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Abstract. The objective of this work is the study of the proba-
bility of occurrence of phase portraits in a family of planar quasi-
homogeneous vector fields of quasi degree q, that is a natural exten-
sion of planar linear vector fields, which correspond to q = 1. We
obtain the exact values of the corresponding probabilities in terms
of a simple one-variable definite integral that only depends on q.
This integral is explicitly computable in the linear case, recovering
known results, and it can be expressed in terms of either complete
elliptic integrals or of generalized hypergeometric functions in the
non-linear one. Moreover, it appears a remarkable phenomenon
when q is even: the probability to have a center is positive, in con-
trast with what happens in the linear case, or also when q is odd,
where this probability is zero.

1. Introduction and main results

In this work, a random planar vector field will be a polynomial vector
field whose coefficients are normally distributed independent random
variables with zero mean and standard deviation one. This is the natu-
ral distribution when one is worried about the probability of appearance
of some phase portrait for given family of planar vector fields, see for
instance [15, 17] or [4, Thm 2.1] to have more details. Some related
papers that use a similar approach and also study planar random sys-
tems are [2, 3, 18]. In [2] the quadratic systems are considered, in [3]
the authors study the homogeneous systems of degree 1,2 and 3 and in
[18] the linear systems.

Since we will deal with a class of quasi-homogeneous planar polyno-
mial vector fields, in next section we will recall some usual notations
and definitions and some of their properties. One of the most impor-
tant to our interests is that their local phase portraits at the origin
determine their global phase portraits.

It is also worth to comment that here are many mathematical mod-
els involving differential equations where coefficients and parameters
come from sources with uncertainty. For instance, this is the case of
some epidemiological or viral expansion models. This variability may
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be due to errors in measurements, virus replication and mutation, and
many others. A way to tackle this uncertainty, i.e. a way to establish
with accuracy the parameters, is by assuming them to be random vari-
ables. As we have already said, under this assumption, it is commonly
supposed that parameters follow a Gaussian distribution. In this way,
diverse phenomena can be approached by using different mathematical
approaches. See [5, 6, 7], for instance.

A similar analysis can be performed in the case of linear systems
of differential and difference equations of arbitrary dimension and not
necessary Gaussian random variables. See [4, 8, 9], for instance.

In this paper we consider the family of random quasi-homogeneous
vector fields

ẋ = Axq +By, ẏ = Cx2q−1 +Dxq−1y, (1)

where q is an integer positive number, and A,B,C and D independent
and identically distributed (iid) random variables with normal distri-
bution N(0, 1), and we study the probability of appearance of each of
its phase portraits. When we consider a realization of system (1), we
obtain a deterministic equation given by

ẋ = axq + by, ẏ = cx2q−1 + dxq−1y, (2)

where a, b, c, d ∈ R. Notice that phase portraits of deterministic sys-
tems, characterized by equalities among the parameters a, b, c and d,
will have probability zero when they are regarded in the probabilistic
setting due to the fact that A,B,C,D are iid random variables with a
continuous distribution. For this reason these situations will be disre-
garded in our study.

As we will prove, the only phase portraits of system (1) with positive
probability, depend on the parity of q and correspond to the following
cases: saddle, elliptic+hyperbolic, node, center and focus. Moreover,
all these phase portraits will be not only local, but global, due the the
quasi homogeneity property.

Observe that the saddle has index −1 while all the above other type
of critical points have index +1. Recall that a critical point is said to be
monodromic if given a transversal section through it, the flow defines a
return map on this section. In particular, the only monodromic points
in the above list are the center and the focus. By way of notation, the
subscripts m and nm in our main result stand for “monodromic” and
“non-monodromic” critical points of index +1.

Theorem 1.1. Consider the quasi-homogeneous random vector field (1),
which has weight exponents s1 = 1 and s2 = q and weight degree q.
Their global phase portraits with positive probability are:

• Saddle, node or focus, when q is odd.
• Saddle, elliptic+hyperbolic or center, when q is even.
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Moreover, if Ps = P (saddle),

Pnm = Pnm(q) =

{
P (node) when q is odd,

P (elliptic+hyperbolic) when q is even,

Pm = Pm(q) =

{
P (focus) when q is odd,

P (center) when q is even,

it holds that Ps = 1/2, Pnm(q) = 1/2− Pm(q), and

Pm(q) =
1

π

∫ π/2

0

√
sin(x)

sin(x) +Q
dx, where Q =

1 + q2

2q
. (3)

It is a remarkable and somehow surprising fact that when q is even
the probability to have a center is positive, in contrast with what hap-
pens in the linear case, or also when q is odd, where this probability is
zero.

