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Chapter 1

Introduction

In the qualitative theory of real planar polynomial differential systems
two of the main problems are the determination of limit cycles and the
center-focus problem, i.e. to distinguish when a singular point is either a
focus or a center. In this work we provide normal forms for Hamiltonian
systems with cubic homogeneous nonlinearities which have a center at the
origin, and classify these systems with respect to the topological equivalence
of their global phase portraits on the Poincaré disk. This classification will
further allow to start the study of how many limit cycles can bifurcate
from the periodic orbits of the Hamiltonian centers with only linear and
cubic terms when they are perturbed inside the class of all cubic polynomial
differential systems. Before going any further we shall talk about some
preliminary concepts and definitions that we will use throughout this work.
For more details see [14].

1.1 Preliminary definitions

Let A be an open set in R2. We define a vector field of class Cr as a C2

map X : A → R2 where X(x, y) represents the tip of the vector whose tail
is at the point (x, y) ∈ A. The orbits of the vector field X are the solutions
ϕ(t) = (x(t), y(t)) of the differential equation

(ẋ, ẏ) = X(x, y), (1.1)

where the dot denotes the sderivative with respect to time t. Therefore when
we say “vector field X” and “differential system (1.1)” we mean the same
thing. Here x and y are called the dependent variables, and t is called the
independent variable. An orbit is called a periodic orbit if there exists a c > 0
such that ϕ(t) = ϕ(t+ c) for every t. A limit cycle is a periodic orbit which
has a neighborhood that does not contain any additional periodic orbit.

The flow of a vector field is defined as usual, see for instance page 3 of
[14]. The union of orbits of the vector field X constitute its phase portrait.
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A bifurcation diagram illustrates how the phase portrait of a vector field
depends on its parameters.

A point (x, y) is called a singular point (or an equilibrium point) if
X(x, y) = 0. If a singular point has a neighborhood that does not con-
tain any other singular point, then that singular point is called an isolated
singular point.

We define the linear part of X at a point as the Jacobian matrix of X
at that point. We say that a singular point is non–elementary if both of the
eigenvalues of the linear part of the vector field at that point are zero, and
elementary otherwise. If both of the eigenvalues of the linear part of the
vector field at an elementary singular point are real, then the singular point
is called hyperbolic. A non–elementary singular point is called degenerate if
the linear part is identically zero, otherwise it is called nilpotent.

The notion of center goes back to Poincaré, see [24]. He defined a center
for a vector field on the real plane as a singular point having a neighborhood
filled of periodic orbits with the exception of the singular point. If an analytic
system has a center, it is known that after an affine change of variables and
a rescaling of the time variable, it can be written in one of the following
three forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y),

called a linear type center ;

ẋ = y + P (x, y), ẏ = Q(x, y), (1.2)

called a nilpotent center ;

ẋ = P (x, y), ẏ = Q(x, y),

called a degenerate center, where P (x, y) and Q(x, y) are real analytic func-
tions without constant and linear terms, defined in a neighborhood of the
origin.

A saddle ,a node, a focus and a cusp are defined in the usual way, for
more details see for instance [14] pages 7 and 110. A separatrix of a saddle
is an orbit that tends to that saddle either as t → ∞, or t → −∞. Clearly
a saddle has four separatrices.

We now talk a little about the Poincaré compactification. Let S2 be the
set of points (s1, s2, s3) ∈ R3 such that s21 + s22 + s23 = 1. We will call this
set the Poincaré sphere. Given a polynomial vector field

X(x, y) = (ẋ, ẏ) = (P (x, y), Q(x, y)) (1.3)

in R2 of degree d (where d is the maximum of the degrees of the polynomials
P and Q) it can be extended analytically to the Poincaré sphere by project-
ing each point x ∈ R2 identified by (x1, x2, 1) ∈ R3 onto the Poincaré sphere
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using the straight line through x and the origin of R3. In this way we obtain
two copies of X: one on the northern hemisphere {(s1, s2, s3) ∈ S

2 : s3 > 0}
and another on the southern hemisphere {(s1, s2, s3) ∈ S

2 : s3 < 0}. The
equator S

1 = {(s1, s2, s3) ∈ S
2 : s3 = 0} corresponds to the infinity of R2.

