar differential system, the largest neighbour-
hood of p which is entirely covered by periodic orbits is called the period
annulus of p and we will denote it by P. A center is said to be a global
center when its period annulus is the whole plane. The function which
associates to any periodic orbit # in P its period is called the period
function. The center is called an isochronous center when the period
function is constant. It is well known that only nondegenerate centers can
be isochronous. Moreover a center of an analytic differential system is
isochronous if and only if there exists an analytic change of coordinates
transforming the initial system to the linear center

{x* =&ky,
y* =kx.

It can be shown also that an isochronous center has not finite critical
points in the boundary of its period annulus. When the differential system
is analytic this implies that the period annulus of an isochronous center is
unbounded.

This paper deals with Hamiltonian systems, i.e., with differential systems
of the form

{x* =&Hy(x, y),
y* =Hx(x, y),

(1)

where H is an analytic function on R2. The solutions of these systems are
contained in the level curves [H(x, y)=h, h # R]. From now on we will
assume that H(0, 0)=0 and that the system (1) has a nondegenerate center
at the origin.

One can show (see [5] for instance) that H(z){0 for every point z # P

different from the origin. Thus we will assume, without loss of generality,
that H(z)>0 for all z # P"[(0, 0)]. In this case H(P)=[0, h0), where
h0 # R+ _ [+�]. We will use this notation all over the paper. It can be
shown that when h0 is finite then the boundary of the period annulus is
contained in the energy level [H(x, y)=h0].

In addition one can prove (see [5]) that the set of all the periodic orbits
in the period annulus can be parametrized by the energy. Thus, for each
h # (0, h0) we will denote the periodic orbit in P of energy level h by #h .
This allows us to consider the period function over (0, h0) instead of the
original period function which is defined over the set of periodic orbits con-
tained in the period annulus. Therefore in the sequel we will talk about the
period function T(h) which gives the period of the periodic orbit with
energy h # (0, h0). It can be proved that T(h) can be extended analytically
to h=0 when the origin is a nondegenerate center.
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The paper is organized as follows. In Section 2 we revisit the potential
systems and we give a new characterization of isochronicity which is more
geometric than Urabe's criterion (see Theorem A). As a consequence we
show that every analytic isochronous center in this family is global. We
also show the strong connection between isochronous centers and involu-
tions on the real line (see Theorem B). In Section 3 we study the family of
Hamiltonian systems which are quadratic with respect to one of the
variables. That is, Hamiltonian systems associated to H(x, y)=A(x)+
B(x) y+C(x) y2. It is to be noted that this family generalizes the potential
Hamiltonian systems. We give a isochronicity criterion in the analytic case
(see Theorem C) and a complete classification of the isochronous global
centers in the polynomial case (see Theorem D). We also give a method to
construct nontrivial and nonglobal polynomial Hamiltonian isochronous
centers. Finally in Section 4 we classify all the cubic polynomial
Hamiltonian isochronous centers (see Theorem E).

2. THE POTENTIAL CASE

In this section we consider Hamiltonian systems of the form

H(x, y)=
y2

2
+V(x),

where V is an analytic function defined on R with a nondegenerate relative
minimum at the origin. This kind of systems arise from conservative second
order scalar differential equations of the form

x� + f (x)=0, where f =V $.

The isochronous centers of these Hamiltonian systems are already
characterized by Urabe's Theorem (see [14, 15]) even in the case that V
is C1 and defined only in a neighbourhood of the origin. However our
approach will give a simple geometric interpretation of the isochronicity
condition and, since we suppose that V is analytic, the proofs will be
elementary. Moreover the fact that V is defined not only in a neighbour-
hood of the origin but in R will allow us to give a new result. In addition
we show a strong connection between isochronous centers and analytic
involutions. This connection provides a method to construct isochronous
centers and a very simple proof of some classical results.

We define

(xI , xS)=[x # R : there exists y # R such that (x, y) # P].
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That is, (xI , xS) is the projection of the period annulus to the x-axis. Since
by definition the origin is the unique critical point in P it easily follows
that V$ is negative (respectively positive) on the interval (xI , 0) (respec-
tively on (0, xS)). Moreover if �P is contained in the level curve H=h0

then V((xI , xS))=[ 0, h0). Denoting by V& (respectively V+) the restric-
tion of V on (xI , 0) (respectively on (0, xS)), for each h # (0, h0) we define

l (h)=V &1
+ (h)&V &1

& (h).

In Fig. 1 is given a geometric interpretation of this definition. The first
result that we will prove shows that this length characterizes the
isochronous centers. However we must first prove the following easy fact.

Lemma 2.1. Let , : [a, b) R be analytic and let � : (a, b)_(a, b) �
(0,+�] satisfy

|
x

a
,(z) �(x, z) dz=k1 and |

x

a
�(x, z) dz=k2

for all x # (a, b). Then ,(z)=k1 �k2 for all z # (a, b).

FIG. 1. Interpretation of l(h) in terms of #h .
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Proof. One can easily verify that both conditions imply that

|
x

a \,(z)&
k1

k2+ �(x, z) dz=0 for all x # (a, b). (2)

If ,�k1 �k2 then the analyticity of , implies that there exists =>0 such that
,(z){k1 �k2 for all z # (a, a+=). We can assume without loss of generality
that

,(z)>
k1

k2

for all z # (a, a+=).

Therefore, since � is a strictly positive function, this shows that (2) cannot
hold for any x # (a, a+=). K

Theorem A. The origin is an isochronous center of period | if and only if

l (h)=
|
?

- 2h for all h # (0,h0).

Proof. Consider any h # (0, - h0 ). The period of the periodic orbit #h2 is
given by

T(h2)=2 |
V

+
&1(h2)

V &
&1(h2)

dx

- 2(h2&V(x))

=- 2 |
V

+
&1(h2)

0

dx

- h2&V(x)
&- 2 |

V &
&1(h2)

0

dx

- h2&V(x)
.

The change of coordinates x=V &1
+ (u2) and x=V &1

& (u2) in the first and
second integral above respectively yield

T(h2)=- 2 |
h

0

(V &1
+ (u2)&V &1

& (u2))$

- h2&u2
du.

Thus, we have showed that for all h # (0, - h0 ) it holds

T(h2)=- 2 |
h

0

(l(u2))$

- h2&u2
du. (3)

We claim that u [ l(u2) is analytic on [0, - h0 ). To prove this we define

g(x)=sgn(x) - V(x)=x �V(x)
x2 .
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Since V(0)=V$(0)=0, V"(0)>0 and V(x){0 for all x # (xI , xS)"[0] it
follows that g is analytic on (xI , xS). Moreover, using also that V$(x){0
for all x # (xI , xS)"[0] and that V((xI , xS))=[0, h0), one can verify that its
inverse g&1 is well defined and analytic on (&- h0 , - h0 ). Now the claim
follows from the fact that

sgn(u) l(u2)= g&1(u)& g&1(&u) for all u # (&- h0 , - h0 ).

Assume now the the origin is an isochronous center of period |. Then (3)
implies that

|
h

0

(l(u2))$

- h2&u2
du=

|

- 2
for all h # (0, - h0 )

and on the other hand a computation shows that

|
h

0

du

- h2&u2
=

?

2
for all h>0.

In this situation by applying Lemma 2.1 we can assert that

d
du

l(u2)=
- 2 |

?
for all u # (0, - h0 ).

Therefore we have showed the necessity of the condition

l(h)=
|
?

- 2h for all h # (0, h0).

The sufficiency of this condition is readily seen from (3). K

It is clear that Theorem A imposes severe restrictions on the shape of the
period annulus in case that the origin is isochronous. In particular, using
that the differential equation is defined in the whole plane, it implies the
following result.

Corollary 2.2. If the origin is an isochronous center then its period
annulus is the whole plane.

Proof. It is easy to see that if (xI , xS) is bounded then the period
annulus is also bounded. In this case there exists a critical point in �P and
then the center can not be isochronous. Thus, if the center is isochronous
then (xI , xS) is unbounded and consequently l(h) � +� when hZh0 .
Now, using Theorem A we conclude that h0=+� and hence that P is the
whole plane. K
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Next we will show the strong relation between involutions and
isochronicity, and how this relation can be used to prove easily two classical
results.

Definition 2.3. We will say that a function _ is a strict involution if it
is an analytic function on R different from the identity satisfying _(0)=0
and _(_(x))=x for all x # R.

Lemma 2.4. If _ is a strict involution then _$(x)<0 for all x # R and
Id&_ is an analytic diffeomorphism on R.