As a corollary of our result we recover a well-known result for the
linear case q = 1 :

P (saddle) =
1

2
, P (node) =

√
2− 1

2
, P (focus) = 1−

√
2

2
.

See [3, Thm. 1], for instance. We remark that only for q = 1 the value
Pm(q) can be obtained explicitly, giving that Pm(1) = P (focus) =
1−
√

2/2, see the beginning of Section 4 for a proof. For q > 1, in that
section we express Pm(q) in terms of complete elliptic integrals or of
generalized hypergeometric functions. We also develop some tools to
approach this value. With this objective in mind we study properties
of the function q → Pm(q). For instance we prove that it is a decreasing
convex function or that Pm(q) ∼M/

√
q, at q =∞, for a given explicit

M. For completeness we also approximate Pm(q), for some values of q,
by using Monte Carlo method.

The study of the deterministic system (2) is done in Section 2. Sec-
tion 3 is devoted to study the random system (1) and to prove Theo-
rem 1.1. In this Theorem one of the relevant results is the computation
of the probability Pm(q). This value is obtained in two different ways,
firstly simply by reducing a 3-dimensional integral to a 1-variable def-
inite integral, and secondly by relating it with the number of expected
real roots of a random polynomial that controls the number of quasi-
homogenenous invariant curves of (1). This expected value is then
computed by using the nice Edelman-Kostlan formula ([12, 13]).

2. Results for the deterministic case

In this section we recall some general properties of planar quasi-
homogeneous vector fields and we study the global phase portraits of
the deterministic differential system (2).
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A polynomial vector field X = (P,Q) is (s1, s2) quasi-homogeneous,
where (s1, s2) ∈ N2, if

P (λs1x, λs2y) = λs1+r−1P (x, y), Q(λs1x, λs2y) = λs2+r−1Q(x, y), (4)

for all λ ∈ R+ = {a ∈ R : a > 0} and some non negative integer r.
We call s1 and s2 the weight exponents of the vector field X and r the
weight degree (or quasi-degree) with respect to the weight exponents
s1 and s2. A well-known nice dynamical feature of such systems is that
the local behaviour near the origin gives also its global behaviour. For
completeness we state and this fact in next proposition.

Proposition 2.1. Consider the differential system

ẋ = P (x, y), ẏ = Q(x, y),

with (P,Q) is a quasi-homogeneous polynomial vector field satisfying (4).
If (x(t), y(t)) is one of its solutions, then for all λ ∈ R+,

(x̄(t), ȳ(t)) =
(
λs1x(λr−1t), λs2y(λr−1t)

)
is another solution. As a consequence, the behaviour of all its solutions
is controlled by the behaviour of its solutions in any neighbourhood of
the origin. Moreover it has no limit cycles.

Proof. The proof of the stated property can be done by simple compu-
tations. For instance,

˙̄x(t) = λs1+r−1ẋ(λr−1t) = λs1+r−1P
(
x(λr−1t), y(λr−1t)

)
= λs1+r−1P

(
x̄(t)

λs1
,
ȳ(t)

λs2

)
= P (x̄(t), ȳ(t)).

Then the first result follows because, for a suitable λ, the weighted
homothety (x, y) → (λs1x, λs2y) transforms any small neighbourhood
of the origin to any arbitrarily large neighbourhood of the origin.

The non existence of limit cycles is also a consequence of the same
property because if the system has a periodic solution then all solutions
must be periodic as well and it has a global center. �

Next result gives, in the generic cases, the global phase portrait of
a realization of system (1). Its proof is based on the classical work of
A.F. Andreev about the study of nilpotent critical points, see [1], and
on Proposition 2.1, that allows to transform local results into global
ones.