The local charts needed for doing the calculations on the Poincaré sphere
are

Ui = {s ∈ S
2 : si > 0}, Vi = {s ∈ S

2 : si < 0},
where s = (s1, s2, s3), with the corresponding local maps

ϕi(s) : Ui → R
2, ψi(s) : Vi → R

2,

such that ϕi(s) = −ψi(s) = (sm/si, sn/si) for m < n and m,n 6= i, for
i = 1, 2, 3. The expression for the corresponding vector field on S

2 in the
local chart U1 is given by

u̇ = vd
[

−uP
(

1

v
,
u

v

)

+Q

(

1

v
,
u

v

)]

, v̇ = −vd+1P

(

1

v
,
u

v

)

; (1.4)

the expression for U2 is

u̇ = vd
[

P

(

u

v
,

1

v

)

− uQ

(

u

v
,

1

v

)]

, v̇ = −vd+1Q

(

u

v
,

1

v

)

; (1.5)

and the expression for U3 is just

u̇ = P (u, v), v̇ = Q(u, v), (1.6)

where d is the degree of the vector field X. The expressions for the charts Vi
are those for the charts Ui multiplied by (−1)d−1, for i = 1, 2, 3. Hence, to
study the vector field X, it is enough to study its Poincaré compactification
restricted to the northern hemisphere plus S1, which we denote by D call the
Poincaré disk. To draw the phase portraits we will consider the projection
π(s1, s2, s3) = (s1, s2) of the Poincaré disk onto the unit disk centered at the
origin.

Finite singular points of X are the singular points of its compactification
which are in D2 \ S1, and they can be studied using U3. Infinite singular
points of X are the singular points of the corresponding vector field on the
Poincaré disk D lying on S1. Clearly a point s ∈ S1 is an infinite singular
point if and only if so is −s ∈ S1, and the local behavior of one is the same as
the other multiplied by (−1)d−1. Hence to study the infinite singular points
it suffices to look only at U1|v=0 and at the origin of U2.

We say that two vector fields on the Poincaré disk D are topologically
equivalent if there exists a homeomorphism h : D → D which sends orbits
to orbits preserving or reversing the direction of the flow.
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A polynomial differential system (1.3) is called Hamiltonian if there ex-
ists a nonconstant polynomial H : R2 → R such that

ẋ = Hy, ẏ = −Hx,

where Hx denotes the partial derivative of H with respect to x. H is called
the Hamiltonian polynomial. For a Hamiltonian vector field on the Poincaré
disk the separatrices are (i) the separatrices of finite and infinite saddles, (ii)
the finite and infinite singular points, and (iii) all the orbits at infinity. Let
Σ be the set of all separatrices, Σ is a closed set in D. The open components
of DrΣ are called canonical regions. The union of Σ with an orbit from each
canonical region is called a separatrix configuration. . The next theorem of
Neumann [23] gives a characterization of two topologically equivalent vector
fields in the Poincaré disk.

Theorem 1 (Neumann’s Theorem). Two continuous flows in D with iso-
lated singular points are topologically equivalent if and only if their separatrix
configurations are equivalent.

This theorem implies that once a separatrix configuration of a vector
field in the Poincaré disk is determined, the global phase portrait of that
vector field is obtained up to topological equivalence.

Finally we mention without getting into too much detail an important
result that classifies the finite singular points of Hamiltonian planar poly-
nomial differential systems. For a detailed definition of the (topological)
index of a singular point see for instance Chapter 6 of [14], but for our in-
tents and purposes the following theorem known as the Poincaré Formula
provides enough information for the subject. Similarly a parabolic sector, a
hyperbolic sector and an elliptic sector are defined in the standard way, for
details see page 18 of [14]. A vector field is said to have the finite sectorial
decomposition property at a singular point p if either p is a center, a focus
or a node, or it has a neighborhood consisting of a finite union of parabolic,
hyperbolic or elliptic sectors.

Theorem 2 (Poincaré Formula). Let q be an isolated singular point having
the finite sectorial decomposition property. Let e, h, and p denote the number
of elliptic, hyperbolic, and parabolic sectors of q, respectively. Then the index
of q is (e− h)/2 + 1.