Proof. Notice first that _$(x){0 for all x # R since _2=Id. We will
assume that _$(x)>0 for all x # R and we will get a contradiction. Since _
is different from the identity we can take x0 # R such that _(x0){x0 . Let
us assume that x0<_(x0) (the other case is similar). Then, since _ is
increasing, _(x0)<_2(x0)=x0 and this contradicts that x0<_(x0). Thus
_$(x)<0 for all x # R. Finally, using also that |_(x)| � +� when
|x| � +� we conclude that Id&_ is a diffeomorphism. K

Theorem B. The origin is an isochronous center of period | if and only
if there exists a strict involution _ such that

V(x)=
?2

2|2 (x&_(x))2 for all x # R.

Proof. Assume that the origin is an isochronous center of period |. In
this case Corollary 2.2 shows that the center is global. Therefore h0=+�
and g(x)=sgn(x) - V(x) is an analytic diffeomorphism on R. By applying
Theorem A we can assert that

l(h)=
|
?

- 2h for all h>0.

Now, using that sgn(h) l(h2)= g&1(h)& g&1(&h), we conclude

- 2 |
?

h= g&1(h)& g&1(&h) for all h # R.

Evaluating the above expression at h= g(x) and using that g(x)2=V(x)
we get

V(x)=
?2

2|2 (x& g&1(&g(x)))2 for all x # R. (4)
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If we define _= g&1 b (&g) then one can verify that _2=Id. Since
_$(0)=&1 and _(0)=0 this shows that _ is a strict involution. Thus (4)
proves the necessity of the condition.

Let us prove now the sufficiency of the condition. First of all notice that
by Lemma 2.4 the function Id&_ is a diffeomorphism on R. Since _(0)=0,
this implies that the origin is a global center of the Hamiltonian system
associated to H(x, y)=( y2�2)+V(x).

Fix any h� >0 and take any x~ # R such that V(x~ )=h� . Then, using that it
holds V(x)=V(_(x)) for all x # R, it follows

l(h� )=sgn(x~ )(x~ &_(x~ )).

Finally we conclude that

l(h� )=- (x~ &_(x~ ))2=
|
?

- 2V(x~ )=
|
?

- 2h�

and this proves, applying Theorem A, the sufficiency of the condition. K

Remark 2.5. In the proof of Theorem B we have shown that if the
origin is an isochronous center then its associated involution _ is
determined by V(x)=V(_(x)).

The following result was originally proved by Urabe in [14].

Corollary 2.6. If V is even and the origin is an isochronous center then
V(x)=kx2 for some k>0.

Proof. Remark 2.5 shows that if the origin is an isochronous center and
V is even then its associated involution is _=&Id. Then Theorem B gives
the result. K

The next result can be found in [2] proved by using different tools.

Corollary 2.7. If V is a polynomial and the origin is an isochronous
center then V(x)=kx2 for some k>0.

Proof. If the origin is an isochronous center then by Theorem B there
exists k>0 such that _(x)=x&k sgn(x) - V(x) is a strict involution.

Now if V is a polynomial of degree n we have that _ has order n�2 at
the infinity. On the other hand, since _2=Id, it follows that n2�4=1. This
shows that the degree of V is 2. That V(x)=kx2 follows from the fact that
the origin must be a nondegenerate center. K

Finally Theorem 2.8 shows, roughly speaking, the size of the set of strict
involutions, denoted by Inv(R). In its statement Diff (R) and Diff&(R)
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denote respectively the set of analytic diffeomorphisms on R and the set of
analytic odd diffeomorphisms on R. Notice also that the combination of
Theorem B and Theorem 2.8 shows how it can be constructed any
isochronous center.

Theorem 2.8. Let _ be an analytic function on R with _(0)=0. Then
_ # Inv(R) if and only if there exists f # Diff (R) with f (0)=0 such that
_= f &1 b (&f ). Moreover the sets Inv(R) and Diff (R)�Diff&(R) are in
bijective correspondence.

Proof. Given any f # Diff (R) with f (0)=0 we define F ( f )=
f &1 b (& f ). One can easily verify that F( f )(0)=0, F( f )$(0)=&1 and
F ( f )2=Id. This shows that F ( f ) # Inv(R). Consider now some
_ # Inv(R). Then by Lemma 2.4 it follows that Id&_ # Diff (R) and a com-
putation shows that F (Id&_)=_. This proves the first part of the result.

Finally we will show that if for some f, g # Diff (R) it holds
F ( f )=F (g) then f b g&1 # Diff&(R). This will prove the second part of
the result. However this is readily seen because a computation shows that
F ( f )=F (g) implies

f b g&1=&Id b ( f b g&1) b (&Id ),

and this means clearly that f b g&1 # Diff&(R). K

Remark 2.9. The assumption that V must be defined in R could be
easily replaced in all over the section by V defined in a neighbourhood of
the origin, with the unique obvious exception of Corollary 2.2. That V must
be analytic could be replaced by only C1 if before is done an accurated
analysis. More precisely the proof of Theorem A requires a generalization
of Lemma 2.1 as the one in [7]. Then all the results hold with slight
modifications if before a strict involution is defined to be any C1 function
_ different from the identity such that _(0)=0 and _2=Id in a
neighbourhood of the origin.

In this setting we can consider the example that appears in [14] under
the point of view of involutions. Indeed, the local diffeomorphism f (x)=
(x2�2)&x provides the involution _= f b (& f &1), which yields the
isochronous center associated to V(x)=x+1&- 1+2x.

As it has been noted before, in [2] it is proved that the unique
isochronous center with V polynomial is the linear one. Perhaps the easiest
families that one could study next are those with V being an entire function
and those with V being a rational function without real poles. An interesting
question for further research is the existence of isochronous centers,
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different from the linear one, in these families. Theorem B shows that the
center is isochronous if and only if V(x)=k(x&_(x))2 for some strict
involution _. Thus, as a first approach we could take _ being itself an entire
function or a rational function without real poles and try to construct an
isochronous center different from the linear one (that is, different from
V(x)=kx2).

In the first case _ extends holomorphically to C satisfying _2(z)=z for
all z # C. This implies that _ is an automorphism on C, and hence that it
must be of the form _(z)=az+b for some a, b # C. Now, since _(R)=R,
_2(z)=z for all z # C and _ | R is a strict involution, it follows that
_(z)=&z for all z # C. Thus, taking _ entire it is not possible to construct
an isochronous center different from the linear one because in fact _=&Id.

On the other hand, if we take _ being a rational function then it extends
holomorphically to the Riemman sphere C� satisfying _2(z)=z for all z # C� .
Again this implies that _ is an automorphism on C� , and hence that it must
be a Moe� bius transformation, i.e.,

_(z)=
az+b
cz+d

for some a, b, c, d # C with ad&bc{0.

Since _(R)=R, _2(z)=z for all z # C� and _ | R is a strict involution, it
follows that

_(z)=
az

cz&a
with a, c # R"[0]. (5)

Thus we conclude that every rational strict involution is of the form (5). In
particular it has a real pole. Therefore in this way it is neither possible to
construct an isochronous center different from the linear one because in
fact there is not any _ being a rational function without real poles. What
it is certainly possible using the strict involution given in (5) is to construct
a potential Hamiltonian system defined in a neighbourhood of the origin
and having an isochronous center. For instance the examples of rational
Hamiltonian systems given in [10] can be constructed in this way.

3. QUADRATIC-LIKE HAMILTONIANS

In this section we consider Hamiltonian systems given by

H(x, y)=A(x)+B(x) y+C(x) y2,
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where A, B, and C are analytic functions on R. We note that this family
generalizes the one in Section 2, which corresponds to take B#0 and
C# 1

2 . Now the associated differential equation is

{x* =&B(x)&2C(x) y,
y* =A$(x)+B$(x) y+C$(x) y2,

(6)

and hence the assumptions that H(0, 0)=0 and that the origin is a
nondegenerate center correspond to require

A$(0)=A(0)=B(0)=0 and 2C(0) A"(0)&B$(0)2>0. (7)

Recall also that we are assuming without loss of generality that

H(z)>0 for all z # P different from the origin. (8)

From now on we will use the auxiliary function G=4AC&B2 and, as in
Section 2, we define

(xI , xS)=[x # R : there exists y # R such that (x, y) # P].

We also define for all x # (xI , xS) the function

g(x)=
sgn(x)

2 �G(x)
C(x)

=
x
2 �

G(x)
x2C(x)

.

It can be proved (see (a) in Proposition 3.4) that g is analytic on (xI , xS)
and that its inverse g&1 is well defined and analytic on (&- h0 , - h0 ),
where h0 is the energy level of the boundary of the period annulus P.

The first part of the section is devoted to prove the following theorem.
In its statement, that C(x)=O( |x|k) when |x| � +� means that there
exists some l # (0, +�) such that

lim
|x| � +�

|C(x)|
|x|k =l,

and (d&(z), d+(z)) denotes the maximal interval of definition of the unique
solution of (6) passing through z # R2.