Proposition 2.2. Consider the quasi-homogeneous vector field

ẋ = axq + by, ẏ = cx2q−1 + dxq−1y,

where a, b, c, d ∈ R and define

φ = ad− bc and δ = (qa− d)2 + 4qbc = (qa+ d)2 − 4qφ. (5)



PLANAR RANDOM QUASI-HOMOGENEOUS VECTOR FIELDS 5

Assume that bφ 6= 0. Then the origin is its unique singularity and it is
a global saddle when φ < 0 (index -1) and a point of index +1 when
φ > 0. Moreover, in this latter case,

(i) If δ ≥ 0, the the origin is a global non-monodromic point and:
(i.1) if q is even then the phase portrait is globally formed by the

union of a hyperbolic and an elliptic sector,
(i.2) if q is odd then the origin is a global node, stable if qa+d <

0 and unstable if qa+ d > 0.
(ii) If δ < 0 then the origin is a global monodromic point and:

(ii.1) if q is odd then it is a global focus, stable if qa+ d < 0 and
unstable if qa+ d > 0; and a global center if qa+ d = 0,

(ii.2) if q is even then it is a global center.

Proof. The case q = 1 corresponds to the linear case and the stated
results are well-known. From now one, we will concentrate on the case
q > 1.

Recall that (2) is a quasi-homogeneous vector field with weight ex-
ponents s1 = 1 and s2 = q and weight degree q. By Proposition 2.1 to
get its global phase portrait it suffices to study its local behaviour at
the origin.

In [1] there is an explicit result that allows to know the local be-
haviour of any planar isolated nilpotent singularity for any analytic
vector field, modulus the so called center-focus problem (that is the
distinction in the monodromic case between center and focus). An-
dreev’s result is usually stated for systems in the normal form

ẋ = y +X(x, y), ẏ = Y (x, y),

where X and Y have expansions at the origin that begin at least with
second order terms in x and y. Then the type of critical points (mod-
ulus the center-focus problem) depends on some properties of the two
functions

Y (x, h(x)) = uxα(1 +O(x)),

Ψ(x) =

(
∂X

∂x
+
∂Y

∂y

)
(x, h(x)) = vxβ(1 +O(x)),

where y = h(x) is the analytic function satisfying h(0) = 0 and such
that h(x) + X(x, h(x)) = 0 and u 6= 0, 2 ≤ α ∈ N and 1 ≤ β ∈ N
and v 6= 0 are well defined, unless Ψ = 0. In fact, this behaviour only
depends on α, β, u, v when Ψ 6= 0 and on α and u when Ψ = 0. See
[1, 10] for more details.

For simplicity, before applying the above result, we start writing (2)
in a more suitable form. Straightforward computations give that it
is equivalent to the Liénard equation ẍ + f(x)ẋ + g(x) = 0, where
f(x) = −(qa + d)xq−1 and g(x) = φx2q−1. When b 6= 0, this equation
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leads us to the generalized Liénard system

ẋ = z, ż = −g(x)− f(x)z = −φx2q−1 + (qa+ d)xq−1z, (6)

that is already in Andreev’s form. Then, under condition bδ 6= 0, the
origin is an isolated singularity for (6). Moreover h = 0 and

Y (x, h(x)) = Y (x, 0) = −g(x) = −φx2q−1,
Ψ(x) = −f(x) = (qa+ d)xq−1.

Hence u = −φ, α = 2q − 1 and either Ψ = 0, or v = qa + d and
β = q − 1. In short, either Ψ = 0 or α = 2β + 1, and we can apply
Andreev’s approach (we skip the details). We obtain the list of cases
given in the statement, where in item (iii) his result only ensures that
the origin is a monodromic critical point and we yet have the center-
focus disjunctive. To resolve it we study separately the cases q odd and
q even.

In the first case, q odd, the divergence of the vector field X associated
to (6) is div(X) = −f(x) = (qa + d)xq−1. Hence, when qa + d 6= 0 it
does not change sign (only vanishes on the straight line x = 0). Hence,
by the divergence theorem, the system has not periodic orbits and as
a consequence the origin is a global focus. Clearly, its stability is given
the the sign of qa + d. When qa + d = 0, then f = 0 and system (6)
is easily integrable and its solutions are contained in the closed curves
qz2 + δx2q = k, for 0 < k ∈ R. Hence a global center arises.

When q is even, system (6) is invariant by the change of variables
and time (x, z, t) −→ (−x, z,−t). Moreover, by Andreev’s approach
we know that it is monodromic. Therefore, the Poincaré reversibility
criterion implies that the origin is a global center. �

Remark 2.3. (i) In the case q = 1, we get back to the linear case and
this classification coincides with the non-degenerate linear one, where
φ is the determinant of the matrix and δ is the discriminant of the
characteristic polynomial.