For details on Theorem 2 see page 179 of [14].

Proposition 3. Finite singular points of Hamiltonian planar polynomial
vector fields are either centers, or have a finite union of an even number of
hyperbolic sectors.

Proof. It is known that an analytic planar differential system has the finite
sectorial decomposition property, for details see [14]. Moreover, if the system
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is Hamiltonian, its flow preserves area, see [1]. So a singular point of a
Hamiltonian system cannot be a focus, or have elliptic or parabolic sectors.
Finally, since the index of a singular point formed by hyperbolic sectors is
1− h/2, with h being the number of its hyperbolic sectors, it follows that h
is even. For more details about the index, see [14].

1.2 Background and our main results

An algorithm for the characterization of linear type centers was provided
by Poincaré [25] and Lyapunov [20], see also Chazy [6] and Moussu [22]. For
an algorithm for the characterization of the nilpotent centers and some class
of degenerate centers see the works of Chavarriga et al. [5], Giacomini et al.
[16], Cima and Llibre [8], and Giné and Llibre [17].

The classification of centers for real planar polynomial differential sys-
tems started with the classification of centers for quadratic systems, and
these results go back mainly to Dulac [13], Kapteyn [18, 19] and Bautin [2].
In [28] Vulpe provides all the global phase portraits of quadratic polyno-
mial differential systems having a center. The bifurcation diagrams of these
systems were done by Schlomiuk [26] and Żo la̧dek [31]. There are many
partial results for the centers of planar polynomial differential systems of
degree larger than two. For instance the linear type centers for cubic sys-
tems of the form linear plus homogeneous nonlinearities were characterized
by Malkin [21], and Vulpe and Sibirski [29]. We must mention that in this
work we do not use their characterization, instead we introduce a different
set of normal forms. Some interesting results on some subclasses of cubic
systems are those of Rousseau and Schlomiuk [27], and the ones of Żo la̧dek
[32, 33]. For polynomial differential systems of the form linear plus homo-
geneous nonlinearities of degree greater than three the centers at the origin
are not characterized, but there are partial results for degrees four and five
for the linear type centers, see for instance Chavarriga and Giné [3, 4].

In this work we provide the global phase portraits on the Poincaré disk of
all Hamiltonian planar polynomial vector fields having only linear and cubic
homogeneous terms which have a linear type center or a nilpotent center at
the origin, together with their bifurcation diagrams. It is shown in [8] that
the degenerate centers of such vector fields are topologically equivalent to
1.18 of Figure 1.1. Hence this work completes the classification of the global
phase portraits on the Poincaré disk of all Hamiltonian planar polynomial
vector fields having only linear and cubic homogeneous terms which have a
center at the origin.

We note that the problem of finding the global phase portraits of all
Hamiltonian planar polynomial vector fields having only linear and cubic
homogeneous terms which have a linear type center at the origin has been
considered also in [15]. There the authors provide a general algorithm using
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polar coordinates for finding the phase portraits of Hamiltonian linear type
centers with arbitrary n–th order homogeneous nonlinearities. In addition,
as an application of this algorithm they provide the global phase portraits
of the Hamiltonian linear type centers having cubic nonlinearities. However,
while it differs from our work in terms of the tools used, there are also some
differences in the results obtained. They find the same global phase portraits
as us, except for the locations of the cusp points in their phase portraits 21
and 22 (which, in our case, correspond to the phase portraits 1.12 and 1.9
of Figure 1.1, respectively). According to our results, if we perturb linearly
the phase portraits 21 and 22 in the same class we should obtain the phase
portraits 17 and 20, respectively (which, in our case, correspond to the phase
portraits 1.11 and 1.8 of Figure 1.1, respectively). However this clearly is
not possible. We remark that for the Hamiltonian nilpotent centers of the
form linear plus cubic homogeneous terms there are no previous results.

We now state our main results. We first provide normal forms and the
global phase portraits in the Poincaré disk for all the Hamiltonian linear
type center or nilpotent centers of linear plus cubic homogeneous planar
polynomial vector fields. These results are summarized in Theorems 4 and
5, respectively.

