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1. Introduction and statement of the main results

In the qualitative theory of real planar polynomial differential systems
two of the main problems are the determination of limit cycles and the
center-focus problem, i.e. to distinguish when a singular point is either a
focus or a center. The notion of center goes back to Poincaré in [18]. He
defined a center for a vector field on the real plane as a singular point having
a neighborhood filled of periodic orbits with the exception of the singular
point.

The classification of the centers of polynomial differential systems started
with the quadratic ones with the works of Dulac [9], Kapteyn [12, 13], Bautin
[2], Zoladek [23]. See Schlomiuk [20] for an update on the quadratic centers.
There are many partial results for the centers of polynomial differential
systems of degree larger than 2. For instance the centers for cubic polynomial
differential systems of the form linear with homogeneous nonlinearities of
degree 3 were classified by Malkin [15], and by Vulpe and Sibiirski [22].
For polynomial differential systems of the form linear with homogeneous
nonlinearities of degree greater than 3 the centers are not classified, but
there are partial results for degree 4 and 5, see for instance Chavarriga and
Giné [3, 4]. On the other hand there is a long way to do for obtaining the
complete classification of the centers for all polynomial differential systems
of degree 3. Some interesting results on some subclasses of cubic systems
are those of Rousseau and Schlomiuk [21], and the ones of Zoladek [24, 25].

If an analytic system has a center, then after an affine change of variables
and a rescaling of the time variable, it can be written in one of the following
three forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y),

called a non-degenerate center ;

ẋ = y + P (x, y), ẏ = Q(x, y),

called a nilpotent center ;

ẋ = P (x, y), ẏ = Q(x, y),

called a degenerate center, where P (x, y) and Q(x, y) are real analytic func-
tions without constant and linear terms, defined in a neighborhood of the
origin. There is an algorithm for the characterization of non-degenerate cen-
ters due to Poincaré [19] and Lyapunov [14], see also Chazy [6] and Moussu
[16]. An algorithm for the characterization of the nilpotent and some class
of degenerate centers is done in the works of Chavarriga et al. [5], Giacomini
et al. [11], and Cima and Llibre [8].

In this work we classify the global phase portraits of all Hamiltonian
planar polynomial vector fields having only linear and cubic homogeneous
terms which have a non-degenerate center at the origin. To do this we will
use the Poincaré compactification of polynomial vector fields, see section 3.
We say that two vector fields on the Poincaré disk are topologically equivalent

if there exists a homeomorphism from one onto the other which sends orbits
to orbits preserving or reversing the direction of the flow. Our main result
is the following one.
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Theorem 1. Any Hamiltonian non-degenerate center at the origin of a

linear plus cubic homogeneous polynomial vector field can be written as one

of the following six classes after a linear change of variables and a rescaling

of its independent variable:

(I) ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3,

(II) ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

(III) ẋ = ax+ by − 3x2y + y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(IV ) ẋ = ax+ by − 3x2y − y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(V ) ẋ = ax+ by − 3µx2y + y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(V I) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

where a, b, β, µ ∈ R with b 6= 0 and β > 0. Moreover, the global phase

portraits of these systems are topologically equivalent to one of the 23 phase

portraits of Figure 1.

We note that in the above six systems (I)− (V I) a rescaling of both the
dependent and the independent variables allows to assume a = ±1 whenever
a 6= 0. However we do not use this simplification since it does not help us
in our computations.

The classification done in Theorem 1 will allow to start the study of how
many limit cycles can bifurcate from the periodic orbits of the Hamilton-
ian non-degenerate centers with only linear and cubic terms when they are
perturbed inside the class of all cubic polynomial differential systems. This
last study was made for the quadratic polynomial differential systems, see
the paper [7] and the references quoted there.

2. Classification

Doing a linear change of variables and a rescaling of the independent
variable, cubic homogeneous systems can be classified into the following ten
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1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

1.13 1.14 1.15 1.16

1.17 1.18 1.19 1.20

1.21 1.22 1.23

Figure 1. Global phase portraits of all Hamiltonian planar poly-
nomial vector fields having only linear and cubic homogeneous
terms which have a non-degenerate center at the origin. The sep-
aratrices are in bold.
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classes, see [8]:

(i)
ẋ = x(p1x

2 + p2xy + p3y
2),

ẏ = y(p1x
2 + p2xy + p3y

2),

(ii)
ẋ = p1x

3 + p2x
2y + p3xy

2,
ẏ = αx3 + p1x

2y + p2xy
2 + p3y

3,

(iii)
ẋ = (p1 − 1)x3 + p2x

2y + p3xy
2,

ẏ = (p1 + 3)x2y + p2xy
2 + p3y

3,

(iv)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(v)
ẋ = p1x

3 + (p2 − α)x2y + p3xy
2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + α)xy2 + p3y

3,

(vi)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2 + y3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(vii)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2 − αy3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(viii)
ẋ = p1x

3 + (p2 − 3µ)x2y + p3xy
2 + y3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
µ ∈ R.

(ix)
ẋ = p1x

3 + (p2 − 3αµ)x2y + p3xy
2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3,

µ > −1/3,

µ 6= 1/3,

(x)
ẋ = p1x

3 + (p2 − 3µ)x2y + p3xy
2 − y3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
µ < −1/3,

where α = ±1. So for studying the cubic planar polynomial vector fields
having only linear and cubic terms, it is sufficient to add to the above ten
systems a linear part. The following propositions define the precise forms of
the vector fields that we will study.

Proposition 2. Let X be a cubic planar polynomial vector field having only

linear and cubic terms, such that its cubic homogeneous part is given by one

of the above ten forms (i)−(x). Then X is Hamiltonian with a Hamiltonian

polynomial of degree four if and only if p1 = p2 = p3 = 0.

Proof. We will give the proof only for system (x) since the other nine cases
can be proved in the same way.

Let X = (P (x, y), Q(x, y)) be system (x) with some arbitrary linear part,
that is

ẋ = P (x, y) = ax+ by + p1x
3 + (p2 − 3µ)x2y + p3xy

2 − y3,

ẏ = Q(x, y) = cx+ dy + x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
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where a, b, c, d ∈ R. Let H be its Hamiltonian polynomial of degree 4. We
have

Hx = −Q, Hy = P,

where Hx denotes the partial derivative of H with respect to x. To find H,
we first integrate Hy with respect to y and get

H(x, y) =

∫

P (x, y) dy + f(x)

= axy +
b

2
y2 + p1x

3y +
p2 − 3µ

2
x2y2 +

p3
3
xy3 − 1

4
y4 + f(x),

for some real polynomial f . Then the derivative of H with respect to x is

Hx(x, y) = ay + 3p1x
2y + (p2 − 3µ)xy2 +

p3
3
y3 + f ′(x),

where f ′(x) is the first derivative of the polynomial f . Equating Hx to −Q
we obtain the three equations

3p1 = −p1, p2 − 3µ = −p2 − 3µ,
p3
3

= −p3,

which hold if and only if p1 = p2 = p3 = 0. �

Remark 3. We note that when the parameters p1, p2 and p3 are all zero,
system (i) is not cubic. For this reason, we will restrict our attention to
systems (ii) − (x).

Proposition 4. Finite singular points of Hamiltonian planar polynomial

vector fields are either centers, or have a finite union of an even number of

hyperbolic sectors.

Proof. For analytic planar differential systems, it is known that any singular
point is either a center, a focus, or has a finite union of hyperbolic, elliptic
and parabolic sectors, for details see [10]. Moreover, if the system is Hamil-
tonian, its flow preserves area, see [1]. So a singular point of a Hamiltonian
system cannot be a focus or have elliptic and parabolic sectors. Finally,
since the index of a singular point formed by hyperbolic sectors is 1 − h/2,
with h being the number of its hyperbolic sectors, it follows that h is even.
For more details about the index, see [10]. �

Proposition 5. The linear part of each of the ten classes of Hamiltonian

cubic planar polynomial vector fields having only linear and cubic homoge-

neous terms which have a non-degenerate center at the origin can be chosen

as

ẋ = ax+ by,

ẏ = −a
2 + β2

b
x− ay,

where a, b, β ∈ R such that b 6= 0 and β > 0.