Theorem C. Assume that the origin is a nondegenerate center and that
A, B, and C are analytic functions on R. Then the following statements hold:

(a) The origin is an isochronous center of period | if and only if

|
g&1(x)

g&1(&x)

ds

- C(s)
=

2|

?
x for all x # (&- h0 , - h0 ).
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(b) The origin is an isochronous center of period | if

(G$(x) C(x)&G(x) C$(x))2=
16?2

|2 G(x) C(x)2 for all x # (xI , xS).

Moreover this condition is also necessary when G and C are even functions.

(c) If the origin is an isochronous center then either xI=&� or
xS=+�. If in addition C(x)=O( |x|k) when |x| � +� for some k # R,
then P is the whole plane if and only if k�2.

(d) If the origin is an isochronous nonglobal center of period | and
(xI , xS)=R then for any z � P

d+(z)&d&(z)=
|
?

arcsin �h0

h
,

where h=H(z).

The proof of Theorem C is organized in the following way. Theorem 3.8
shows the isochronicity criterion given in (a). The sufficiency of the
condition appearing in (b) is shown in Proposition 3.10, while that this
condition is also necessary when G and C are even it is proved in
Proposition 3.13. Turning now to the result in (c), Corollary 3.7 shows
that (xI , xS) is unbounded in case that the center is isochronous and
Proposition 3.9 proves the relation concerning the order of C at infinity.
Finally Theorem 3.15 proves (d).

In the second part of the section we focus on the polynomial case and
we prove the following.

Theorem D. Assume that the origin is a nondegenerated center and that
A, B and C are polynomials. Then the following statements hold:

(a) The origin is an isochronous global center of period | if and only
if C(x)=c with c>0 and G(x)=((2?�|) x)2.

(b) If the origin is an isochronous nonglobal center then deg(G )=
deg(C)�4.

(c) There are polynomials A, B and C such that the planar
Hamiltonian system given by H(x, y)=A(x)+B(x) y+C(x) y2 has an
isochronous nonglobal center at the origin.

It is to be noted that Theorem C and Theorem D generalize the results
appearing in Section 2. The proof of Theorem D is organized as follows.
The algebraic characterization of the isochronous global centers in (a) is
proved in Theorem 3.18. Turning now to the necessary condition in (b),
that deg(G )=deg(C ) is proved in Lemma 3.16 and that deg(C )�4 is
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proved in Proposition 3.19. We note that the combination of (a) and (b)
in Theorem D determines all the isochronous centers with deg(C)�3.
Finally (c) is shown by means of Example 3.22 and Example 3.23.

First we shall prove a technical result that describes the behaviour of the
functions G and C on (xI , xS).

Lemma 3.1. The following relations are satisfied:

(a) C(x)>0 for all x # (xI , xS).

(b) G(x)>0 for all x # (xI , xS)"[0], G(0)=G$(0)=0 and G"(0)>0.

(c) If x # (xI , xS)"[0] then (G�C)$(x){0. Moreover (G�C)$(0)=0
and (G�C)"(0)>0.

(d) If (x0 , y0) is a critical point of (6) different from the origin then
x0 � (xI , xS). In particular the origin is the unique critical point when
(xI , xS)=R.

Proof. Fix any x~ # (xI , xS). Then there exist y1 and y2 with y1 { y2 such
that

H(x~ , y1)=H(x~ , y2)=h for some h # (0, h0)

and (x~ , y) # P for all y # [ y1 , y2]. Since y1 and y2 are different roots of the
equation H(x~ , y)=h it is clear that C(x~ ){0. From the inequality (7) it
follows that A"(0){0 and, using (8), one can show that in fact A"(0)>0.
By using again (7) this shows that C(0)>0. Since x~ is arbitrary this implies
that C(x~ )>0 and hence (a) is proved.

Assume now that x~ {0. If there exists y� # R with H(x~ , y� )=0 it is
easy to verify making use of C(x~ )>0 and H(x~ , y1)=H(x~ , y2)>0, that
y� # [ y1 , y2]. Then (x~ , y� ) # P"[(0, 0)] would satisfy H(x~ , y� )=0 and this
contradicts (8). Thus A(x~ )+B(x~ ) y+C(x~ ) y2{0 for all y # R and this
implies, using C(x~ ){0, that B(x~ )2&4A(x~ ) C(x~ )<0. Therefore G(x~ )>0.
This shows (b) since the relations G(0)=G$(0)=0 and G"(0)>0 follow
readily from (7).

Next we will show that

Hx \x~ ,
&B(x~ )
2C(x~ ) +{0. (9)

First of all we note that H(x~ , y1)=H(x~ , y2) implies that there exists
y~ # [ y1 , y2] such that Hy(x~ , y~ )=0. Since (x~ , y~ ) # P with x~ {0 this shows
that Hx(x~ , y~ ){0 (otherwise there would be a critical point inside P

different from the origin). This proves (9) because using C(x~ ){0 and
Hy(x~ , y~ )=B(x~ )+2C(x~ ) y~ it follows y~ =&B(x~ )�2C(x~ ).
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Now a computation shows that

Hx \x~ ,
&B(x~ )
2C(x~ ) +=&

4A$(x~ ) C(x~ )2&2B(x~ ) B$(x~ ) C(x~ )+C$(x~ ) B(x~ )2

2C(x~ )2

=&2 \G
C+

$
(x~ ).

Therefore (c) is proved since (G�C )$(0)=0 and (G�C )"(0)>0 follow easily
from the last equality in the above expression using that G(0)=G$(0)=0,
G"(0)>0 and C(0)>0.

Finally we will prove (d) by contradiction. So assume that (x0 , y0) is a
critical point of (6) different to the origin with x0 # (xI , xS). Then again
Hy(x0 , y0)=0 implies

y0=
&B(x0)
2C(x0)

. (10)

Here we have used that C(x0){0 due to x0 # (xI , xS). Notice that, from
(7), B(0)=0. Consequently (10) shows that x0 {0 because (x0 , y0){
(0, 0). On the other hand (x0 , y0) must also satisfy Hy(x0 , y0)=0.
Therefore, using (10),

Hx \x0 ,
&B(x0)
2C(x0) +=0

with x0 {0. This is a contradiction because (9) holds for every
x~ # (xI , xS)"[0]. K

Remark 3.2. We note that there is a change of coordinates transforming
system (6) into a potential Hamiltonian system. Indeed, at any point (x, y)
with x # (xI , xS), using (a) in Lemma 3.1 we can rewrite the Hamiltonian
as

H(x, y)=
1

2 \- 2C(x) y+
B(x)

- 2C(x)+
2

+
1

4 \
G

C+ (x).

Now the canonical change of coordinates

u=�(x)=|
x

0

ds

- 2C(s)
and v=- 2C(x) y+

B(x)

- 2C(x)

brings system (6) to the potential system associated to

H� (u, v)=
v2

2
+

1
4 \

G
C+ (�&1(u)). (11)
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Notice that even in case that (xI , xS) is unbounded it may happen that
�((xI , xS)) is a bounded interval. Thus, the potential system associated to
(11) it may be defined only in a vertical strip containing the v-axis. In fact
we will not make use of this transformation at any part of the paper.

For each h # (0, h0) let #h denote the periodic orbit of P with energy level
h and let T(h) denote its period. We define

[x0(h), x1(h)]=[x # R : there exists y # R such that (x, y) # #h].

The results stated in the next lemma will be used frequently henceforth.

Lemma 3.3. The following statements hold:

(a) 1
4 (G�C )(x) � h0 when xzxI or xZxS .

(b) The period of the periodic orbit #h is given by

T(h)=2 |
x1(h)

x0(h)

dx

- B(x)2&4C(x)(A(x)&h)
.

(c) If x # (xI , xS) then (x, &B(x)�2C(x)) # P.

Proof. Notice first of all that

x0(h)zxI and x1(h)ZxS when hZh0 . (12)

From the equation A(x)+B(x) y+C(x) y2=h it follows that

B2(x)&4C(x)(A(x)&h)=4C(x) h&G(x)

is positive when x # (x0(h), x1(h)) and zero when x=x0(h) or x=x1(h).
This shows in particular that

1
4 \

G
C+ (x0(h))=h and

1
4 \

G
C+ (x1(h))=h

and hence, using (12), that 1
4 (G�C)(x) � h0 when xzxI or xZxS . This

proves (a).
It is also clear that if (x, y) # #h then

y=
&B(x)\- B(x)2&4C(x)(A(x)&h)

2C(x)
(13)
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and this implies, using that x* =&B(x)&2C(x) y, that the period of #h is
given by

T(h)=2 |
x1(h)

x0(h)

dx

- B(x)2&4C(x)(A(x)&h)
.