Theorem 4. Any Hamiltonian linear type planar polynomial vector field
with linear plus cubic homogeneous terms has a linear type center at the
origin if and only if, after a linear change of variables and a rescaling of its
independent variable, it can be written as one of the following six classes:

(I) ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3

(II) ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

(III) ẋ = ax+ by − 3x2y + y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(IV) ẋ = ax+ by − 3x2y − y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(V) ẋ = ax+ by − 3µx2y + y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(VI) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

where a, b, β, µ ∈ R with b 6= 0 and β > 0. Moreover, the global phase
portraits of these six families of systems are topologically equivalent to the
following of Figure 1.1:

(a) 1.1 or 1.2 for systems (I);
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(b) 1.3 for systems (II);

(c) 1.4, 1.5 or 1.6 for systems (III);

(d) 1.1, 1.2, 1.7, 1.8 or 1.9 for systems (IV );

(e) 1.3, 1.10, 1.11 or 1.12 for systems (V );

(f) 1.13–1.23 for systems (V I).

We will prove Theorem 4 in Chapter 2.

Theorem 5. A Hamiltonian planar polynomial vector field with linear plus
cubic homogeneous terms has a nilpotent center at the origin if and only if,
after a linear change of variables and a rescaling of its independent variable,
it can be written as one of the following six classes:

(VII) ẋ = ax+ by, ẏ = −a
2

b
x− ay + x3, with b < 0,

(VIII) ẋ = ax+ by − x3, ẏ = −a
2

b
x− ay + 3x2y, with a > 0.

(IX) ẋ = ax + by − 3x2y + y3, ẏ =
(

c − a2

b+ c

)

x − ay + 3xy2, with either

a = b = 0 and c < 0, or c = 0, ab 6= 0, and a2/b− 6b > 0,

(X) ẋ = ax + by − 3x2y − y3, ẏ =
(

c − a2

b+ c

)

x − ay + 3xy2, with either

a = b = 0 and c > 0, or c = 0, a 6= 0, and b < 0,

(XI) ẋ = ax+by−3µx2y+y3, ẏ =
(

c− a2

b+ c

)

x−ay+x3+3µxy2, with either

a = b = 0 and c < 0, or c = 0, b 6= 0, and (a4 − b4 − 6a2b2µ)/b > 0,

(XII) ẋ = ax+by−3µx2y−y3, ẏ =
(

c− a2

b+ c

)

x−ay+x3+3µxy2, with either

a = b = 0 and c > 0, or c = 0, b 6= 0, and (a4 + b4 + 6a2b2µ)/b < 0,

where a, b, c, µ ∈ R. Moreover the global phase portraits of these six families
of systems are topologically equivalent to the following of Figure 1.1:

(a) 1.1 for systems (V II) and (X);

(b) 1.3 for systems (V III);

(c) 1.4, 1.5 or 1.6 for systems (IX);

(d) 1.3, 1.10, 1.11 or 1.12 for systems (XI);

(e) 1.13, 1.14, 1.15 or 1.18 for systems (XII).
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1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

1.13 1.14 1.15 1.16

1.17 1.18 1.19 1.20

1.21 1.22 1.23

Figure 1.1: Global phase portraits of all Hamiltonian planar polynomial vector
fields having only linear and cubic homogeneous terms which have a linear type or
nilpotent center at the origin. The separatrices are in bold.
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We will prove Theorem 5 in Chapter 3.

Second we provide the bifurcation diagrams of the families of vector fields
(I)–(XII) of Theorems 4 and 5. The bifurcation diagrams for the centers
of Theorems 7 and 8 in the particular case when they are reversible were
also given in [15].

We note that the parameters of these families can be further simplified,
however, at this point such simplifications do not contribute to the proofs.
On the other hand, to obtain better and simpler bifurcation diagrams we
shall make use of those simplifications. Hence we make the following remark
before stating our next results.