Proof. We will again give the proof only for system (x) as the remaining
cases can be proved in the same way.
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Let X be system (x) plus a linear part and let it be Hamiltonian. Then,
by Proposition 2, X is

ẋ = ax+ by − 3µx2y − y3,

ẏ = cx+ dy + x3 + 3µxy2,

for some real constants a, b, c, d. The eigenvalues of the linear part of system
X at the origin are

λ1,2 =
a+ d±

√

(a+ d)2 − 4(ad− bc)

2
.

In order to have a non-degenerate center at the origin, these eigenvalues
must be ±βi, for some β > 0, see [10]. So we have

a+ d±
√

(a+ d)2 − 4(ad− bc)

2
= ±βi. (1)

From (1) we get that a+ d = 0, and hence we obtain

a2 + bc = −β2.

We see that b 6= 0, otherwise the left hand side would be non-negative. Then
we can solve for c and get c = −(a2 + β2)/b.

It can be easily shown that with this choice of parameters, X is Hamil-
tonian with the Hamiltonian

H(x, y) = −1

4
(x4 + y4)− 3µ

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

Since X is Hamiltonian, by Proposition 4, the origin cannot be a focus, and
hence it is a center. �

Remark 6. In all of the nine vector fields (ii)− (x) we are going to study,
we can assume α = 1 because the Hamiltonian systems with α = −1 can
be obtained from those with α = 1 simply by the linear transformation
x 7→ −x.
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In light of the above classification, propositions and remarks, the nine
systems that we are going to study become

(ii′) ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3,

(iii′) ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

(iv′) ẋ = ax+ by − 3x2y, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(v′) ẋ = ax+ by − x2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + xy2,

(vi′) ẋ = ax+ by − 3x2y + y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(vii′) ẋ = ax+ by − 3x2y − y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(viii′) ẋ = ax+ by − 3µx2y + y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(ix′) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(x′) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

where µ < −1/3 for system (x′), whereas µ > −1/3 but different from
1/3 for system (ix′). Hence these last two systems are the same except for
the intervals of the parameter µ. When µ = 1/3, system (x′) (or (ix′))
becomes system (v′), and in the following proposition we will show that
when µ = −1/3, system (x′) becomes system (iv′).

Proposition 7. When µ = −1/3 system (x′) becomes system (iv′) via a

linear transformation.

Proof. Consider system (x′) with µ = −1/3:

ẋ = ax+ by + x2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 − xy2.

We introduce the new variables (X,Y ) obtained by the linear transformation
(

X
Y

)

=

(

cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)(

x
y

)

=

(

(x− y)/
√
2

(x+ y)/
√
2

)

.

Hence we have

x = (X + Y )/
√
2, y = (Y −X)/

√
2.

Then we obtain

Ẋ =
a2 − b2 + β2

2b
X +

(a+ b)2 + β2

2b
Y − 2X2Y,

Ẏ =− (a− b)2 + β2

2b
X − a2 − b2 + β2

2b
Y + 2XY 2.

Finally, after a time rescale dT = 2/3 dt, and defining

A = 3
a2 − b2 + β2

4b
, B = 3

(a+ b)2 + β2

4b
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we get the system

Ẋ = AX +BY − 3X2Y, Ẏ = −A
2 + β2

B
X −AY + 3XY 2,

which is exactly system (iv′). �

In short, Hamiltonian planar polynomial vector fields having only linear
and cubic terms which have a non-degenerate center at the origin can be
classified into the six vector fields (I)− (V I) given in Section 1.

Remark 8. Because the right hand sides of each of the vector fields (I) −
(V I) are odd functions, they are symmetric with respect to the origin.

3. Poincaré compactification

In this section we summarize the Poincaré compactification that we shall
use for describing the global phase portraits of our Hamiltonian systems.
For more details on the Poincaré compactification see Chapter 5 of [10].

Let S2 be the set of points (s1, s2, s3) ∈ R
3 : s21+ s22+ s23 = 1. We will call

this set the Poincaré sphere. Given a polynomial vector field

X = (ẋ, ẏ) = (P (x, y), Q(x, y))

in R
2, it can be extended analytically to the Poincaré sphere by project-

ing each point x ∈ R
2 = (x1, x2, 1) ∈ R

3 onto the Poincaré sphere using a
straight line through x and the origin of R3. This way we obtain two copies
of X: one on the northern hemisphere {(s1, s2, s3) ∈ S

2 : s3 > 0} and an-
other on the southern hemisphere {(s1, s2, s3) ∈ S

2 : s3 < 0}. The equator
S
1 = {(s1, s2, s3) ∈ S

2 : s3 = 0} corresponds to the infinity of R2. The local
charts needed for doing the calculations on the Poincaré sphere are

Ui = {s ∈ S
2 : si > 0}, Vi = {s ∈ S

2 : si < 0},
where s = (s1, s2, s3), with the corresponding local maps

ϕi(s) : Ui → R
2, ψi(s) : Vi → R

2,

such that ϕi(s) = −ψi(s) =

(

sm
si
,
sn
si

)

for m < n and m,n 6= i, for i =

1, 2, 3. The expression for the corresponding vector field on S
2 in the local

chart U1 is given by

u̇ = vd
[

−uP
(

1

v
,
u

v

)

+Q

(

1

v
,
u

v

)]

, v̇ = −vd+1P

(

1

v
,
u

v

)

; (2)

the expression for U2 is

u̇ = vd
[

P

(

u

v
,
1

v

)

− uQ

(

u

v
,
1

v

)]

, v̇ = −vd+1Q

(

u

v
,
1

v

)

; (3)

and the expression for U3 is just

u̇ = P (u, v), v̇ = Q(u, v), (4)

where d is the degree of the vector field X. The expressions for the charts Vi
are those for the charts Ui multiplied by (−1)d−1, for i = 1, 2, 3. Hence, to
study the vector field X, it is enough to study its Poincaré compactification
restricted to the northern hemisphere plus S1, which we will call the Poincaré
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disk. To draw the phase portraits, we will consider the projection of the
Poincaré disk on to R

2 by π(s1, s2, s3) = (s1, s3).

Finite singular points of X are the singular points of its compactification
which are in S

2 \ S
1, and they can be studied using U3. Infinite singular

points of X, on the other hand, are the singular points of the corresponding
vector field on the Poincaré disk lying on S

1. Since s ∈ S
1 is an infinite

singular point whenever −s ∈ S
1 is, and the local behavior of one is that

of the other multiplied by (−1)d−1, to study the infinite singular points it
suffices to only look at U1|v=0 and the origin of U2.

The next theorem by Neumann [17] gives a characterization of two topo-
logically equivalent vector fields in the Poincaré sphere.

Theorem 9 (Neumann’s Theorem). Two continuous flows in S
2 with iso-

lated singular points are topologically equivalent if and only if their separatrix

configurations are equivalent.

This theorem implies that once the separatrices of a vector field in the
Poincaré sphere are determined, the global phase portrait of that vector field
is obtained up to topological equivalence.

4. Global phase portraits of system (I)

System (I)

ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3,

with the Hamiltonian

H1(x, y) = −1

4
x4 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

We first investigate the infinite singular points of this system. Using (2),
we see that in the local chart U1 system (I) becomes

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ 1,

v̇ = −v3 (bu+ a) .

When v = 0, there are no singular points on U1.

Next we will check whether the origin of the local chart U2 is a singular
point. In U2 we use (3) to get

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− u4,

v̇ = v3
(

a2 + β2

b
u+ a

)

− u3v,

(5)

and we see that the origin is a singular point and that its linear part is zero.
We need to do blow-ups to understand the local behavior at this point. We
perform the directional blow-up (u, v) 7→ (u,w) with w = v/u and have

u̇ =u2w2

(

a2 + β2

b
u2 + 2au+ b

)

− u4,

ẇ =− uw3(au+ b).
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We eliminate the common factor u between u̇ and ẇ, and get the vector
field

u̇ = uw2

(

a2 + β2

b
u2 + 2au+ b

)

− u3,

ẇ = −w3(au+ b).

(6)

When u = 0, the only singular point of system (6) is the origin, whose
linear part is again zero. Hence we do another blow-up (u,w) → (u, z) with
z = w/u, eliminate the common factor u2, and get the vector field

u̇ = uz2
(

a2 + β2

b
u2 + 2au+ b

)

− u,

ż = −z3
(

a2 + β2

b
u2 + 3au+ 2b

)

+ z.