This proves (b).
Consider finally any x� # (xI , xS). Then x� # (x0(h), x1(h)) for some peri-

odic orbit #h in P. If y1 and y2 are the roots of H(x� , y)=h then it is clear
that (x� , y) # P for all y # [ y1 , y2]. In particular, using expression (13), this
implies that (x� , &B(x� )�2C(x� )) # P. This shows (c) and completes the proof
of the lemma. K

We are now in position to give another expression of the period function
that will be very useful in order to characterize the isochronous centers.

Proposition 3.4. The following statements hold:

(a) If g(x)=(sgn(x)�2) - G(x)�C(x) then g is analytic on (xI , xS),
g(0)=0 and g$(x)>0 for all x # (xI , xS). The inverse function g&1 is defined
and analytic on (&- h0 , - h0 ).

(b) If h # (0, h0) then the period of the periodic orbit #h is given by

T(h)=|
?�2

&?�2

( g&1)$ (- h sin %)

- C( g&1(- h sin %))
d%.

(c) If the center is isochronous of period | then G"(0)=8?2�|2.

Proof. That g is well defined and analytic on (xI , xS) and that g(0)=0
follow from the combination of (a), (b), and (c) in Lemma 3.1. Since its
derivative is given by

g$(x)=
sgn(x)

4 �G(x)
C(x) \

G
C+

$
(x),

(c) in Lemma 3.1 shows that g$(x)>0 for all x # (xI , xS)"[0]. On the other
hand, using (b) in Lemma 3.1 again, it is easy to verify that

g$(0)=
1
2 �

G"(0)
2C(0)

{0. (14)

That g&1 is defined and analytic on (&- h0 , - h0 ) follows from (a) in
Lemma 3.3 and using that g$(x)>0 for all x # (xI , xS). This proves (a).
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Turning now to the result in (b) we make the change of variables
z= g(x) in the expression of T(h) given by (b) in Lemma 3.3. Notice that
for all h # (0, h0) it holds

g(x0(h))=&- h and g(x1(h))=- h

since x0(h)<0<x1(h). Thus, using that 4C(x) z2=4C(x) A(x)&B(x)2, we
obtain

T(h)=|
- h

&- h

dz

- (h&z2) C(g&1(z)) g$(g&1(z))
. (15)

A final change of variables z=- h sin % produces

T(h)=|
?�2

&?�2

( g&1)$ (- h sin %)

- C( g&1(- h sin %))
d%.

Hence (b) is proved. Finally if the origin is an isochronous center of period
|, the above expression shows

|=lim
hz0

T(h)=
?

- C(0) g$(0)
.

Now taking into account (14) it follows G"(0)=8?2�|2, and hence (c) is
proved.

Proposition 3.4 can now be applied to prove the following result.

Corollary 3.5. Suppose that the origin is a global center. Then
T(h) � 0 as h � +� if - C(x) g$(x) � +� as |x| � +�.

Proof. Notice first that when the origin is a global center, h0=+�
and (xI , xS)=R. Using those facts and (a) in Lemma 3.3 we obtain that

lim
|x| � +�

| g(x)|=+�.

Since g is analytic on R by (a) in Proposition 3.4, this shows that if %{0
then

lim
h � +�

| g&1(- h sin %)|=+�.
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Consequently, the required condition in the statement implies that

Fh(%)=
(g&1)$ (- h sin %)

- C( g&1(- h sin %))
� 0 as h � +� (16)

if %{0. Using that C(x)>0 for all x # R by (a) in Lemma 3.1, and that
g$(x)>0 for all x # R by (a) in Proposition 3.4, the required condition also
implies the existence of m>0 such that

0<
1

- C(x) g$(x)
<m for all x # R.

Thus, for any h>0 it follows that 0<Fh(%)<m for all % # (&?�2, ?�2).
Now using (16), the expression of the period function given by (b) in
Proposition 3.4, and the Lebesgue dominated convergence theorem, we
obtain

lim
h � +�

T(h)= lim
h � +� |

?�2

&?�2
Fh(%) d%=0. K

Next we will prove a technical result that will become particularly useful
to describe the shape of the period annulus of an isochronous center in the
polynomial case. Notice that in its statement it is implicit that we deal with
a nonglobal center.

Proposition 3.6. T(h) � +� when hZh0 in case that xS (respectively
xI) is finite and C(xS)=0 (respectively C(xI)=0). Moreover this condition
is satisfied if there exist a bounded sequence (xn)n # N and an unbounded
sequence ( yn)n # N such that (xn , yn) # �P for all n # N.

Proof. First of all we note that H(�P)=h0 is finite because P is not the
whole plane. If �P contains some critical point it is well known that
T(h) � +� as hZh0 . Hence we may assume without loss of generality
that �P does not contain any critical point. Consider for example that
xS<+� and C(xS)=0 (the other case is similar). Then, since G(xS)�0
by (b) in Lemma 3.1, it follows that B(xS)=0. Notice that in this case the
straight line x=xS is invariant with respect to the flow generated by (6).

We claim that it holds C$(xS)=0. The combination of Lemma 3.1 and
(a) in Lemma 3.3 implies that C(x)>0 and B(x)2&4C(x)(A(x)&h0 )>0
for all x # (xI , xS). Then, for each x # (xI , xS), the equation H(x, y)=h0

has two different real roots given by

y=
&B(x)\- B(x)2&4C(x)(A(x)&h0)

2C(x)
.
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Denote them by y+
h0

(x) and y&
h0

(x) taking y&
h0

(x)< y+
h0

(x). It is clear that
when x # (xI , xS) then (x, y) # �P if and only if either y= y+

h0
(x) or

y= y&
h0

(x).
Since there are not critical points on �P, the invariance of the straight

line x=xS implies that | y+
h0

(x)| � +� and | y&
h0

(x)| � +� as xZxS .
Then there are only two possibilities:

(a) y+
h0

(x) � +� (respectively &�) and y&
h0

(x) � +� (respectively
&�) when xZxS .

(b) y+
h0

(x) � +� and y&
h0

(x) � &� when xZxS .

In the first case | y+
h0

(x)+ y&
h0

(x)| � +� as xZxS . Then, taking into
account that

y+
h0

(x)+ y&
h0

(x)=&
B(x)
C(x)

and that C(xS)=B(xS)=0, we conclude that C$(xS)=0. In the second
case we note that �P contains the straight line x=xS . Then H(xS , y)=h0

for all y # R. This shows A(xS)=h0 since C(xS)=B(xS)=0. On the other
hand notice that in this case | y+

h0
(x) y&

h0
(x)| � +� as xZxS . Therefore,

due to

y+
h0

(x) y&
h0

(x)=
A(x)&h0

C(x)

and C(xS)=A(xS)&h0=0, this implies that C$(xS)=0. Hence C$(xS)=0
in both cases and this proves the claim.

We are now in position to finish the proof of the first part. Take any
h # (0, h0) and consider the periodic orbit #h . Using the expression of T(h)
given by (b) in Lemma 3.3 and Fatou's Lemma we obtain

lim
hZh0

T(h)�2 |
xS

xI

dx

- B(x)2&4C(x)(A(x)&h0)
. (17)

Here we have used that x0(h) � xI and x1(h) � xS when hZh0 . Finally
from (17) we can conclude that

lim
hZh0

T(h)=+�

since C(xS)=C$(xS)=B(xS)=0.
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Assume now that there exist a bounded sequence (xn)n # N and an
unbounded sequence ( yn)n # N such that (xn , yn) # �P for all n # N.

Since (xn)n # N is a bounded sequence there exist x~ # R and (nk)k # N such
that xnk

� x~ as k � +�. It is clear that either x~ # (xI , xS), x~ =xI or x~ =xS .
On the other hand, H(xnk

, ynk
)=h0 for all k # N since (xnk

, ynk
) # �P for all

k # N. This implies that C(x~ )=0 because ( ynk
)k # N must be an unbounded

sequence and

ynk
=

&B(xnk
)\- B(xnk

)2&4C(xnk
)(A(xnk

)&h0)

2C(xnk
)

for all k # N.

Thus, due to C(x)>0 for all x # (xI , xS) by (a) in Lemma 3.1, it follows
that either xS<+� with C(xS)=0 or xI>&� with C(xI)=0. This
proves the result. K

As a first consequence of Proposition 3.6 we get the following result,
which provides some information about the period annulus of an
isochronous center.

Corollary 3.7. If (xI , xS) is bounded then T(h) � +� as hZh0 .