(ii) When for system (2), bφ = 0, the origin is no more an isolated
critical point. The phase portraits for these cases are much easier to
be obtained. We will not describe them because in the probabilistic case
they will have probability zero.

(iii) In this work we are not interested on the behaviour of the or-
bits of system (2) on the Poincaré disk. In any case, it is worth to
know that near infinity on the Poincaré-Lyapunov disk, the behaviour
of the equivalent Liénard system (6) can be easily obtained by using the
classification given in the work of F. Dumortier and C. Herssens [11].

Trying to understand why in the non-linear case the determinant
φ = ad − bc plays a role similar to its role in the linear situation we
have obtained an alternative way for proving Proposition 2.1. The
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point is that system (2) in the new variables

X = xq, Y = y and
ds

dt
= xq−1 (7)

writes as

X ′ = qaX + qbY, Y ′ = cX + dY. (8)

Therefore, when q is odd, (7) is an actual change of variables, the new
jacobian is simply q(ad− bc), with the same sign that ad− bc, and the
new trace is qa + d. Hence the same type of critical points that when
q = 1 appear.

On the other hand, when q is even, (7) is no more a change of
variables, but a folding. Then the phase portrait of (8) on the plane
X > 0 appears diffeomorphically in the phase portrait of (2) on x > 0
and as its specular image through a mirror located in x = 0 when
x < 0. In short, focus and nodes for system (8) go to centers, saddles
go to saddles and nodes are transformed into points with one elliptic
and one hyperbolic sector.

3. The probabilistic case: proof of Theorem 1.1

In this section, we prove Theorem 1.1 that gives the probability of
the different phase portraits described in Proposition 2.2. Inspired by
the results of that proposition we define the new random variables Φ
and ∆,

Φ = AD −BC and ∆ = (qA−D)2 + 4qBC = (qA+D)2 − 4qΦ.

Hence the desired probabilities can be computed as follows

Ps = P{ω |Φ(ω) < 0},
Pnm = P{ω |Φ(ω) > 0, ∆(ω) > 0},
Pm = P{ω |Φ(ω) > 0, ∆(ω) < 0} = P{ω |∆(ω) < 0},

where notice that last equality holds because if ∆ < 0 then Φ > 0 due
to the equality ∆ = (qA+D)2 − 4qΦ.

Let us prove first that Ps = P (Φ < 0) = 1/2. From the fact that the
variables A,B,C and D are continuous, independent and identically
distributed, the variables Φ = AD − BC and Ψ = −AD + BC are
continuous and identically distributed. As a consequence, P (Φ > 0) =
P (Ψ > 0) = P (Φ < 0). Since P (Φ = 0) = 0 it follows that P (Φ >
0) = P (Φ < 0) = Ps = 1/2. Note also that

1

2
= P (Φ > 0) = P (Φ > 0, ∆ > 0) + P (Φ > 0, ∆ < 0) = Pnm + Pm.

The final step is to compute Pm = P (Φ > 0, ∆ < 0). If we de-
note by Z = qA − D, then Z is a normal random variable with zero
mean and standard deviation

√
1 + q2. We consider the random vec-

tor (X, Y, Z) = (B,C, qA−D), where X, Y, Z are independent normal
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variables with zero mean, σX = σY = 1 and σZ =
√

1 + q2. Thus the
joint density function is

Ψ(x, y, z) =
1

(2π)3/2
√

1 + q2
exp

(
−(x2 + y2)(1 + q2) + z2

2(1 + q2)

)
.

Hence

Pm = P (∆ < 0) = P (Z2 + 4qXY < 0) =

∫
K

Ψ(x, y, z) dx dy dz,

where K = {(x, y, z) ∈ R3 : z2 + 4qxy < 0}. To compute this integral,
following the same ideas that in [3], we perform the change of variables

x = r sin(t) cos(s), y = r sin(t) sin(s), z =
√

1 + q2 r cos(t),

where t ∈ (−π
2
, π
2
), s ∈ (0, 2π) and r > 0. Since the determinant of the

Jacobian of the change is
√

1 + q2 sin(t)r2, we have

P (∆ < 0) =
1

(2π)3/2

∫
K̃

∫ +∞

0

| sin(t)|r2e−
1
2
r2 dr ds dt

where K̃ = {(s, t) : (1 + q2) cos2(t) + 2q sin2(t) sin(2s) < 0}. Recall
that ∫ +∞

0

r2e−
1
2
r2dr =

√
π

2
.