(7)

When u = 0, system (7) has the singular points (0, 0),
(

0,±
√

1/2b
)

. The

sign of the parameter b determines the existence of these points, hence we
need to analyze these points in two cases. We note that the linear part of
system (7) at any point (0, z) on the (u, z) plane is

(

bz2 − 1 0
−3az3 −6bz2 + 1

)

.

When b < 0, the points
(

0,±
√

1/2b
)

are not real. Hence the only singular

point is the origin which is a saddle because the eigenvalues of the linear
part at the origin are ±1. Going back through the change of variables until
system (5) as shown in Figure 2, we see that locally the origin of U2 consists
of two hyperbolic sectors.

When b > 0, however, all three singular points are real. The points
(

0,±
√

1/2b
)

are attracting nodes since the eigenvalues at these points are

−1/2 and −2. Again, tracing back the change of variables to system (5),
see Figure 3, we see that the origin of U2 has two elliptic and two parabolic
sectors.

We now look at the finite singular points of system (I). Using (4) we find
that they are

(0, 0) and ±
(

− aβ

b3/2
,
β√
b

)

.

We know that the origin is a center. When b < 0, we do not have any other
finite singular point, and we get the global phase portrait 1.1 in Figure 1.

On the other hand, when b > 0, the remaining two finite singular points
are saddles since the eigenvalues of the linear part of system (I) at each of

these points are ±
√
2β. At least one of the saddles must be on the boundary

of the period annulus of the center at the origin, and by symmetry, we
conclude that both saddles are on this boundary.

To determine the global phase portrait in this case, we observe that on
the y-axis, the Hamiltonian H1 is quadratic. This means that the y-axis and
the separatrices of a saddle can have at most two intersection points since
the Hamiltonian is constant on the separatrices and H1|x=0 = h can have at
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System (7) System (7) with
the common factor u2

System (6)

System (6) with
the common factor u2

System (5)

Figure 2. Blow-up of the origin of U2 of system (I) when b < 0.
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System (7) System (7) with
the common factor u2

System (6)

System (6) with
the common factor u2

System (5)

Figure 3. Blow-up of the origin of U2 of system (I) when b > 0.

most two roots for any h ∈ R. Hence the separatrices passing through the
saddles can cross the y-axis exactly two times while forming the boundary
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of the period annulus of the center at the origin. Since there are no singular
points on the y-axis other than the origin, the global phase portrait when
b > 0 is topologically equivalent to the portrait 1.2 of Figure 1.

5. Global phase portraits of system (II)

System (II)

ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

has the Hamiltonian

H2(x, y) = −x3y + a2 + β2

2b
x2 +

b

2
y2 + axy.

Note that we can assume b > 0 because the linear change y 7→ −y gives
exactly the same system with the opposite sign of the parameter b.

Again we will first find the infinite singular points. In the local chart U1

system (II) is

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ 4u,

v̇ = −v3 (bu+ a) + v.

When v = 0, only the origin of U1 is singular. The eigenvalues at this point
are 4 and 1, meaning that it is a repelling node.

Next, we should check the origin of U2, in which system (II) becomes

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− 4u3,

v̇ = v3
(

a2 + β2

b
u+ a

)

− 3u2v.

(8)

We see that the origin is singular and its linear part is zero. We need
blow-up to understand the local behavior at this point. Doing the blow-up
(u, v) 7→ (u,w) with w = v/u and eliminating the common factor u we get
the system

u̇ = uw2

(

a2 + β2

b
u2 + 2au+ b

)

− 4u2,

ẇ = −w3 (au+ b)− uw.

(9)

When u = 0, the only singular point of system (9) is the origin, whose linear
part is again zero. So, we do another blow-up (u,w) 7→ (u, z) with z = w/u,
eliminate the common factor u, and obtain

u̇ = u2z2
(

a2 + β2

b
u2 + 2au+ b

)

− 4u,

ż = −uz3
(

a2 + β2

b
u2 + 3au+ 2b

)

+ 5z.

(10)

When u = 0, the only singular point of system (10) is the origin, which is
a saddle. We trace the change of variables back to system (8) as shown in
Figure 4, and we find out that the origin of U2 is an attracting node.
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z

uuu

w v

System (10) System (9) System (8)

Figure 4. Blow-up of the origin of U2 of system (II).

The finite singular points of system (II) other than the origin are

±





√

2a+
√

4a2 + 3β2
√
3

,−
(a−

√

4a2 + 3β2)

√

2a+
√

4a2 + 3β2

3
√
3b



 .

The eigenvalues of the linear part of system (II) at these points are

±
2

√

4a2 + 3β2 + 2a
√

4a2 + 3β2
√
3

,

which means that they are saddles since β > 0.

Now we will determine the global phase portrait according to this local
information. The two saddles must be on the boundary of the period annulus
of the center at the origin due to the symmetry of the system. Also there are
no singular points other than the origin on the axes, on either of which the
Hamiltonian H2 is quadratic. By the same argument used for system (I),
this means that the separatrices passing through saddles cannot cross the
axes anymore. Hence we obtain the global phase portrait 1.3 in Figure 1.

6. Global phase portraits of system (III)

System (III)

ẋ = ax+ by − 3x2y + y3, (11a)

ẏ = −a
2 + β2

b
x− ay + 3xy2, (11b)

has the Hamiltonian

H3(x, y) =
y4

4
− 3

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

In U1 the system becomes

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

− u2(u2 − 6),

v̇ = −v3 (bu+ a)− uv(u2 − 3).

(12)
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When v = 0, there are three singular points on U1: (0, 0), (±
√
6, 0). The

linear part of system (12) is
(

−4u(u2 − 3) 0
0 −u(u2 − 3)

)

.

Hence the singular points (
√
6, 0) and (−

√
6, 0) are attracting and repelling

nodes, respectively.

At the origin, however, the linear part is zero. Therefore to understand
the local behavior we do the blow-up (u, v) 7→ (u,w) with w = v/u. After
eliminating the common factor u between u̇ and ẇ, we obtain the system

u̇ = −uw2

(

bu2 + 2au+
a2 + β2

b

)

− u(u2 − 6),

ẇ = w3

(

au+
a2 + β2

b

)

− 3w.

(13)

When u = 0, system (13) has the singular points (0, 0),
(

0,±
√

3b/(a2 + β2)
)

.

The linear part of system (13) at the points (0, w) is






−a
2 + β2

b
w2 + 6 0

aw3 3
a2 + β2

b
w2 − 3






.

When b < 0, we see that
(

0,±
√

3b/(a2 + β2)
)

are not real, hence the

only singular point is the origin, which is a saddle. It is shown in Figure 5
that the origin of U1 consists of two hyperbolic sectors.

uu

w v

System (13) System (12)

Figure 5. Blow-up of the origin of U1 of system (III) when b < 0.

When b > 0, all three singular points are real. In addition to the saddle at

the origin, the points
(

0,±
√

3b/(a2 + β2)
)

are repelling nodes. This time

we see that locally the origin of U1 has two elliptic sectors and two parabolic
sectors, see Figure 6.

We now look at the origin of U2, in which system (III) writes

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− 6u2 + 1,

v̇ = v3
(

a2 + β2

b
u+ a

)

− 3uv.
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uu

w v

System (13) System (12)

Figure 6. Blow-up of the origin of U1 of system (III) when b > 0.

We see that the origin of U2 is not a singular point. Hence all the infinite
singular points are in U1.