Proof. Notice first that if P is bounded then T(h) � +� when hZh0

because in this case �P contains some critical point. Hence we can suppose
without restriction that P is not bounded. Then, if (xI , xS) is bounded, it
is clear that there exist a bounded sequence (xn)n # N and an unbounded
sequence ( yn)n # N such that (xn , yn) # �P for all n # N. Now Proposition 3.6
shows that T(h) � +� as hZh0 . K

Now our next objective is to give necessary and sufficient conditions for
isochronicity. To this end we prove the following criterion by making use
of the expression of the period function given in (15).

Theorem 3.8. The origin is an isochronous center of period | if and only if

|
g&1(x)

g&1(&x)

ds

- C(s)
=

2|

?
x

for all x # (&- h0 , - h0 ).

Proof. Take any h # (0, h0) and consider the periodic orbit #h .
A manipulation of the expression of the period function given by (15)
shows that

T(h)=|
- h

0 \ ( g&1)$ (z)

- C( g&1(z))
+

( g&1)$ (&z)

- C( g&1(&z))+
dz

- h&z2
. (18)
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For each z # (&- h0 , - h0 ) denote

,(z)=
( g&1)$ (z)

- C( g&1(z))
+

( g&1)$ (&z)

- C( g&1(&z))
and �(h, z)=

1

- h2&z2
.

It is clear that , is an analytic function on (&- h0 , - h0 ) and that � is
strictly positive.

Assume that the origin is an isochronous center of period |. Then
T(h2)=| for all h # (0, - h0 ) and, from (18), we have that

|
h

0
,(z) �(h, z) dz=| for all h # (0, - h0 ).

Moreover one can easily check that

|
h

0
�(h, z) dz=

?
2

for all h # (0, - h0 ).

Now, applying Lemma 2.1, we conclude that ,(z)=2|�? for all z # (0, - h0 ).
Since , is an analytic function this implies that

( g&1)$ (z)

- C( g&1(z))
+

( g&1)$ (&z)

- C( g&1(&z))
=

2|

?
for all z # (&- h0 , - h0 ). (19)

Consider any x # (&- h0 , - h0 ). Then from (19) we obtain

|
x

0

( g&1)$ (z)

- C( g&1(z))
dz+|

x

0

( g&1)$ (&z)

- C( g&1(&z))
dz=

2|

?
x.

The changes of variables s= g&1(z) and s= g&1(&z) in the first and the
second integral above respectively yields

|
g&1(x)

g&1(&x)

ds

- C(s)
=

2|

?
x. (20)

This proves the necessity of the condition.
Finally let us prove the sufficiency of the condition. If one calculates the

derivative with respect to x on both sides of (20), one gets (19). From the
substitution of (19) in (18) and a computation it follows that T(h)=| for
all h # (0, h0). Thus if the relation (20) holds for all x # (&- h0 , - h0 ) then
the origin is an isochronous center of period |. K
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The following result will show that when the origin is an isochronous
center and the function C has order at the infinity then this order
determines if the center is global.

Proposition 3.9. Suppose that the origin is an isochronous center and
that C(x)=O( |x|k) when |x| � +� for some k # R. Then the center is
global if and only if k�2.

Proof. We note that if (xI , xS) is bounded then Corollary 3.7 shows
that T(h) � +� as hZh0 . Thus, if the origin is an isochronous center then
either xS=+� or xI=&�. We consider the case xS=+� (the other
case is similar).

First of all notice that P is the whole plane if and only if h0=+�. On
the other hand applying Theorem 3.8 we obtain

2|

?
- h0 = lim

xZ- h0
|

g&1(x)

g&1(&x)

ds

- C(s)
=|

+�

xI

ds

- C(s)
. (21)

Here we use that, by (a) in Lemma 3.3, g&1(x) � xS and g&1(&x) � xI as
xZ- h0 .

First we shall prove the result when xI>&�. In this case it holds
C(xI){0 otherwise T(h) � +� as hZh0 by Proposition 3.6. Thus, using
also (a) in Lemma 3.1, we have that C(x)>0 for all x # [xI , +�). Taking
into account (21), this shows that h0=+� if and only if k�2.

Consider finally that xI=&�. Then C(x)>0 for all x # R by (a) in
Lemma 3.1. Clearly (21) shows that if C(x)=O( |x|k) when |x| � +� then
h0=+� if and only if k�2.

From Proposition 3.9 we conclude that in the polynomial case every
isochronous nonglobal center must satisfy deg(C )�3. In fact this bound
will be improved in the last part of this section.

We provide now a sufficient condition for isochronicity in terms of G
and C. Notice that this condition is purely algebraic when G and C are
polynomials.

Proposition 3.10. The origin is an isochronous center of period | if

(G$(x) C(x)&G(x) C$(x))2=
16?2

|2 G(x) C(x)2 for all x # (xI , xS).

Proof. Denoting [(x, y) # R2 : x # (xI , xS)] by R, define for any (x, y) # R

u=- 2 g(x) and v=
B(x)+2C(x) y

- 2C(x)
. (22)
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Then Lemma 3.1 and Proposition 3.4 show that (22) is an analytic change
of coordinates on R. On the other hand one can easily verify that

H(x, y)=A(x)+B(x) y+C(x) y2=
u2+v2

2
. (23)

Moreover a computation shows that the required condition guarantees
that

}ux

vx

uy

vy }=
2?
|

for all (x, y) # R. (24)

Here we use that sgn(G$(x) C(x)&G(x) C$(x))=sgn(x) for all x # (xI , xS)"
[0] by (c) in Lemma 3.1. It is well known (see [12] for instance) that
(23) together with (24) imply that the change of coordinates (22) transforms
the system

{x* =&Hy(x, y),
y* =Hx(x, y),

into the form {
u* =&

2?
|

v,

v* =
2?
|

u.

Now the result follows from the fact that the second system has an
isochronous center of period | at the origin. K

Remark 3.11 The proof of Proposition 3.10 shows that

u=x � G(x)

2x2C(x)
, v=

B(x)+2C(x) y

- 2C(x)

is a linearizing change of coordinates for these systems.

In general, the condition given in Proposition 3.10 is not necessary for
isochronicity. This can be shown by means of the following example.

Example 3.12. The planar Hamiltonian system given by

H(x, y)=(ex�2&1)2+ 1
8 x2+ 1

2 xe&xy+ 1
2 e&2xy2

has an isochronous center at the origin and it does not verify the required
condition in Proposition 3.10.
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One can easily verify making use of Theorem 3.8 that the Hamiltonian
system given in Example 3.12 has an isochronous center at the origin.
Indeed, in this case

C(x)=
1
2

e&2x and
G(x)

4 C(x)
=(ex�2&1)2.

Thus g(x)=ex�2&1 and g&1(x)=ln(x+1)2. Therefore it follows that

|
g&1(x)

g&1(&x)

ds

- C(s)
=- 2 |

g&1(x)

g&1(&x)
es ds=- 2 (x+1)2&- 2 (1&x)2=4 - 2 x.

On the other hand a computation shows that it does not satisfy the
required condition in Proposition 3.10. Nevertheless this sufficient condi-
tion turns out to be also necessary in case that G and C are even functions.
This is stated in the following proposition.

Proposition 3.13. Assume that G and C are analytic even functions on
R. Then the origin is an isochronous center of period | if and only if

(G$(x) C(x)&G(x) C$(x))2=
16?2

|2 G(x) C(x)2 for all x # (xI , xS).

Proof. It is clear that we must only prove the necessity because
Proposition 3.10 shows the sufficiency. Thus, assume that the origin is an
isochronous center of period |. Then, denoting _(x)= g&1(&g(x)) for all
x # (xI , xS), Theorem 3.8 implies that

|
x

_(x)

ds

- C(s)
=

2|

?
g(x) for all x # (xI , xS).

Since G and C are even functions notice that _(x)=&x for all x # (xI , xS).
Using this fact and derivating the above expression with respect to x we
find

1

- C(x)
+

1

- C(&x)
=

2|

?
g$(x) for all x # (xI , xS).

Now, using again that C is an even function we get

1

- C(x)
=

|

?
g$(x) for all x # (xI , xS).
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Finally, taking into account the definition of g and an elementary
manipulation yields

(G$(x) C(x)&G(x) C$(x))2=
16?2

|2 G(x) C(x)2 for all x # (xI , xS).

Thus the validity of the proposition is proved. K

Next we will show how the isochroniciy of the origin determines the
maximal interval of definition of any solution outside the period annulus.
This surprising fact is stated precisely in Theorem 3.15, but first we need
the next easy result. Here we shall use the following notation. Given any
z0 # R2 we denote by

.(z0 , t)=(.1(z0 , t), .2(z0 , t))

the unique solution of (6) with .(z0 , 0)=z0 and by (d&(z0), d+(z0)) its
maximal interval of definition.