Hence

P (∆ < 0) =
1

4π

∫
K̃

| sin(t)| ds dt.

We consider the curve (1 + q2) cos2(t) + 2q sin2(t) sin(2s) = 0, that is,

t = ± arctan

(√
1+q2

2q
1√

− sin(2s)

)
=: ±g(s). Taking into account the

symmetries we obtain that

1

4π

∫
K̃

| sin(t)| ds dt =
1

π

∫ π

π/2

∫ π/2

g(s)

sin(t) dt ds.

By using that cos(arctan(α)) = 1/
√
α2 + 1, and doing u = 2s, we get∫ π

π/2

∫ π/2

g(s)

sin(t) dt ds =
1

2

∫ 2π

π

√
sin(u)

sin(u)−Q
du,

where Q = 1+q2

2q
. Note that Q ≥ 1. Finally, by doing the change of

variable x = u− π and taking into account the symmetry of sin(x),∫ 2π

π

√
sin(u)

sin(u)−Q
du =

∫ π

0

√
sin(x)

sin(x) +Q
dx = 2

∫ π/2

0

√
sin(x)

sin(x) +Q
dx

At this point, from all previous calculations we get

Pm = Pm(q) = P (∆ < 0) =
1

π

∫ π/2

0

√
sin(x)

sin(x) +Q
dx,



PLANAR RANDOM QUASI-HOMOGENEOUS VECTOR FIELDS 9

as we wanted to prove.
There is a alternative way for obtaining Pm(q) which uses a beautiful

result od Edelman and Kostlan for computing the expected number of
real zeros of a family of polynomials whose coefficients are Gaussian
random variables, see [12, 13]

Alternative way for obtaining Pm(q). This different approach has two
steps: First, we relate Pm with the expected number of invariant curves
of the form αy + βxq = 0 by the flow of the random system (1). Sec-
ondly, we compute this expected number.

For linear vector fields the existence of invariant lines αx+βy = 0 and
the flow over them allows to determine the type of phase portrait. For
instance, when a linear planar systems has not invariant straight lines
then the origin is monodromic and it is either a focus or a center. In
the same way, the existence of invariant curves of the form αxq+βy = 0
and the flow over them plays a similar role to know the global phase
portrait of a quasi-homogeneous system (2). Since the line x = 0 is
invariant only when b = 0 we can skip this case (this is so, because
it corresponds to the event B = 0 for the random vector field (1) and
therefore it has probability of appearance 0). Hence, we restrict our
attention to find conditions for (2) to have an invariant curve of the
form y = λxq, where λ = −α/β. To get these conditions on λ notice
that

0 =
d

dt
(y − λxq)|y=λx =

(
ẏ − λqxq−1ẋ

)∣∣
y=λx

=
(
(cx2q−1 + dxq−1y)− λqxq−1(axq + by)

)∣∣
y=λx

=
(
c+ (d− qa)λ− qbλ2

)
x2q−1.

Hence the conditions on λ for the random system (1) to have an in-
variant curve y = λxq is that

T (λ) = C2λ
2 + C1λ+ C0 = 0,

where T is a random polynomial and C2 = −qB, C1 = D − qA and
C0 = C. Moreover, since A,B,C,D have N(0, 1) distribution and are
independent, that implies C0 is N(0, 1), C1 is N(0, 1 + q2) and C2 is
N(0, q2) and they are also independent. In a while we will compute the
number of expected roots E(q) of this random polynomial. Let as see,
firstly how this value is related with Pm(q).

The point is that the following results hold:

• If a realization of the polynomial T has two real roots then
the corresponding of system (1) has either a saddle or a non-
monodromic critical point of index +1.
• If a realization of the polynomial T has not real roots then the

corresponding of system (1) has a monodromic critical point.
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• That a realization of the polynomial T has exactly one real root
happens with probability zero.

