Contents lists available at ScienceDirect

Nonlinear Analysis

© 2010 Elsevier Ltd. All rights reserved.

journal homepage: www.elsevier.com/locate/na

Polynomial inverse integrating factors for quadratic differential systems

We characterize all the guadratic polynomial differential systems having a polynomial

inverse integrating factor and provide explicit normal forms for such systems and for their

associated first integrals. We also prove that these families of quadratic systems have no

Bartomeu Coll^a, Antoni Ferragut^{b,*}, Jaume Llibre^c

^a Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122, Palma, Mallorca, Spain
^b Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028, Barcelona, Catalonia, Spain
^c Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ABSTRACT

limit cycles.

ARTICLE INFO

Article history: Received 30 September 2008 Accepted 14 April 2010

MSC: 34C29 34C25 47H11

Keywords: Polynomial inverse integrating factor Quadratic differential systems Darboux theory of integrability

1. Introduction and statement of the main results

Nonlinear ordinary differential equations appear in many branches of applied mathematics, physics and, in general, applied sciences. For a differential system or a vector field defined on the plane \mathbb{R}^2 the existence of a first integral determines completely its phase portrait. Since for such vector fields the notion of integrability is based on the existence of a first integral the following natural question arises: *Given a vector field on* \mathbb{R}^2 , *how does one recognize whether it has a first integral*?

Let *P* and *Q* be two real polynomials in the variables *x* and *y*. We say that $X = (P, Q) : \mathbb{R}^2 \to \mathbb{R}^2$ is a polynomial vector field of degree *m* if the maximum of the degrees of the polynomials *P* and *Q* is *m*. The system

$$\dot{x} = P(x, y), \qquad \dot{y} = Q(x, y),$$

(1)

where the dot denotes the derivative with respect to the time variable *t*, is the *real planar polynomial differential system* of degree *m* associated with *X*. The polynomial vector field X = (P, Q) associated with system (1) will also be denoted by $\mathbf{X} = P\partial_x + Q\partial_y$.

A C^k function $H : U \to \mathbb{R}$, with $k \ge 1$, is a *first integral* of system (1) if $\mathbf{X}H = 0$ on the domain of definition of H. An *inverse integrating factor* of (1) is a solution V of the equation $\mathbf{X}V = V \operatorname{div}(X)$. The inverse integrating factor V associated with a first integral H of the differential system $\dot{\mathbf{x}} = P(\mathbf{x}, \mathbf{y}), \dot{\mathbf{y}} = O(\mathbf{x}, \mathbf{y})$ satisfies

$$\frac{P}{V} = -\frac{\partial H}{\partial y}, \qquad \frac{Q}{V} = \frac{\partial H}{\partial x}.$$

If for a given differential system we know *H* then we know *V*, and vice versa.

^{*} Corresponding author. E-mail addresses: tomeu.coll@uib.es (B. Coll), antoni.ferragut@upc.edu (A. Ferragut), jllibre@mat.uab.cat (J. Llibre).

 $^{0362\}text{-}546X/\$$ – see front matter C 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.04.004