Now we analyze the finite singular points of system (III). The origin is
already known to be center. Note that the linear part of system (III) is





a− 6xy b− 3x2 + 3y2

3y2 − a2 + β2

b
−a+ 6xy





The explicit expressions for the finite singular points in terms of the pa-
rameters a, b, β are big, and therefore it is hard to study them numerically.
For this reason we follow a different way. We first find the maximum number
of finite singular points allowed by the system. To do this, we equate (11a)
to 0, solve for x and get

x1,2 =
a±

√

a2 + 12by2 + 12y2

6y
. (14)

Note that when y = 0, (11b) is zero if and only if x = 0. But since we are
looking for finite singular points other than the origin, we can assume that
y 6= 0. Then, if we substitute (14) into (11b) we obtain

ẏ1,2 = −a
3 + 3aby2 + aβ2 ± (a2 + β2 − 3by2)

√

a2 + 12by2 + 12y2

6by
,

where ẏ1 and ẏ2 denote ẏ with x1 and x2 substituted, respectively. Then
the maximum number of roots of the product ẏ1ẏ2 will give us an upper
bound for the number of finite singular points. So we multiply ẏ1 and ẏ2
and obtain

−3y6+
2a2 + 2β2 − 3b2

b
y4− (a2 + β2)(a2 + β2 − 6b2)

3b2
y2−β

2(a2 + β2)

3b
. (15)

We see that (15) cannot be identically zero, so it has at most six real roots.
This means that all the finite singular points of system (III) are isolated.
In fact, if we multiply (15) by 3b2 and replace y2 by z, we get the cubic
polynomial

−9b2z3+3b(2a2+2β2−3b2)z2−(a2+β2)(a2+β2−6b2)z−bβ2(a2+β2). (16)
In order that (15) has six real roots, (16) must have all of its roots positive.
To find the maximum number of positive roots of the polynomial (16) we
use Descartes’ rule of signs:
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Theorem 10. The number of positive roots of a real polynomial is either

equal to the number of sign differences between consecutive nonzero coeffi-

cients, or is less than it by a multiple of 2, when the terms of the polynomial

are placed in descending or ascending order of exponents.

The terms of (16) are already ordered correctly, so there must be three
changes of sign between its coefficients to have all three roots positive. When
b > 0, since the constant term and the coefficient of z3 are both negative,
there cannot be three changes of sign, hence neither three positive roots.
When b < 0, the constant term is positive and the coefficient of z3 is negative.
Thus, to have three positive roots, the coefficients of z and z2 must be
negative and positive, respectively. So we must have

a2 + β2 − 6b2 > 0 and 2a2 + 2β2 − 3b2 < 0,

which is not possible since

2a2 + 2β2 − 3b2 > a2 + β2 − 6b2.

Therefore polynomial (16) cannot have three positive roots, and system
(III) has at most four finite singular points other than the origin.

Next we count the indices of the known singular points, both finite and in-
finite. Since the infinite singular points depend on the sign of the parameter
b, we need to investigate those two cases separately. We first state two the-
orems which will play essential roles in the process of determining the finite
singular points of the vector fields. For details about these theorems, see
Chapters 1 and 6 of [10]. The first one is the well known Poincaré Formula

for the index of a singular point of a planar vector field, and the second one
is the famous Poincaré-Hopf Theorem for vector fields in the 2-dimensional
sphere.

Theorem 11 (Poincaré Formula). Let q be an isolated singular point having

the finite sectorial decomposition property. Let e, h, and p denote the number

of elliptic, hyperbolic, and parabolic sectors of q, respectively. Then the index

of q is (e− h)/2 + 1.

Theorem 12 (Poincaré-Hopf Theorem). For every tangent vector field on

S
2 with a finite number of singular points, the sum of the indices of the

singular points is 2.

Corollary 13. The index of a saddle, a center and a cusp are −1, 1 and

0, respectively.

We now present a lemma that will also play a crucial role in determining
the finite singular points. We define energy levels of a vector field as the
curves on which its Hamiltonian is constant. We say that a singular point
is non-degenerate if none of the eigenvalues of the linear part of the vector
field at that point is zero, and degenerate otherwise. A degenerate singular
point is called linearly zero if the linear part is identically zero, otherwise it
is called nilpotent.

Remark 14. Nilpotent singular points of Hamiltonian planar polynomial
vector fields are either saddles, centers, or cusps (for more details see chap-
ters 2 and 3 of [10], specifically sections 2.6 and 3.5)
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A hyperbolic saddle with a loop and a center inside the loop as in Figure 7
will be called a center-loop.

Figure 7. A center-loop.

Lemma 15. Let Xε be a real Hamiltonian planar polynomial vector field

having only linear and cubic terms. Then Xε can be written as

ẋ = a10x+ a01y + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

ẏ = b10x− a10y + b30x
3 − 3a30x

2y − a21xy
2 − 1

3
a12y

3 + εx.

Suppose that p is an isolated singular point of Xε different from the origin.

If a210 + a01b10 < 0, i.e. if the origin of X0 is a center, then the following

statements hold:

(a) If p is degenerate, then it is nilpotent.

(b) If p is a degenerate singular point of X0, then it is a non-degenerate

singular point of Xε with ε 6= 0.
(c) If p is a cusp of X0, then for ε 6= 0 small enough the local phase

portrait of Xε at p is a center-loop.

Proof. Let Xε be the vector field defined in the lemma. It is easy to check
that Xε is Hamiltonian with the Hamiltonian polynomial

Hε =
1

4
(a03y

4−b30x4)+a30x3y+
1

2
a21x

2y2+
1

3
a12xy

3+
1

2
(a01y

2−b10x2)+a10xy.

Without loss of generality we can assume that p = (0, y0), otherwise doing
a rotation of the coordinates we can get its x-coordinate to be zero.

Assume that a210 + a01b10 < 0. Note that this condition implies a01 6= 0.

We first prove (a). At (0, y0) system Xε becomes

ẋ = y0(a01 + a03y
2
0), ẏ = −y0(a10 +

1

3
a12y

2
0),

whereas Mε, the linear part of Xε at a point, is
(

a10 + a12y
2
0 a01 + 3a03y

2
0

b10 − a21y
2
0 + ε −a10 − a12y

2
0

)

.

Since y0 6= 0, we have (0, y0) linearly zero only if

a01 + a03y
2
0 = a01 + 3a03y

2
0 = 0, (17)

which requires a03 = 0. However, since a01 6= 0, equation (17) cannot be
satisfied. Therefore we conclude that a degenerate singular point of Xε must
be nilpotent.

Now we prove (b). Assume that (0, y0) is a degenerate singular point of
X0. We will prove that the eigenvalues of the linear part of Xε, with ε 6= 0,
are different from zero.
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The characteristic polynomial at a singular point of Xε is of the form
λ2+det(Mε). So the eigenvalues λ of the linear part of Xε at a singular point

are ±
√

− det(Mε). Since we have already assumed that the eigenvalues of
M0 at (0, y0) are zero, the only nonzero terms in the determinant of Mε at
the same point are those having a factor of ε. Hence the eigenvalues of Mε

at (0, y0) are

λ = ±
√

ε(3a03y20 + a01), (18)

where ε 6= 0. Then the eigenvalues are zero only if we have (17), but we have
already shown that it is not possible. Therefore (0, y0) is a non-degenerate
singular point of Xε.

Finally we prove part (c). Assume that (0, y0) is a cusp of X0. First we
note that for ε 6= 0, due to (18), by a proper choice of sign of ε we can
assume that (0, y0) is a saddle of Xε. In addition, since (0, y0), which was a
cusp with index zero, is now a saddle having index -1, new singular points
must emerge in a neighborhood Wε of (0, y0) to keep the total index of the
vector field fixed. Because of the symmetry of the system, there can be
at most three new singular points in Wε so that the total number of finite
singular points does not exceed 9. Since Xε is Hamiltonian, these singular
points can only be saddles, centers or cusps. Therefore in Wε there are
additionally to the saddle at (0, y0) either (i) one center, (ii) one center and
one cusp, (iii) one center and two cusps, or (iv) two centers and one saddle.
Our claim is that (i) is the only realizable case and that (0, y0) is the saddle
of a center-loop.

Because of the continuity of system Xε with respect to ε, the new sep-
aratrices of (0, y0) must be arbitrarily close to (0, y0) for small ε, therefore
they cannot go to any other singular point outside Wε. Note that in all the
possibilities (i)− (iv), there exists a center with (0, y0) on the boundary of
its period annulus. Then we see that (0, y0) cannot be on the boundary of
the period annulus of the center at the origin. Otherwise we could find a
straight line l through the origin intersecting the boundary of the period
annulus of the new center twice, which would, in fact, have at least three
intersection points with the separatrices of (0, y0), the other being on the
boundary of the period annulus of the center at the origin, see Figure 8.
Then, due to the symmetry of the system with respect to the origin, there
would be six points on l all of which are on the same energy level. Clearly
this is not possible since the Hamiltonian Hε is a quartic polynomial.

Figure 8. The straight line through the origin intersects the
separatrices six times.