As a consequence, the expectation number of real roots of T is

E(q) =2 · P (T has 2 real roots) + 1 · P (T has 1 real root)

+ 0 · P (T has 0 real roots) = 2 · (Ps + Pnm) + 1 · 0 + 0 · Pm.

By using that Ps = 1/2 and that Pnm = 1/2− Pm we obtain that

Pm(q) = 1− E(q)

2
, (9)

which is the desired relation.
To end the proof, let us compute E(q). The coefficients of T (λ), Ci,

i = 1, 2, 3, are independent normal random variables with zero mean
and covariance matrix M where

M1/2 =

1 0 0

0
√

1 + q2 0
0 0 q

 .

Following [12, Thm 3.1], if we define w(t) = M1/2 ·(1, t, t2)T and w(t) =
w(t)/||ω(t)||, then the expected number of real zeros of T is given by
the Edelman-Kostlan formula:

E(q) =
1

π

∫ ∞
−∞
||w′(t)|| dt.

By straightforward computations, we obtain

w(t) =
1√

q2t4 + (q2 + 1)t2 + 1

(
1,
√
q2 + 1 t, qt2

)
and as a consequence

E(q) =
1

π

∫ ∞
−∞

√
(q4 + q2)t4 + 4q2t2 + q2 + 1

(t2 + 1)(q2t2 + 1)
dt (10)

=
1

π

∫ ∞
0

√
(q4 + q2)s2 + 4q2s+ q2 + 1

(s+ 1)(q2s+ 1)
√
s

ds. (11)

where this last equality follows by taking s = t2. Finally, by using (9)
we obtain a new expression of Pm(q). �

4. Equivalent expressions and properties of Pm

We start giving a different expression of the integral given in (3) that
is suitable for obtaining Pm(1). Similarly, (11) could be used. In this
integral we do the change of variables y = 1/ sin(x). We obtain that

Pm(q) =
1

π

∫ ∞
1

1

y
√

(Qy + 1)(y2 − 1)
dy. (12)
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If we substitute when q = 1, then Q = 1, and by introducing w =√
y − 1 we obtain that

Pm(1) =
1

π

∫ ∞
1

1

y(y + 1)
√
y − 1

dy =
1

π

∫ ∞
0

2

(1 + w2)(2 + w2)
dw

=
1

π

∫ ∞
0

(
2

1 + w2
− 2

2 + w2

)
dw

=
2

π
arctan(w)

∣∣∣∣∞
0

−
√

2

π
arctan

(
w√
2

)∣∣∣∣∣
∞

0

= 1−
√

2

2
.

Another similar expression for Pm(q) follows, again starting from ex-
pression (3), by using the related change sin(x) = y. We arrive to

Pm(q) =
1

π

∫ 1

0

√
y

(y +Q)(1− y2)
dy. (13)

Next we present two expressions of Pm(q) in terms of some classical
transcendental function obtained by using Maple and Mathematica.

First expression, starting from (3):

Pm(q) =
1

12π
√

2πQ3/2

(
24QΓ2

(
3

4

)
3 F2

(
1

4
,
3

4
,
3

4
;
1

2
,
5

4
;

1

Q2

)
− Γ2

(
1

4

)
3 F2

(
3

4
,
5

4
,
5

4
;
3

2
,
7

4
;

1

Q2

))
where Γ is the gamma function and 3 F2 is the generalized hypergeo-
metric function.

Second expression, starting from (12):

Pm(q) =

√
2

π
√
Q

(
(1 +Q) Π

(
− 1

Q
,

√
Q− 1

2Q

)
−QK

(√
Q− 1

2Q

))
where K( · ), the EllipticK function, is the complete elliptic integral of
the first kind while Π( · , · ), the EllipticPi function, is the complete
elliptic integral of the third kind.

4.1. Some properties of Pm(q). Recall that from (3) it holds that

Pm(q) = H

(
1 + q2

2q

)
, where H(Q) =

1

π

∫ π/2

0

√
sin(x)

sin(x) +Q
dx. (14)

Next result collect several properties of H that can be used to approach
Pm(q).

Proposition 4.1. Let H : (0,∞)→ R be the function defined in (14).
The following holds:

(i) It is completely monotone, that is, (−1)nH(n)(Q) > 0, for all
n ≥ 0.



12 B. COLL, A. GASULL AND R. PROHENS

(ii) For all n ≥ 0, it holds that

H(n)(1) =
(−1)n(2n− 1)!!