Lemma 3.14. Assume that the origin is a nonglobal center and that
(xI , xS)=R. Then for any point z0=(x0 , y0) outside the period annulus the
following holds:

(a) If y0>&B(x0)�2C(x0) then .1(z0 , t) � +� (respectively &�)
when tZd+(z0) (respectively tzd&(z0)).

(b) If y0<&B(x0)�2C(x0) then .1(z0 , t) � &� (respectively +�)
when tZd+(z0) (respectively tzd&(z0)).

Proof. Notice first of all that .(z0 , t) � P for all t # (d&(z0), d+(z0)).
Thus

.2(z0 , t){
&B(.1(z0 , t))
2C(.1(z0 , t))

for all t # (d&(z0), d+(z0)) (25)

by (c) in Lemma 3.3 since (xI , xS)=R. Assume for instance that y0<
&B(x0)�2C(x0). If H(z0)=h then condition (25) shows that, for all
t # (d&(z0), d+(z0)),

B(x)2&4C(x)(A(x)&h) |x=.1(z0 , t)>0

and

.2(z0 , t)=
&B(x)&- B(x)2&4C(x)(A(x)&h)

2C(x) }x=.1(z0 , t)

. (26)

Since x* =&B(x)&2C(x) y, we conclude that

.* 1(z0 , t)<0 for all t # (d&(z0), d+(z0)). (27)
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On the other hand the origin is the unique critical point of (6) by (d)
in Lemma 3.1. Thus, any periodic orbit must surround the origin and
therefore, taking into account that (xI , xS)=R, any periodic orbit is
inside P.

We will prove for instance that .1(z0 , t) � &� when tZd+(z0). We
claim that

&.(z0 , t)& � +� as tZd+(z0). (28)

If the claim is false then there exists K>0 such that &.(z0 , t)&<K for all
t # (0, d+(z0)). This implies that the |-limit of the solution passing through
z0 is nonempty and compact. Since the origin is the unique critical point,
according to the Poincare� �Bendixson Theorem there are only two
possibilities: the |-limit contains the origin or it is a periodic orbit. The
first one is obviously not possible. The second one, due to the analyticity
of the Hamiltonian, implies that z0 � P belongs to a periodic orbit and this
is neither possible because we have shown that any periodic orbit is inside
P. Therefore the claim is true.

Next it will be shown that |.1(z0 , t)| � +� as tZd+(z0). If this is false
then

lim
tZd+(z0)

.1(z0 , t)=x~ for some x~ # R. (29)

However, from (26) then we obtain that

lim
tZd+(z0)

.2(z0 , t)=
&B(x~ )&- B(x~ )2&4C(x~ )(A(x~ )&h)

2C(x~ )
. (30)

Due to C(x~ ){0, it is clear that the combination of (29) and (30)
contradicts (28). Therefore |.1(z0 , t)| � +� when tZd+(z0). Finally,
using (27), we conclude that

lim
tZd+(z0)

.1(z0 , t)=&�.

That .1(z0 , t) � +� as tzd&(z0) can be proved exactly the same way. K

Theorem 3.15. Assume that the origin is an isochronous nonglobal center
of period | and that (xI , xS)=R. If z0 � P then

d+(z0)&d&(z0)=
|
?

arcsin �h0

h
,

where H(z0)=h.
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Proof. Notice first of all that making use of Theorem 3.8 we get

( g&1)$ (z)

- C( g&1(z))
+

( g&1)$ (&z)

- C( g&1(&z))
=

2|

?
for all z # (&- h0 , - h0 ) (31)

since the origin is an isochronous center of period |. Moreover y0 {
&B(x0)�2C(x0) by (c) in Lemma 3.3. Suppose for instance that y0>
&B(x0)�2C(x0) and say that H(z0)=h. Then

.* 1(z0 , t)=- B(x)2&4C(x)(A(x)&h) |x=.1(z0 , t)>0 (32)

for all t # (d&(z0), d+(z0)) . We omit the proof of this fact because it
proceeds just like the first part of the proof of Lemma 3.14. Now taking
any t1, t2 # (d&(z0), d+(z0)) and making use of (32) we conclude that

t1&t2=|
.1(z0 , t1)

.1(z0 , t2)

dx

- B(x)2&4C(x)(A(x)&h)
.

Making t1Zd+(z0) and t2zd&(z0) above, (a) in Lemma 3.14 shows that

d+(z0)&d&(z0)=|
+�

&�

dx

- B(x)2&4C(x)(A(x)&h)
.

The change of variables z= g(x) and a manipulation yields

d+(z0)&d&(z0)=
1

2 |
- h0

&- h0

( g&1)$ (z)

- C( g&1(z))

dz

- h&z2

=
1

2 |
- h0

0 \ ( g&1)$ (z)

- C( g&1(z))
+

( g&1)$ (&z)

- C( g&1(&z))+
dz

- h&z2
.

Here we have used that g(z) � - h0 and g(&z) � &- h0 when z � +�
by (a) in Lemma 3.3. Finally, making use of (31) and a computation shows
that

d+(z0)&d&(z0)=
|

? |
- h0

0

dz

- h&z2
=

|
?

arcsin �h0

h
.

Therefore the result is proved. K

It follows from Theorem 3.15 that when the origin is a nonglobal
isochronous center satisfying (xI , xS)=R then the length of the maximal
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interval of definition of any solution outside the period annulus it is
uniquely determined by its energy level, the energy level of the boundary
of P and the period of the center.

The Polynomial Case

Next we will apply the results obtained until now to the case that A, B,
and C are polynomials. However when it is possible we state some result
assuming only that C and G=4AC&B2 are polynomials.

The following lemma follows readily from (a) in Lemma 3.3 using the
fact that the period annulus is the whole plane if and only if h0=+�.

Lemma 3.16. Assume that G and C are polynomials and that (xI , xS) is
not bounded. The following statements hold:

(a) If the origin is a global center then deg(G )>deg(C ).

(b) If the origin is not a global center then deg(G )=deg(C ).

Once we have proved the following proposition we will be in position to
give a characterization of the polynomial isochronous global centers.

Proposition 3.17. Assume that G and C are polynomials and that the
origin is a global center. Then T(h) � 0 as h � +� except in case that
G(x)= gx2 with g>0 and C(x)=c with c>0.

Proof. Let m and n denote respectively the degree of G and C. Since the
origin is a global center we note that (xI , xS)=R and, by (a) in
Lemma 3.16, that m>n. On the other hand an easy computation shows
that

- C(x) g$(x)=
sgn(x)

4
G$(x) C(x)&G(x) C$(x)

- G(x) C(x)
.

Using that m{n, the above expression shows that the function x [
- C(x) g$(x) has order (m�2)&1 at infinity. Therefore

lim
|x| � +�

- C(x) g$(x)=+�

if m>2. Now, by applying Corollary 3.5 we can assert that if m>2 then

lim
h � +�

T(h)=0.

Hence it only remains to consider when m�2. However, since G and C are
polynomials of even degree by (a) and (b) in Lemma 3.1, the fact that
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m>n implies m=2 and n=0. Finally, using (a) and (b) in Lemma 3.1
again we conclude that G(x)= gx2 with g>0 and C(x)=c with c>0. K

Next result provides a purely algebraic characterization for a polynomial
isochronous global center in terms of its coefficients.

Theorem 3.18. Assume that C and G are polynomials. Then the origin is
an isochronous global center of period | if and only if C(x)=c with c>0
and G(x)=((2?�|) x)2.

Proof. If the origin is an isochronous global center then, making use of
Proposition 3.17, G(x)= gx2 with g>0 and C(x)=c with c>0. Now, if its
period is | then (c) in Proposition 3.4 shows that g=(2?�|)2.

Conversely, if C(x)=c with c>0 and G(x)=((2?�|) x)2 then the
analytic change of coordinates given by

u=
2?

|

x

- 2c
, v=

B(x)+2cy

- 2c

brings system (6) to the form

{
u* =&

2?
|

v,

v* =
2?
|

u.

Therefore the origin is an isochronous global center of period | for the
system (6). K

Proposition 3.19. If G and C are polynomials and the origin is an
isochronous nonglobal center then deg(G )=deg(C )�4.

Proof. Since the origin is an isochronous center it follows from apply-
ing Corollary 3.7 that (xI , xS) is not bounded. Then applying Lemma 3.16
we have that deg(G )=deg(C ) because the center is nonglobal. Let us
suppose that xS=+� (the other case is similar) and say that deg(C)=n.