If (0, y0) is not on the boundary of the period annulus of the center at
the origin, then there must be other saddles on that boundary. This means
that system X0 has at least five finite singular points. This immediately
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eliminates the possibilities (iii) and (iv), otherwise the number of finite
singular points exceeds the maximum of 9. Furthermore, by the same argu-
ments used for (0, y0), the cusp in case (ii) would also lead to the existence
of more singular points. Therefore we dismiss case (ii) also, proving our
claim. �

We continue determining the finite singular points of system (III). When

b < 0, the infinite singular points on the Poincaré sphere are (±
√
6, 0) and

(0, 0) in U1, and also the corresponding points on V1. The origins of U1 and
V1 consist of two hyperbolic sectors, hence, by Theorem 11, have index 0.
The other four infinite singular points are nodes, hence each has index 1,
again due to Theorem 11. Among the finite singular points we only know
that the origins of U3 and V3 are centers with index 1. Hence, the known
singular points have total index 6 on the Poincaré sphere. By Theorem 12,
the remaining finite singular points, if any, must have total index -4. Thus,
on the Poincaré disk, the finite singular points other than the origin must
have total index -2.

We claim that system (III) has at most two degenerate singular points.
To prove it we need to show that (11a), (11b) and the determinant of the
linear part of system (III) cannot simultaneously vanish at more than two
points. We note that the linear part of system (III) is

M3 =





a− 6xy b− 3x2 + 3y2

3y2 − a2 + β2

b
−a+ 6xy



 .

We compute the Gröbner basis for these three equations and obtain a set
of sixteen equations. Two of these equations are

β4
(

a2 − 6b2 − 9by2 + β2
)

= 0, (19)

β2
(

162ab3x− y(4a4 − 57a2b2 + 36b4 + 8a2β2 + 24b2β2 + 4β4)
)

= 0. (20)

From equation (19) we get that there are at most two solutions for y. In
addition, since equation (20) is only linear in x, we deduce that the deter-
minant of M3 can be zero at no more than two singular points of system
(III). Then, by part (a) of Lemma 15, the unique degenerate finite singular
points of system (III) are at most two nilpotent singular points.

Having established the above claim, we continue with determining the
global phase portrait of system (III) in the case b < 0. By part (a) of
Lemma 15, the remaining finite singular points are either non-degenerate
or nilpotent, hence they are either saddles, centers or cusps. Recall that
system (III) can have at most four finite singular points other than the
origin. Then by Corollary 13, there must be either just two saddles, or two
saddles and two cusps so that they have total index -2.

If there were two saddles and two cusps, due to part (c) of Lemma 15,
after a small perturbation, there would be four saddles and two centers,
which is more than the maximum number of finite singular points allowed
by the system. Therefore, when b < 0, system (III) has only two saddles in
the finite region other than the origin. By the symmetry of the vector field,
the saddles are located on the boundary of the period annulus of the center
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at the origin. On the x-axis the Hamiltonian H3 is quadratic, hence the
separatrices through the saddles cannot cross the x-axis any more, therefore
we have the global phase portrait 1.4 of Figure 1.

When b > 0, on the other hand, the infinite singular points at the origins
of U1 and V1 consist of two elliptic and two parabolic sectors, hence each
have index 2. Together with the remaining nodes at the infinity and the
centers at the origins of U3 and V3, they have total index 10 on the Poincaré
sphere. So, on the Poincaré disk, the remaining finite singular points must
have total index -4. Then, by Corollary 13, there must be four other singular
points which are all saddles. Then on the boundary of the period annulus
of the center at the origin there are either two or four saddles.

Suppose first that all of the four saddles are on the boundary of the period
annulus of the center at the origin. Since b > 0, the flow around the center at
the origin is clockwise. Because the separatrices through the saddles cannot
cross the x-axis anymore, the global phase portrait 1.5 shown in Figure 1 is
obtained. We note that when the parameters a = 0 and b = β = 1, we get a
global phase portrait topologically equivalent to the portrait 1.5 of Figure 1.

Now assume there are only two saddles on the boundary of the period
annulus of the center. We claim that these saddles cannot be connected
to any of the other saddles. If this were the case, that is if one of these
saddles were connected to another saddle p which is not on the boundary
of the period annulus of the center, then, on the quadrant of the xy-plane
where p lies, a straight line l through the origin passing sufficiently close
to p would have at least three intersection points with the separatrices on
the same energy level as p (one with the boundary of the period annulus of
the center and at least two with the separatrices of p), see Figure 9 for an
example. Taking into account the symmetry of the vector field with respect
to the origin, the straight line l would have six intersection points with the
separatrices on the same energy level as p. This means that on the straight
line l, which could be defined by y = cx for some real number c, the equation
H3 = H(p) would have six solutions. But this is not possible as H3 is only
a fourth degree polynomial. Therefore the saddles on the boundary of the
period annulus of the center has to be connected with the infinite singular
points. Due to the fact that the separatrices through these saddles cannot
cross the x-axis anymore and the clockwise flow around the origin , we get
the global phase portrait 1.6 shown in Figure 1. A phase portrait in this
case is realized when −a = b = β = 1.

Figure 9. The straight line through the origin intersects the
separatrices six times.
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7. Global phase portraits of system (IV )

System (IV ) is defined by the equations

ẋ = ax+ by − 3x2y − y3, (21a)

ẏ = −a
2 + β2

b
x− ay + 3xy2, (21b)

and has the Hamiltonian

H4(x, y) = −y
4

4
− 3

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

In the local chart U1 system (IV ) writes

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ u2(u2 + 6),

v̇ = −v3 (bu+ a) + uv(u2 + 3).

(22)

When v = 0, the only singular point on U1 is (0, 0), at which the linear part
of the vector field is zero. Therefore to study the local behaviour at the
origin of U1 we do the blow-up (u, v) 7→ (u,w) with w = v/u. Eliminating
the common factor u between u̇ and ẇ, we obtain

u̇ = −uw2

(

bu2 + 2au+
a2 + β2

b

)

+ u(u2 + 6),

ẇ = w3

(

au+
a2 + β2

b

)

− 3w.

(23)

When u = 0, system (23) has three singular points:
(

0,±
√

3b/(a2 + β2)
)

, (0, 0).

The linear part of system (23) at the points (0, w) is






−a
2 + β2

b
w2 + 6 0

aw3 3
a2 + β2

b
w2 − 3






.

We see that when b < 0,
(

0,±
√

3b/(a2 + β2)
)

are not real, hence the only

singular point in U1 is the origin, which is a saddle. We see that the blow-up
analysis gives the same result as in the case b < 0 of system (III), hence
the local behavior at the origin of U1 consists of two hyperbolic sectors.

When b > 0 all three singular points are real. In addition to the saddle at

the origin, the points
(

0,±
√

3b/(a2 + β2)
)

are repelling nodes. The blow-

up of the origin gives the same information as in the case b > 0 of system
(III), and we see that the local behavior at the origin of U1 in this case
consists of two elliptic sectors and two parabolic ones.

In U2 system (IV ) is expressed as

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− 6u2 − 1,

v̇ = v3
(

a2 + β2

b
u+ a

)

− 3uv.
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The origin of U2 is not a singular point. Hence the only infinite singular
points are the origins of U1 and V1.

Now we investigate the finite singular points of this system. We know
that the origin is a center and we look for other singular points, if there
exists any. Again we first find the maximum number of such points allowed
by the system. Equating (21a) to zero and solving for x gives

x1,2 =
a±

√

a2 + 12by2 − 12y4

6y
. (24)

Note that when y = 0 we have x = 0 due to (21b), so we can assume y 6= 0.
Then we substitute (24) into (21b) and obtain

ẏ1,2 = −a
3 + 3aby2 + aβ2 ± (a2 + β2 − 3by2)

√

a2 + 12by2 + 12y2

6by
.

Then the product ẏ1ẏ2 is

3y6− 2a2 + 2β2 + 3b2

b
y4+

(a2 + β2)(a2 + β2 + 6b2)

3b2
y2− β2(a2 + β2)

3b
. (25)

We see that (25) is not identically zero, hence has at most six real roots.

We cannot efficiently compute the finite singular points of system (IV )
but we can show that the system has at most two degenerate singular points.
The linear part M4 of system (IV ) is

M4 =





a− 6xy b− 3x2 − 3y2

3y2 − a2 + β2

b
−a+ 6xy



 .