2n−1π

∫ ∞
0

(1 + w2)n−1

(2 + w2)n+1
dw

and all these values can be computed explicitly in terms of ele-
mentary functions.

(iii) Let Tm(Q) denote the Taylor polynomial of degree m at Q = 1,

that is, Tm(Q) =
∑m

n=0
H(n)(1)
n!

(Q − 1)n. Then, for all j, k ≥ 1,
and all Q > 1,

T2j−1(Q) < H(Q) < T2k(Q). (15)

(iv) For all Q > 0,

L√
Q+ 1

≤ H(Q) ≤ L√
Q
, (16)

where

L =
Γ (3/4)

2
√
π Γ (5/4)

≈ 0.38138.

and hence, H(Q) ∼ L/
√
Q at Q =∞.

(v) For Q > 1 it holds that

H(Q) =
∞∑
n=0

(
−1/2

n

)
Γ (3/4 + n/2)

2
√
π Γ (5/4 + n/2)

1

Qn
√
Q
.

Proof. (i) Notice first that for Q > 0 the function
√

sin(x)
sin(x)+Q

and all its

derivatives with respect to Q are integrable in [0, π/2]. Therefore, for
all n ≥ 0,

H(n)(Q) =
1

π

dn

dQn

∫ π/2

0

√
sin(x)

sin(x) +Q
dx =

1

π

∫ π/2

0

∂n

∂Qn

√
sin(x)

sin(x) +Q
dx

=
(−1)n(2n− 1)!!

2nπ

∫ π/2

0

1

(sin(x) +Q)n

√
sin(x)

sin(x) +Q
dx.

Then, clearly (−1)nH(n)(Q) > 0, as we wanted to show. We remark
that complete monotone function are a subject of interest by them-
selves, see for instance [19].

(ii) By replacing Q = 1 above and introducing the new variable
y = 1/ sin(x), and then w2 = y − 1, as in the beginning of this section
to obtain Pm(1), we get that

H(n)(1) =
(−1)n(2n− 1)!!

2nπ

∫ ∞
1

yn−1

(1 + y)n+1

dy√
y − 1

=
(−1)n(2n− 1)!!

2n−1π

∫ ∞
0

(1 + w2)n−1

(2 + w2)n+1
dw,
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as desired. For each given n the above functions have a primitive in
terms of elementary functions and the values H(n)(1) can be explicitly
obtained. For instance,

H ′(1) = −
√

2

16
, H ′′(1) =

15
√

2

256
, H ′′′(1) = −195

√
2

2048
.

(iii) Both inequalities are consequence of Taylor’s formula and the
results of item (i).

(iv) Clearly, for all 0 ≤ x ≤ π/2, Q ≤ sin(x) +Q ≤ 1 +Q. Hence√
sin(x)

π
√

1 +Q
≤ 1

π

√
sin(x)

sin(x) +Q
≤
√

sin(x)

π
√
Q

.

By integrating the above inequalities between 0 and π/2 we get that
L/
√

1 +Q ≤ Pm(q) ≤ L/
√
Q, where

L =
1

π

∫ π/2

0

√
sin(x) dx =

Γ (3/4)

2
√
π Γ (5/4)

.

We have used the equality∫ π/2

0

sinα(x) dx =
Γ (1/2 + α/2)

Γ (1 + α/2)

√
π

2
, (17)

valid for all α > −1, when α = 1/2.

(v) If we introduce the new variable U = 1/
√
Q > 0 we have that

H(Q) = G(U), where G is the smooth function at U = 0,

G(U) =
1

π

∫ π/2

0

√
U2 sin(x)

U2 sin(x) + 1
dx =

U

π

∫ π/2

0

√
sin(x)

U2 sin(x) + 1
dx

=
U

π

∫ π/2

0

∞∑
n=0

√
sin(x)

(
−1/2

n

)
U2n sinn(x) dx

=
U

π

∞∑
n=0

(
−1/2

n

)(∫ π/2

0

sinn+1/2(x) dx

)
U2n, (18)

where we have used the uniform convergence of the series to interchange
it with the integral. By using again (17), with α = n + 1/2, the final
expression of G follows. By replacing U by 1/

√
Q we get the desired

result.
�

From results (ii) and (iii) of the above proposition we can obtain
good approximations of Pm(q) for q not big. This is so just by recalling
that, for big values of q, the remainder term of the Taylor’s formula
can give a big error. On the contrary, since the boundedness given by
expression (16) is better the higher the q value is taken, the results of
item (iv) are suitable for big q. Finally, although the results of item (v)
apply for all q > 1, its convergence is faster when 1/Q is not big, hence
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we can apply it for medium and large values of q. Let us see some
examples where we approach Pm(2), Pm(10) and Pm(100).