Remark 6. Using the change of variables (u, v) = (x/
√
β, y/

√
β), the time

rescale dτ = βdt, and redefining parameters ā = a/β and b̄ = b/β, we can
assume β = 1 in the families of systems (I)–(V I). We also note that in the
families (III)–(V I) the cases with a < 0 are obtained from those with a > 0
simply by making the change (t, x) 7→ (−t,−x). Therefore we will assume
a ≥ 0 for these systems.

A system in class (XI) with a = c = 0 can be transformed to a system
inside the same class with a = b = 0 and c 6= 0 doing the change (x, y) 7→
(y, x), c 7→ b and µ 7→ −µ. Hence when c = 0 we can assume a 6= 0.
Similarly we can assume a 6= 0 in systems (XII) whenever c = 0 (in this
case the change of variables is (x, y) 7→ (−y, x)).

When a 6= 0, via the rescaling of the variables (x, y, t) 7→ (x/
√

|a|,
y/
√

|a|, |a|t) and the parameter b 7→ b/|a| we can assume a = 1 in the
families of systems (IX) − (XII).

Using Remark 6 we present our results on the bifurcation diagrams in
the following two theorems.

Theorem 7. The global phase portraits of Hamiltonian planar polynomial
vector fields with linear plus cubic homogeneous terms having a linear type
center at the origin are topologically equivalent to the following ones of Fig-
ure 1.1 using the notation of Theorem 4.

(a) For systems (I) the phase portrait is

1.1 when b < 0;

1.2 when b > 0.

(b) For systems (II) the unique phase portrait is 1.3.

(c) For systems (III) the phase portrait is

1.4 when b < 0;

1.5 when b > 0 and a = 0;
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1.6 when b > 0 and a > 0.

The corresponding bifurcation diagram is shown in Figure 1.2.

(d) For systems (IV ) the phase portrait is

1.1 when b < 0;

1.2 when b > 0, D = 0 and a = 0, or when b > 0 and D > 0;

1.7 when b > 0, D < 0 and a = 0;

1.8 when b > 0, D < 0 and a > 0;

1.9 when b > 0, D = 0 and a > 0.

See (4.4) for the definition of D. The corresponding bifurcation dia-
gram is shown in Figure 1.3.

(e) For systems (V ) we can assume b > 0, and the phase portrait is

1.3 when µ ≤ 0, or when µ > 0 and D4 < 0, or when µ > 0, D4 = 0
and a = 0;

1.10 when µ > 0, D4 > 0 and a = 0;

1.11 when µ > 0, D4 > 0 and a > 0;

1.12 when µ > 0, D4 = 0 and a > 0.

See (4.12) for the definition of D4. The corresponding bifurcation di-
agram for the case µ > 0 is shown in Figure 1.4.

(f) For systems (V I) we can assume b > 0 whenever µ < −1/3, and the
phase portrait is

1.13 when µ < −1/3 and b 6=
√

1 + a2;

1.14 when µ < −1/3 and b =
√

1 + a2;

1.15 when µ = −1/3 and b < 0;

1.16 when µ = −1/3, b > 0 and b 6=
√

1 + a2;

1.17 when µ = −1/3 and b =
√

1 + a2;

1.18 when µ > −1/3 and b < 0;

1.19 when µ > −1/3, b > 0, D4 < 0, or when µ > −1/3, b > 0,
D4 = D3 = 0 and either a 6= 0 or µ 6= 1/3 or b 6= 1;

1.20 when 1/3−2a/(3
√

1 + a2) > µ > −1/3, D4 > 0 and b =
√

1 + a2,
or when µ > 1/3, b > 0, D4 > 0 and a = 0;

1.21 when µ > −1/3, b > 0, D4 > 0 and b 6=
√

1 + a2, or when
µ > 1/3 + 2a/(3

√
1 + a2), b =

√
1 + a2, D4 > 0 and a 6= 0;

1.22 when µ > −1/3, b > 0, D4 = 0 and D3 6= 0;
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1.23 when a = 0, µ = 1/3 and b = 1.

See (4.26) and (4.39) for the definitions of D4 and D3, respectively.
The corresponding bifurcation diagrams are shown in Figures 5–9.

We will prove Theorem 7 in Chapter 4.