The process is exactly the same as in system (III). We consider the
system of three equations obtained by equating (21a), (21b) and the deter-
minant of M4 to zero. We pass to the Gröbner basis and see that two of the
sixteen equations are

β4
(

a2 + 6b2 − 9by2 + β2
)

= 0,

β2
(

162ab3x− y(4a4 + 57a2b2 + 36b4 + 8a2β2 − 24b2β2 + 4β4)
)

= 0.

These two equations yield that the determinant of M4 can be zero at most
at two points. Then, by part (a) of Lemma 15, we conclude that system
(IV ) has at most two nilpotent singular points.

We will now determine the finite singular points by considering the total
index of system (IV ) on the Poincaré sphere.

Case 1 (b < 0): When b < 0, the infinite singular points on the Poincaré
sphere are the origins of U1 and V1, each of which consists of two hyperbolic
sectors and hence has index 0 due to Theorem 11. Considering the finite
singular points, we know that the origins of U3 and V3 are centers, each
having index 1. So, for the moment, all known finite and infinite singular
points have total index 2. Then by Proposition 12, the remaining finite
singular points on the Poincaré disk should have total index 0. Since the
system has at most six such points, there are the following possibilities:
(i) no more finite singular points, (ii) two cusps, (iii) two saddles and two
centers, or (iv) two saddles, two centers and two cusps. Case (iv) cannot
occur because by Lemma 15, after a small perturbation, each cusp will
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produce two singular points, exceeding the maximum number of possible
finite singular points.

Consider case (iii). If we place the two saddles on the Poincaré disk, they
will be symmetric with respect to the origin and also be on the boundary
of the period annulus of the center at the origin. Moreover, these saddles
cannot be on the x-axis because when y = 0, equation (21b) is zero only
when x = 0, but the origin is known to be a center. Since the infinite
singular points have only hyperbolic sectors, there are only two possible
ways to construct the other two centers, see Figure 10:

Figure 10. Two saddles forming the two centers.

If the first figure is the case, then the x-axis cuts the separatrices through
these saddles four times, which is not possible since when y = 0 the Hamil-
tonian H4 is only quadratic in x. If the second figure is the case, then a
straight line through the origin passing sufficiently close to the saddles will
have six intersection points with the separatrices through the saddles (see
Figure 8). This also is not possible because H4 is a quartic polynomial on
this line, and consequently there can be at most four such points. So case
(iii) of two saddles and two centers cannot exist.

Note that applying Lemma 15 in case (ii) produces a system in case (ii)
and therefore case (ii) cannot exist either.

In short, when b < 0 there are no other finite singular points on the
Poincaré disk except the origin, and the global phase portrait is topologically
equivalent to the phase portrait 1.1 of Figure 1.

Case 2 (b > 0): In this case, the infinite singular points, which are the
origins of U1 and V1, consist of two elliptic and two parabolic sectors. By
Proposition 11, each has index 2. Together with the centers at the origins of
U3 and V3, their total index on the Poincaré sphere is 6. This means that in
the Poincaré disk, the remaining finite singular points must have total index
-2. Then we have the following three possibilities: (i) two saddles, (ii) two
saddles and two cusps, or (iii) four saddles and two centers.

Consider case (i). The two saddles are of course symmetric with respect
to the origin and are on the boundary of the period annulus of the center at
the origin. As in the case b < 0, they cannot be on the x-axis. Since H4 is
quadratic on the x-axis, the separatrices through these saddles cannot cross
it, hence the saddles must be connected with the infinite singular points,
and we obtain the global phase portrait which is topologically equivalent
to the phase portrait 1.2 of Figure 1. For the values 2a = b = β = 1 a
topologically equivalent phase portrait is achieved.

Now consider case (iii). There may be either two or four saddles on the
boundary of the period annulus of the center at the origin.
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Assume first that the four saddles are on the boundary of the period
annulus of the center at the origin. Because of the symmetry of the system,
two of them will be above the x-axis and two will be below because the
only singular point lying on the axes is the origin. Remember that the
separatrices through the saddles cannot cross the x-axis anymore. So there
must be a separatrix connecting the saddles which are on the same side of
the x-axis. Moreover, the remaining separatrices of the two saddles which
are on the same side of the x-axis must go to different infinite singular
points. If they went to the same point, then the y-axis would intersect
the separatrices of these saddles, which are all on the same energy level, six
times (three below the x-axis and three above). However, this is not possible
since H4 is quartic in y on the y-axis. Therefore we get the global phase
portrait 1.7 shown in Figure 1. Such a phase portrait is obtained if a = 0
and b = β = 1.

Assume now that only two of the saddles are on the boundary of the
period annulus of the center at the origin. Just as in the case b > 0 of
system (III), the saddles on this boundary cannot be connected to other
saddles (see Figure 9). Then, taking into account that the separatrices of
the saddles on this boundary cannot cross the x-axis anymore, we see that
these saddles must be connected with the infinite singular points, and the
separatrices of these saddles are as shown in Figure 11. We next claim that
the centers must be inside the region enclosed by the separatrices connecting
the saddles on the boundary of the period annulus of the center at the
origin with the infinite singular points. Suppose this were not the case, i.e.
suppose that a center were in the region outside the previously mentioned
area. Because of the flow in these regions, one of the remaining saddles must
also be in the same region. Moreover, the saddle must be on the boundary
of the period annulus of this center. But then a straight line through the
origin passing sufficiently close to the saddle and intersecting this boundary
twice would also intersect another separatrix of the saddle because of the
flow, see Figure 11. So, by the symmetry, this straight line would have six
intersection points with the separatrices on the same energy level, which is
impossible. This proves our claim about the location of the centers. Then
again the remaining saddles must be on the boundaries of these centers.
Therefore the global phase portrait is the one 1.8 of Figure 1. A phase
portrait in this case is realized when a = 2/5 and b = β = 1.

Remark 16. In fact a center-loop may exist in any one of the vector fields
(I) − (V I) only if a straight line l1 passing through the origin and the
saddle of the center-loop intersects the separatrices of the saddle exactly
at one point, the saddle itself. Otherwise one can find another straight
line l2 passing through the origin and sufficiently close to the saddle of the
center-loop such that the number of intersection points is at least three, see
Figure 12. Then, by the symmetry of these systems, l2 would intersect the
separatrices on the same energy level at six points, which is impossible since
the systems are cubic.

Finally we consider case (ii). Due to Lemma 15, case (ii) will produce
a system in case (iii) after a small perturbation. Consequently, the global
phase portrait in this case is topologically equivalent to that 1.9 shown in
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Figure 11. The center cannot be outside the region enclosed by
the separatrices of the saddles.

l1
l2

l1l2
l2′

Figure 12. Center-loop configuration.

Figure 1. We note that as a result of the fact that system III attains the
global phase portraits 1.2 when a = 0.5, b = β = 1 and 1.8 when a = 0.4,
b = β = 1, we deduce that case (ii) exists when b = β = 1 and a is between
0.4 and 0.5.

8. Global phase portraits of system (V )

We remind that system (V ) is

ẋ = ax+ by − 3µx2y + y3, (26a)

ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2, (26b)

with the Hamiltonian

H5(x, y) =
y4 − x4

4
− 3µ

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.
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As in the previous systems, we first investigate the infinite singular points
of system (V ). On the local chart U1 we have

u̇ =− v2
(

bu2 + 2au+
a2 + β2

b

)

− u4 + 6µu2 + 1,

v̇ =− v3(bu+ a)− vu(u2 − 3µ).

(27)

When v = 0, the u-coordinates of the singular points are±
√

3µ±
√

9µ2 + 1.

Of these four points, only
(

±
√

3µ+
√

9µ2 + 1, 0
)

are real. The linear part

of (27) when v = 0 is
(

−4u(u2 − 3µ) 0
0 −u(u2 − 3µ)

)

,

so that the eigenvalues at those singular points are both negative if u > 0,

and positive if u < 0. Hence the points
(

√

3µ+
√

9µ2 + 1, 0
)

and
(

−
√

3µ+
√

9µ2 + 1, 0
)

are attracting and repelling nodes respectively.