If for all x # (xI , xS) we define the auxiliary function

F(x)=
- G(x) C(x)

|G$(x) C(x)&G(x) C$(x)|
,
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then it follows from derivating with respect to x the isochronicity condition
given in Theorem 3.8 that it holds

F ( g&1(x))+F( g&1(&x))=
|
2?

for all x # (&- h0 , - h0 ). (33)

Here we used the definition of g and that for all x # (xI , +�)"[0] it holds

sgn(G$(x) C(x)&G(x) C$(x))=sgn(x)

by (c) in Lemma 3.1. Notice that F( g&1(x))>0 for all x # (&- h0 , - h0 )
due to (a) in Lemma 3.1. Moreover if we denote the degree of G$C&GC$
by r then it follows that

r�2(n&1) (34)

and that the function F has order 3
2n&r at infinity. Now, a necessary

condition in order that (33) holds is that

3
2n&r�0, (35)

otherwise the left hand of expression (33) would tend to infinity as
xZ- h0 . This is so because xS=+� and

lim
xZ- h0

g&1(x)=xS

by (a) in Lemma 3.3. This proves the result because (34) and (35) imply
that n�4. K

Remark 3.20. It is clear that the combination of Theorem 3.18 and
Proposition 3.19 determines all the isochronous centers with deg(C )�3.

Next result will give some of the geometric properties of the period
annulus of a nonglobal isochronous center.

Corollary 3.21. Assume that A, B and C are polynomials and that the
origin is a nonglobal center. If �P contains the infinite critical point given by
x=0 then T(h) � +� when hZh0 .

Proof. Note that in this situation there exist a bounded sequence
(xn)n # N and an unbounded sequence ( yn)n # N such that (xn , yn) # �P for all
n # N. Now the result follows from Proposition 3.6. K

We note finally that if A, B and C are polynomials and the origin is an
isochronous nonglobal center then the period annulus in the Poincare� disc
is qualitatively one of the given in Fig. 2.
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FIG. 2. Possible period annulus for an isochronous nonglobal center.

Notice that by Corollary 3.21 none of the infinite critical points in �P is
given by the direction x=0. That there are at most two follows from using
that H(x, y)=h has at most two solutions for any fixed y and h. Finally (c)
in Lemma 3.3 shows that when there are two infinite critical points in �P, if
one is given by the direction %0 # (&?�2, ?�2) then the other one is given either
by the direction ?&%0 (as the example in Fig. 2) or by the direction ?+%0 .

Polynomial Isochronous Nonglobal Centers

We now take advantage of Proposition 3.13 to give a method to
construct polynomial Hamiltonian systems which have a nontrivial and
nonglobal isochronous center.

Assume that G and C are even polynomials satistying the required condi-
tion in Proposition 3.13 and that there exist two polynomials A and B with
G=4AC&B2 such that the origin is a nondegenerate center of system (6).
Notice then that the origin is an isochronous center.

First we shall study which must be the form of G and C in order that
the isochronous center is nonglobal. Since (xI , xS) is unbounded by
Corollary 3.7, the fact that G and C are even implies that (xI , xS)=R.
Then, since we want the center to be nonglobal, using Lemma 3.16
it follows that deg(G )=deg(C ). On the other hand, (a) and (b) in
Lemma 3.1 show respectively that C does not have any real zero and that
x=0 is the unique real zero of G.

Using that sgn(G$(x) C(x)&G(x) C$(x))=sgn(x) for all x{0 by
(c) in Lemma 3.1, one can easily verify that the required condition in
Proposition 3.13 is equivalent to

\G
C+

$
(x)=sgn(x)

4?
|

- G(x)
C(x)

for all x # R. (36)
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Notice that G(x)=P(x)2 for some polynomial P because the left hand of
expression (36) is a rational function. Since G(0)=G$(0)=0 and G"(0)>0
by (b) in Lemma 3.1, it follows that P(0)=0 and P$(0){0. Let us assume
that P$(0)>0 (the other case is similar). Then sgn(P(x))=sgn(x) for all
x{0 and this shows that (36) is equivalent to

2P$(x) C(x)&P(x) C$(x)=
4?
|

C(x) for all x # R.

Using the above expression it is easy to show that if C(z0)=0 for some
z0 # C then P(z0)=0, and that the multiplicity of P at any of its zeros is
exactly one.

All these facts lead us to consider G and C with the form:

G(x)=x2 `
n

i=1

(x2+b i)
2 and C(x)=c `

n

i=1

(x2+b i)
ki+2, (37)

where c>0, bi>0 for i=1, 2, ..., n, ki # N _ [&1, &2] for i=1, 2, ..., n
and �n

i=1 ki=1. Then it is obvious that G and C are even polynomials
with the same degree. Of course the general form of each factor should be
ai x2+c i x+b i with ci

2&4a i bi<0 but this would make the computation
more complicated.

Until now we have found some necessary conditions in order that the
origin is an isochronous nonglobal center and these conditions lead us to
take G and C of the form given in (37). Next, assuming that G and C have
this concrete form, we shall find an equivalent expression to (36).

Taking into account the definition of G and C given in (37) it follows
that

G(x)
C(x)

=
x2

c
`
n

i=1

1
(x2+bi)

ki
.

Then a computation shows that

\G
C+ (x)=

2x
c

`
n

i=1

1
(x2+bi)

ki
+

x2

c \`
n

i=1

1
(x2+bi)

ki+$

=
2x
c

`
n

i=1

1
(x2+bi)

ki \1&x2 :
n

i=1

ki

x2+bi + .

On the other hand, using again the definition of G and C, we have that

sgn(x)
- G(x)

C(x)
=

x
c

`
n

i=1

1
(x2+bi)

ki+1 .
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Now it follows from (36) that the condition required in Proposition 3.13 is
satisfied when

2?
|

`
n

i=1

1
x2+b i

=1&x2 :
n

i=1

k i

x2+b i
for all x # R. (38)

We will discuss the simplest cases. That is, when n=1 or n=2. In the
first case it follows from (38) that b1=2?�| and k1=1. Thus,

G(x)=x2 \x2+
2?
| +

2

and C(x)=c \x2+
2?
| +

3

.

Now we must find two polynomials A and B with G=4AC&B2 such that
the origin is a nondegenerate center of system (6). Clearly we must search
them of the form A(x)=x2A� (x) and B(x)=xB� (x). Using that A, B, C, and
G have repeated factors it easily follows that taking

A(x)=
|

8c?
x2 and B(x)=�|

2?
x2 \x2+

2?
| +

it holds G=4AC&B2. One can check that taking A, B, and C as above
then the origin is a nondegenerate center of system (6). Now, since G
and C are even polynomials satisfying the condition required in
Proposition 3.13 we conclude that the origin is an isochronous center of
period |. Moreover, by Lemma 3.16, the period annulus is not the whole
plane since deg(G )=deg(C). In brief, taking c= 1

2 and |=2? for
simplicity, we have shown:

Example 3.22. The planar Hamiltonian system given by

H(x, y)=
x2

2
+x2(x2+1) y+

1
2

(x2+1)3 y2

has an isochronous nonglobal center of period 2? at the origin.

One can check that the system given in Example 3.22 can be linearized
by means of

u=
x

- x2+1
and v=

x2+(x2+1)2 y

- x2+1
,

and that the level curve H= 1
2 is unbounded.
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Next we consider the case n=2. In this case the relation (38) has two
sets of solutions,

{k1=2, k2=&1, b1=�?
|

, b2=2 �?
|=

and

{k1=3, k2=&2, b1=2 �3?
|

, b2=�3?
| = .

For instance we will study the first one. In this case,

G(x)=x2 \x2+�?
|+

2

\x2+2 �?
| +

2

and

C(x)=c \x2+�?
|+

4

\x2+2 �?
| + .

As before, we must find two polynomials A and B with G=4AC&B2 such
that the origin is a nondegenerate center. The couple of polynomials of
lowest degree are

A(x)=
- |3

16c - ?3
x2 \x2+2 �?

|+\x2+4�?
|+

and

B(x)=
4

- |3

2 4
- ?3

x2 \x2+�?
| +\x2+2 �?

| +\x2+3 �?
| + .

Again, one can easily verify that A, B, and C as above give a
nondegenerate center at the origin. By the same arguments as before, and
taking |=? and c= 1

4 for simplicity, we have shown:

Example 3.23. The planar Hamiltonian system given by

H(x, y)=
x2

4
(x2+2)(x2+4)

+
x2

2
(x2+1)(x2+2)(x2+3) y+

1
4

(x2+1)4 (x2+2) y2

has an isochronous nonglobal center of period ? at the origin.
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A linearization of the system given in Example 3.23 is

u=
x - 2(x2+2)

x2+1
and v=�x2+2

2
x2(x2+3)+ y(x2+1)3

x2+1
,

and on the other hand it is easy to verify that the level curve H=1 is
unbounded.