Theorem 8. The global phase portraits of Hamiltonian planar polynomial
vector fields with linear plus cubic homogeneous terms having a nilpotent
center at the origin are topologically equivalent to the following ones of Fig-
ure 1.1 using the notation of Theorem 5.

(a) For systems (V II) and (X) the unique phase portrait is 1.1.

(b) For systems (V III) the unique phase portrait is 1.3.

(c) For systems (IX) the phase portrait is

1.4 when b < 0;

1.5 when b = 0;

1.6 when b > 0.

(d) For systems (XI) we can assume b ≥ 0, and the phase portrait is

1.3 when b = 0 and µ ≤ 0, or when b > 0 and D < 0;

1.10 when b = 0 and µ > 0;

1.11 when b > 0 and D > 0;

1.12 when b > 0 and D = 0.

Here D = −b2 − 6b2µ + 4(1 − b4)µ3 + 3b2µ4, and the corresponding
bifurcation diagrams are shown in Figure 1.10.

(e) For systems (XII) the phase portrait is

1.13 when µ > −1/3 and b 6= 0, 1;

1.14 when µ < −1/3 and b = 0, 1;

1.15 when µ = −1/3;

1.18 when µ > −1/3.

The corresponding bifurcation diagrams are shown in Figure 1.11.

We will prove Theorem 8 in Chapter 5.

We remark that all the equations controlling the bifurcations of the
global phase portraits described in Theorems 7 and 8 are algebraic curves.
We must mention that essentially Chapters 2 and 3 are published in the jour-
nals J. Differential Equations and Advances in Mathematics, repectively (see
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[9] and [10]). The Chapters 4 and 5 are submitted to publication, see [11]
and [12].

As we mentioned at the beginning of this chapter, the normal forms, the
phase portraits and the bifurcation diagrams provided in Theorems 4, 5, 7
and 8 will lead to new studies in the number of limit cycles that bifurcate
from the periodic orbits of the families of differential systems (I)–(XII)
when they are perturbed inside the class of all cubic polynomial differential
systems. This last study was made for the quadratic polynomial differential
systems, see the paper [7] and the references quoted therein.

b

a

1.4

1.4

1.6

1.5
(0, 0)

Figure 1.2: Bifurcation diagram for systems (III).

b

a

1.1

1.1 1.2

1.2

1.7

D = 0

1/
√

3

1.9

1.8

(0, 0)

Figure 1.3: Bifurcation diagram for systems (IV ).
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D4

a

1.3

1.3

1.11

1.10

1.12

(0, 0)

Figure 1.4: Bifurcation diagram for systems (V ) with µ > 0.

b

a

1.41.3

1.3

1.3

1.3

b =
√

1 + a2

(0, 0)

Figure 1.5: Bifurcation diagram for systems (V I) with µ < −1/3 and b > 0.

b

a

1.15

1.15
1.171.16

1.16

1.16

1.16

b =
√

1 + a2

(0, 0)

Figure 1.6: Bifurcation diagram for systems (V I) with µ = −1/3.
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µ = 1/(3b2) µ = b2/3

1.23

−1/3

1/3

(0, 0)

1.20

1.20

1.211.21

1.19 1.19

1.19

1.191.19
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Figure 1.7: Bifurcation diagram for systems (V I) with µ > −1/3 and a = 0.
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Figure 1.8: Bifurcation diagram for systems (V I) with µ > −1/3, a > 0 and
b 6=

√
1 + a2.

a

µ

1.21

1.20

1.19 1.19

−1/3

1/3

1 µ = 1/3 + 2a/(3
√

1 + a2)

µ = 1/3 − 2a/(3
√

1 + a2)

(0, 0)

Figure 1.9: Bifurcation diagram for systems (V I) with µ > −1/3, a > 0, b =√
1 + a2 and D4 > 0.
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Figure 1.10: The bifurcation diagrams for systems (XI) when b = 0 and when
b > 0. Note that when b > 0 we have c = 0. In the figure F = 1 − b4 − 6b2µ.
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Figure 1.11: The bifurcation diagram for systems (XII) when b = 0 and when
b 6= 0. Note that when b 6= 0 we have c = 0. In the figure G = 1 + b4 + 6b2µ.
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