In U2 system (V ) becomes

u̇ =v2
(

a2 + β2

b
u2 + 2au+ b

)

− u4 − 6µu2 + 1,

v̇ =v3
(

a2 + β2

b
u+ a

)

− vu(u2 + 3µ),

and we see that the origin is not a singular point. Hence system (V ) has
four infinite singular points, all of which are on U1 and are nodes.

Now we shall discuss the finite singular points. By Bezout’s theorem, the
system has at most nine isolated finite singular points. To see if there are
any non-isolated singularities we compute the resultant of (26a) and (26b)
with respect to x and see that the numerator is

b2(1 + 9µ2)2y9 + 3b(1 + 9µ2)(b2 − 2a2µ− 2β2µ+ 3b2µ2)y7

+3(b4 − 4b2β2µ+ 3a4µ2 + 6b4µ2 + 6a2β2µ2 + 3β4µ2 − 18a2b2µ3 − 18b2β2µ3)y5

−b(a4 − b4 + a2β2 − 6a2b2µ+ 6b2β2µ− 9a2β2µ2 − 9β4µ2)y3 − a2b2β2y,

which cannot be identically zero since the coefficient of y9 is always positive.
Hence we conclude that all of the finite singular points, if any, are isolated.

We know that the origin is a center, which leaves us with eight more
possible singularities. On the Poincaré sphere, the total index of the infinite
singular points is 4. Together with the centers at the origins of U3 and V3,
their total index becomes 6. Thus, on the Poincaré disk, we need to get a
total index of -2 from the possible eight finite singular points.

We claim that system (V ) has at most two nilpotent singularities in the
finite region of the Poincaré disk. For the proof we consider the Gröbner
basis of the polynomials (26a), (26b) and the determinant of the linear part
of the system. Similar to the situation in system (III), we see that there
exist two polynomials, one linear in x and another quadratic in y having no
x variable. This proves the claim.
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Having established the above claim, we see that the finite singular points
of system (V ) other than the origin can be (i) two saddles, (ii) two saddles
and two cusps, (iii) four saddles and two centers, or (iv) four saddles, two
centers and two cusps.

Case (iv) cannot occur because due to Lemma 15, it would require another
case with two more finite singular points which is not possible.

Before studying the other cases we remark that without loss of generality
we can assume b > 0. If we do the linear transformation (x, y) 7→ (−y,−x),
system (V ) becomes

−ẏ = −ay − bx+ 3µy2x− x3,

−ẋ =
a2 + β2

b
y + ax− y3 − 3µyx2,

which can be rewritten as

ẋ = −ax− a2 + β2

b
y + 3µx2y + y3,

ẏ = bx+ ay + x3 − 3µxy2.

(28)

After defining ā = −a, µ̄− µ, and b̄ = (a2 + β2)/b, we see that system (28)
is basically system (V ) with b 7→ −b. So, we assume b > 0.

Consider case (i). The two saddles must be on the boundary of the
period annulus of the center at the origin. Their remaining separatrices
cannot cross the straight lines passing through the origin and the infinite

singular points, namely y = ±
√

3µ+
√

9µ2 + 1x, because the Hamiltonian

H5 is quadratic on these lines. Then, due to the flow at infinity, we get a
global phase portrait which is topologically equivalent to 1.3 of Figure 1.
We remark that this phase portrait is achieved for the values a = b = β = 1
and µ = 0.

Similar to the previous systems, in case (iii) there are two possibilities.

Assume first that the four saddles are on the boundary of the period
annulus of the center at the origin. Since the infinite singular points are
nodes, the centers can only be created by connecting two adjacent saddles.
Since we have b > 0, the flow around the origin clockwise. In addition,
the remaining separatrices of any of the saddles must lie on different sides
of the straight line passing through that saddle and the origin, otherwise
there would exist another straight line through the origin intersecting both
separatrices in six intersection points in the same energy level. Then the flow
at infinity ensures that the remaining two centers are formed by connecting
adjacent saddles which lie on the same side of the y-axis. Recalling from
case (i) that the remaining separatrices of these saddles cannot cross the

lines y = ±
√

3µ +
√

9µ2 + 1x passing through the origin and the infinite

singular points, we get the global phase portrait 1.10 in Figure 1. This phase
portrait is actually realized when a = 0 and b = β = µ = 1, for instance.

Assume now that only two of the saddles are on the boundary of the period
annulus of the center at the origin. These saddles cannot be connected by
a separatrix with each other since their separatrices cannot cross the lines
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y = ±
√

3µ+
√

9µ2 + 1x anymore. Their separatrices can neither return

to the same saddles (see Figure 8) nor go to one of the other two saddles
(see Figure 9). Therefore they must go to the infinite singular points like
in case (i). Moreover, because of the symmetry of system (V ) and the flow,
the remaining finite singular points must be symmetric with respect to the
origin, and also there must be a saddle on the boundary of the period annulus
of each of the centers, creating a center-loop. Due to Remark 16 we made
earlier, these center-loops can appear only in one of the regions indicated
in Figure 13 (see also Figure 11). Therefore, up to topological equivalence,
the global phase portrait 1.11 of Figure 1 is obtained. A realization of this
phase portrait is achieved when a = b = β = µ = 1.

(1)

(2)

(1)′

(2)′

Figure 13. Location of the center-loop in system (V ).

Lastly we investigate case (ii). Since, by Lemma 15, case (ii) leads to a
system in case (iii) after a small perturbation, we conclude that the phase
portrait is the one 1.12 shown in Figure 1. Due to the fact that the global
phase portrait 1.3 is obtained when a = b = β = 1 and µ = 0, and 1.11 if
a = b = β = µ = 1, a realization of the phase portrait 1.12 a = b = β = 1
for some µ between 0 and 1 is ensured.

9. Global phase portraits of system (V I)

System (V I)

ẋ = ax+ by − 3µx2y − y3, (29a)

ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2, (29b)

has the Hamiltonian

H6(x, y) = −y
4 + x4

4
− 3µ

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.
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In the local chart U1 system (I) writes

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ u4 + 6u2µ+ 1,

v̇ = −v3(a+ bu) + vu(u2 + 3µ).

(30)

When v = 0, the singular points of system (30) are
(

±
√

−3µ±
√

9µ2 − 1, 0
)

.

Therefore, in U1 there are four singular points if µ < −1/3, two if µ = −1/3,
and none if µ > −1/3.

In U2 system (V I) becomes

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− u4 − 6u2µ− 1,

v̇ = v3
(

a+
a2 + β2

b
u

)

− vu(u2 + 3µ),

and we see that the origin is not a singular point. Hence all the infinite
singular points are on the local charts U1 and V1. The existence of these
singular points depend on the parameter µ, so we will investigate the phase
portraits of system (V I) in corresponding subcases.

We first we make two remarks here. One is that just like in system (III),
we can show using Gröbner basis that at most two of the finite singular
points of system (V I) can be nilpotent. Secondly, system (V I) has non-
isolated finite singular points only when a = 0, µ = 1/3, and b = β > 0.
The proof is as follows: The numerator of the resultant of (29a) and (29b)
with respect to x is

b2(3µ − 1)2(1 + 3µ)2y9 − 3b(3µ − 1)(1 + 3µ)(2a2µ+ 2β2µ+ 3b2µ2 − b2)y7

3
(

b4 − 4b2β2µ+ (3a4 − 6b4 + 6a2β2 + 3β4)µ2 + (18a2b2 + 18b2β2)µ3
)

y5

−b(a4 + b4 + a2β2 + 6a2b2µ− 6b2β2µ+ 9a2β2µ2 + 9β4µ2)y3 + a2b2β2y.
(31)

For (31) to be identically zero, we need a = 0 so that the coefficient of y is
zero. Then (31) simplifies to

−b2(−1 + 3µ)2(1 + 3µ)2y9 + 3b(−1 + 3µ)(1 + 3µ)(−b2 + 2β2µ+ 3b2µ2)y7

−3(b2 − 3µβ2)(−b2 + β2µ+ 6b2µ2)y5 + b(b2 − 3µβ2)2y3.

Since b 6= 0, coefficients of y3 and y9 imply that we must have µ = 1/3 and
b2 = β2. But when a = 0 and µ = 1/3 (29a) becomes y(b−x2−y2), meaning
that b must be positive, hence b = β. This finishes the proof.