An approximation of Pm(2). If q = 2, then Q = 5/4. By item (iii)
we know for instance that

T3

(
5

4

)
< H

(
5

4

)
= Pm(2) < T2

(
5

4

)
.

Some computations give that

0.273035 ≈ 1− 134753
√

2

262144
< Pm(2) < 1− 4209

√
2

8192
≈ 0.273386.

Similarly, by using T8 and T9 we get that

0.273079881 < Pm(2) < 0.273079890

The integral (3) computed numerically gives the value Pm(2) ≈
0.2730798826.

An approximation of Pm(100). As a consequence of (16) it easily
follows that

Pm(q) ∼ M
√
q

at q =∞, where M =
√

2L (19)

For instance, it holds that M/
√

100 ≈ 0.053935 is a good approxi-
mation of Pm(100). This is so because by using the inequalities (16)
we know that 0.0534 < Pm(100) < 0.0539. By evaluating numerically
the definite integral given in (3) we get that Pm(100) ≈ 0.053544, see
Table 1.

An approximation of Pm(10). When q = 10, Q = 101/20. By
item (v) we know that for Q > 1, H(Q) = limk→∞Hk(Q), where

Hk(Q) =
k∑

n=0

(
−1/2

n

)
Γ (3/4 + n/2)

2
√
π Γ (5/4 + n/2)

1

Qn
√
Q
.

Hence Pm(10) = limk→∞Hk(101/20). If we compute Hk(101/20) for
k = 2, 3, 4, 5, 6 we get

0.15895 . . . , 0.158736 . . . , 0.1587702 . . . , 0.1587648 . . . , 0.1587657 . . .

providing good approximations of Pm(10) ≈ 0.158766, see again Ta-
ble 1. For bigger values of Q the convergence is faster. For instance,
taking q = 100, Q = 10001/200 and

Pm(100) ≈ H3(10001/200) = 0.053543958 . . .
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4.2. Some numerical simulations. Although we have a closed form
in terms of a defined integral for Pm(q) that allows to compute it simply
by computing numerically this integral, in this section we show how to
approximate Pm(q) for some values of q, by using the celebrated Monte
Carlo method.

In our setting we simply will take N = 106 samples of the random
vector (A,B,C,D) where the four variables are iid, with distribution
N(0, 1), and check how many of them, say J, satisfy ∆ = (qA−D)2 +
4qBC < 0. Then simply Pm(q) ≈ J/N. Due to the law of large numbers
and the law of iterated logarithm it is known that this approach gives an
absolute error of order O(((log logN)/N)1/2), which in practice behaves
as O(N−1/2), see [14, 17]. Hence, since N = 106 this absolute error is
expected to be of order O(10−3) and in Table 1 we only show 4 digits of
the Monte Carlo results. Notice that comparing these values with the
ones obtained by approximating the 1-variable definite integral, given
in the second row of that table, the actual differences are the expected
ones. To see more details about the probability that |Pm(q)− J/N | is
big see the discussion in [4, Sec. 3.2].

q 1 2 5 10 100

Pm(q) 0.292893 0.273080 0.209525 0.158766 0.053544

Monte Carlo 0.2920 0.2732 0.2091 0.1589 0.0535

Table 1. Some approximated values of Pm(q) obtained
computing numerically the expression (3) and with
Monte Carlo method taking 106 random systems.
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Recerca Matemàtica, Edifici Cc, Campus de Bellaterra, 08193 Cer-
danyola del Vallès (Barcelona), Spain

Email address: gasull@mat.uab.cat


	1. Introduction and main results
	2. Results for the deterministic case
	3. The probabilistic case: proof of Theorem 1.1
	4. Equivalent expressions and properties of Pm
	4.1. Some properties of Pm(q)
	4.2. Some numerical simulations

	Acknowledgements
	References