Remark 3.24. These examples are nontrivial isochronous centers. If
they were trivial ones then they would be counterexamples to the Jacobian
conjecture since in both cases the period annulus is not the whole plane.

In fact if there is a Jacobian pair (P, Q) satisfying

H(x, y)=A(x)+B(x) y+C(x) y2=
P(x, y)2+Q(x, y)2

2
(39)

then it follows that C is constant and hence the associated Hamiltonian
system has an isochronous global center at the origin by Proposition 3.19.

This can be shown with the following argument. If there exists a
Jacobian pair (P, Q) such that (39) holds then P(x, y)= p1(x) y+ p2(x)
and Q(x, y)=q1(x) y+q2(x) where p1 , p2 , q1 , and q2 are polynomials
satisfying

}p$1(x) y+ p$2(x)
q$1(x) y+q$2(x)

p1(x)
q1(x) }=k for all (x, y) # R2,

for some constant k. One can easily verify that the required condition
above is satisfied if and only if there exist some constants * and r{0 such
that

p1(x)=
*k
r

, p2(x)=*q2(x)+rx, and q1(x)=
k
r

.

Since C(x)= p1(x)2+q1(x)2 this shows that C must be constant.

We conclude this section noting that the classification of the polynomial
isochronous centers of this family is still incomplete. They are characterized
only when deg(C)�3. Another open problem is the existence of polyno-
mial Hamiltonian systems with an isochronous nonglobal center at the
origin not satisfying that (xI , xS)=R. One can verify that (xI , xS)=R in
Example 3.22 and Example 3.23. The system given in Example 3.12 has xI

finite but it is not polynomial.
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4. CUBIC HAMILTONIAN SYSTEMS

In this section we determine all the cubic Hamiltonian systems that have
an isochronus center at the origin.

We shall first give a necessary condition in order that the origin is an
isochronous center for the general Hamiltonian system given by

H(x, y)= :
n+1

i=2

Hi (x, y), (40)

where n�2 and Hi (x, y) is an homogeneous polynomial of degree i for
i=2, 3, ..., n+1. Denoting Hi (r cos %, r sin %)= gi (%) ri for i=2, 3, ..., n+1,
we prove:

Proposition 4.1. If the origin is an isochronous center for the system
given by (40) then n�3 and there exists a direction %0 # [ 0, 2?) such that
gn+1(%0)= g$n+1(%0)= gn(%0)=0.

Proof. First of all notice that the origin must be a nondegenerate center
because it is isochronous (see [3] for instance). This implies that

g2(%){0 for all % # [0, 2?). (41)

Moreover the period annulus is unbounded, otherwise there would be a
critical point in its boundary.

We consider first the case in which the period annulus is the whole plane.
In this case H(x, y){0 for all (x, y){(0, 0), otherwise it is easy to see that
there would be a critical point different from the origin. For each r # R and
% # [0, 2?) we define

F(r, %)= g2(%)+ g3(%) r+ } } } + gn+1(%) rn&1.

Then, since for all r>0 and % # [0, 2?) it holds H(r cos %, r sin %)=
r2F(r, %), we can assert that

F(r, %){0 for all r>0 and % # [0, 2?). (42)

This shows that n is odd because if not gn+1(%) gn+1(%+?)<0, and this
would imply that F(r, %) F(r, %+?)<0 for r>0 large enough.

On the other hand, in [3] it is proved that there exists %0 # [ 0, 2?) such
that gn+1(%0)= g$n+1(%0)=0. We will prove that gn(%0)=0 must be also
satisfied. If it is false then F(r, %0) is a polynomial of degree n&2 in r and,
since n is odd, this implies that there exists r0 # R such that F(r0 , %0)=0.
Notice that r0 {0 because F(0, %0)= g2(%0){0 due to (41). Then the fact
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FIG. 3. Possible location of the hyperbolic sector.

that F(r0 , %0)=F(&r0 , %0+?)=0 contradicts (42). This shows that gn(%0)
=0, and that n�3 follows from the fact that it must be odd.

Finally we consider the case in which the period annulus is not the whole
plane. Then, since it must be unbounded, there exists an infinite critical
point in the Poincare� 's compactification with a hyperbolic sector having
both sepatrices lying in the finite part (see [4]). If we say that the direction
of this infinite critical point is given by %0 # [ 0, 2?) then gn+1(%0)=0.
Moreover g$n+1(%0)=0, if not it is easy to verify that this infinite critical
point has only parabolic sectors (see [4] for instance). Let l denote the
straight line passing through the origin and having the direction given by
%0 . A result in [4] shows that for any compact set K, l & (R2"K ) is not
contained in the hyperbolic sector. Therefore the unique possible situations
are shown in Fig. 3.

Say that the boundary of the period annulus is given by the level curve
H=h0 and for each fixed % # [0, 2?) define

H% (r)=H(r cos %, r sin %)= g2(%) r2+ g3(%) r3+ } } } + gn+1(%) rn+1.

Then H% (r) is a polynomial in r of degree at most n+1 for all % # [0, 2?).
We claim that if gn(%0){0 then there exist =>0 and M>0 such that for
any % # (%0&=, %0+=) the equation H% (z)&h0=0 has at most one solution
z% # C with |z% |>M. It is clear that this will be in contradiction with
Fig. 3. So, assume that gn(%0){0 and take a Jordan curve 1 in C contain-
ing the n zeros of the polynomial H%0

(z)&h0 in its interior. We choose
=>0 such that

sup
z # 1

|H% (z)&H%0
(z)|< inf

z # 1
|H%0

(z)&h0 |
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for all % # (%0&=, %0+=). Then it is clear that for any % # (%0&=, %0+=) it
holds

|H% (z)&h0&(H%0
(z)&h0 )|<|H% (z)&h0 |+|H%0

(z)&h0 |

for all z # 1.

In this situation, applying the Rouche's Theorem, we can assert that the
number of zeros of the polynomial H%0

(z)&h0 inside Int 1 is equal to the
number of zeros of the polynomial H% (z)&h0 inside Int 1 for any fixed
% # (%0&=, %0+=). Clearly the first number is n by construction while the
second one is at most n+1 for any % # (%0&=, %0+=). If we take
M=sup[ |z| : z # 1 ] then it is clear that this shows that for any
% # (%0&=, %0+=) there exists at most one root z% of the equation
H% (z)&h0=0 with |z% |>M. This proves the claim and hence that
gn(%0){0 yields a contradiction. Therefore gn(%0)=0, and that n�3
follows from (41). K

Remark 4.2. An alternative proof for gn(%0)=0 in the nonglobal case
can be done by means of an accurated analysis of all the possible phase
portraits of an infinite critical point with a nilpotent linear part.

We note that in [9] is given a classification of the isochronous cubic
Hamiltonian systems which are Darboux linearizable. We are now in
position to complete the classification.

Theorem E. A cubic Hamiltonian system has an isochronous center at
the origin if and only if after a linear change of coordinates can be written
as

H(x, y)=(k1x)2+(k2 y+P(x))2,

where k1 and k2 are different from zero and P(x)=k3x+k4 x2.

Proof. Assume that the origin is an isochronous center. Then by mak-
ing use of Proposition 4.1 with n=3 it follows that there exists %0 # [0, 2?)
such that g3(%0)= g4(%0)= g$4(%0)=0. Without loss of generality we can
assume that %0=0 (if not we make a rotation of axis) and hence that the
Hamiltonian can be written as

H(x, y)=a1x2+a2xy+a3y2+(b1 x2+b2xy+b3 y2) x

+(c1 x2+c2xy+c3y2) x2.

Now, a reordering of the terms shows that H(x, y)=A(x)+B(x) y+
C(x) y2 with A(x)=(a1+b1x+c1 x2) x2, B(x)=(a2+b2x+c2x2) x and
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C(x)=a3+b3 x+c3x2. Since deg(C )�2 it follows from Proposition 3.19
that the origin must be a global center. In this case Theorem 3.18 asserts
that C(x)=c and 4A(x) C(x)&B(x)2= gx2 for some positive constants c
and g. Then a computation shows that

H(x, y)=\�g

c

x

2+
2

+\B(x)

2 - c
+- c y+

2

.

This proves the necessity because that H has at most degree 4 in x implies
deg(B)�2.

It has now to be shown the sufficiency. So assume that the Hamiltonian is

H(x, y)=(k1x)2+(k2 y+k3x+k4x2)2, (43)

with k1 and k2 different from zero. In this case it is readily seen that
the change of coordinates (u, v)=(k1x, k2 y+k3x+k4 x2) brings the
Hamiltonian system associated to (43) to

{u* =&2k1k2 v,
v* =2k1k2u.

Thus, the Hamiltonian system associated to (43) is linearizable. This ends
the proof of the theorem. K
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