9.1. The case µ < −1/3. In this case all of the four singular points
(

±
√

−3µ±
√

9µ2 − 1, 0
)

are real. The linear part of system (30) on v = 0 is
(

4u(u2 + 3µ) 0
0 u(u2 + 3µ)

)

.

Hence, in U1,
(

√

−3µ+
√

9µ2 − 1, 0
)

and
(

−
√

−3µ−
√

9µ2 − 1, 0
)

are re-

pelling nodes, whereas
(

√

−3µ−
√

9µ2 − 1, 0
)

and
(

−
√

−3µ+
√

9µ2 − 1, 0
)
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are attracting ones. The corresponding points on V1 have the same proper-
ties since the degree of the vector field is odd.

We will now study the finite singular points. When µ < −1/3, we claim
that, system (V I) can have at most six finite singular points on U3 other
than the origin. For this we first show that without loss of generality we
can assume b > 0. If we do the transformation (x, y) 7→

(

(x − y)/
√
2, (x +

y)/
√
2
)

= (X,Y ), i.e. rotation by π/4, then system (V I) becomes

Ẋ =
a2 − b2 + β2

2b
X +

(a+ b)2 + β2

2b
Y − 3− 3µ

2
X2Y − 1 + 3µ

2
Y 3,

Ẏ = −(a− b)2 + β2

2b
X − a2 − b2 + β2

2b
Y +

3− 3µ

2
XY 2 +

1 + 3µ

2
X3.

After the rescale dT = (1 + 3µ)/2 dt, which is well defined since µ < −1/3,
we finally get the system

Ẋ =
a2 − b2 + β2

b(1 + 3µ)
X +

(a+ b)2 + β2

b(1 + 3µ)
Y − 3− 3µ

(1 + 3µ)
X2Y − Y 3,

Ẏ = −(a− b)2 + β2

b(1 + 3µ)
X − a2 − b2 + β2

b(1 + 3µ)
Y +

3− 3µ

(1 + 3µ)
XY 2 +X3.

(32)

If we define the variables

ā =
a2 − b2 + β2

b(1 + 3µ)
, b̄ =

(a+ b)2 + β2

b(1 + 3µ)
, µ̄ =

1− µ

1 + 3µ
,

then system (32) can be rewritten as

Ẋ = āX + b̄Y − 3µ̄X2Y − Y 3,

Ẏ = − ā
2 + β2

b̄
X − āY + 3µ̄XY 2 +X3.

(33)

Note that µ̄ is monotone decreasing in µ, and that µ̄ < −1/3. Hence system
(33) is essentially system (V I) with bb̄ < 0, which proves our claim that we
can assume b > 0. Now we will determine the maximum number of finite
singular points.

First suppose that a = 0. Then system (V I) becomes

ẋ = by − 3µx2y − y3, ẏ = −β
2

b
x+ x3 + 3µxy2.

If we solve for y in the equation ẋ = 0, we get either y = 0 or y =

±
√

b− 3µx2. When we substitute either of the latter two values of y into ẏ
we get

ẏ = x

(

(1− 3µ)(1 + 3µ)x2 + 3bµ− β2

b

)

,

which is zero if and only if x = 0 since b > 0 and µ < −1/3. Substituting
y = 0 into ẏ, however, gives ẏ = x(x2 − β2/b), which is zero when x = 0 or

x = ±
√

β2/b. Therefore, when a = 0, there are at most four finite singular

points other than the origin, namely (0,±
√

b− 3µx2), (±
√

β2/b, 0).
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Now we consider a 6= 0. If we equate (29a) to zero and solve for x we
obtain

x1,2 =
a±

√

a2 + 12bµy2 − 12µy4

6µy
.

Note that when y = 0, (29a) becomes ẋ = ax which is zero only if x = 0
because a 6= 0. So we can assume y 6= 0 because we are looking for points
other than the origin. Since µ < −1/3, both x1 and x2 are well defined. If
we substitute these into (29b) we get

ẏ1,2 =
1

216by3µ3
(

4a3b− 36ay2µ(−b2 + a2µ+ β2µ)− 36aby4µ(1 + 3µ2)

+
√

a2 + 12by2µ− 12y4µ
(

4a2b+ 12by4µ(−1 + 3µ)(1 + 3µ)

+ 12y2µ(b2 − 3a2µ− 3β2µ)
))

.

Then the maximum number of roots of the product ẏ1ẏ2 will be the maxi-
mum number of finite singular points of system (V I) other than the origin.
The numerator of the product ẏ1ẏ2 is

b2y9(3µ − 1)2(1 + 3µ)2 − 3by7(3µ − 1)(1 + 3µ)(2a2µ+ 2β2µ+ 3b2µ2 − b2)

+3y5
(

b4 − 4b2β2µ+ µ2(3a4 − 6b4 + 6a2β2 + 3β4) + µ3(18a2b2 + 18b2β2)
)

−by3(a4 + b4 + a2β2 + 6a2b2µ− 6b2β2µ+ 9a2β2µ2 + 9β4µ2) + a2b2yβ2.
(34)

Note that this is exactly the negative of the resultant (31). Since we are not
interested in the solution y = 0, we can eliminate the common factor of y.
Then (34) becomes an eighth order polynomial containing only even powers
of y. So, with the change z = y2, we can rewrite (34) as

b2(3µ − 1)2(1 + 3µ)2z4 − 3b(3µ − 1)(1 + 3µ)(2a2µ+ 2β2µ+ 3b2µ2 − b2)z3

+3
(

b4 − 4b2β2µ+ µ2(3a4 − 6b4 + 6a2β2 + 3β4) + µ3(18a2b2 + 18b2β2)
)

z2

−b(a4 + b4 + a2β2 + 6a2b2µ− 6b2β2µ+ 9a2β2µ2 + 9β4µ2)z + a2b2β2.
(35)

Then the maximum number of roots of (34) is equal to the maximum number
of positive roots of (35), which can be determined by the Descartes’ rule of
signs. First of all, the coefficient of z4 is positive. So (35) can have four
positive roots only if the coefficients of z3 and z2 are negative and positive,
respectively. This can happen if and only if

A = −b2 + 2a2µ+ 2β2µ+ 3b2µ2 > 0, (36)

B = −b4 + 4b2β2µ− 3
(

(a2 + β2)2 − 2b4
)

µ2 − 18b2(a2 + β2)µ3 < 0, (37)

because we have b > 0 and µ < −1/3. We see that A, when considered
as a polynomial in µ, has one negative and one positive root. Then, since
µ < −1/3 and limµ→−∞A = +∞, we have A > 0 when µ is less than the
negative root

µ0 = −a
2 + β2

√

a4 + 3b4 + 2a2β2 + β4

3b2
.

On the other hand, if we apply Descartes’ sign of rules to B, again when
considered as a polynomial in µ, we see that it also has only one negative
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root, say µ1. The limit limµ→−∞B = +∞ also. So B > 0 when µ < µ1. In
addition, since B = −b4 < 0 when µ = 0, we have B < 0 when µ1 < µ < 0.
If we evaluate B at µ0, we get

1

3b4
(

6(a2 + β2)4 + b4(19a4 + 3b4 + 34a2β2 + 15β4)

+ 2
(

3(a2 + β2)3 + b4(5a2 + 3β2)
)
√

a4 + 3b4 + 2a2β2 + β4
)

> 0.

This means that µ0 < µ1. But then, when A > 0, that is when µ < µ0, we
have B > 0, meaning that (36) and (37) cannot hold together. Hence (35)
cannot have four positive roots, which in turn implies that system (V I) can
have at most six, but not eight, finite singular points other than the origin.

We saw that when µ < −1/3, system (V I) has eight nodes for infinite
singular points on the Poincaré sphere. Together with the centers at the
origins on the upper and lower hemispheres, their total index is 10. Hence,
the total index of the remaining finite singular points on the Poincaré disk
must be -4. Therefore there are only two possibilities: either (i) four saddles,
or (ii) four saddles and two cusps. But by Lemma 15, case (ii) cannot exist.
Hence we are only left with (i).

We first assume that there are only two saddles on the boundary of the
period annulus of the center at the origin. As in system (III), these saddles
cannot be connected with the other saddles, see Figure 9. So they must
be connected directly with an infinite singular point because there are no
other finite singular points. Moreover, the remaining separatrices of these

saddles cannot cross the straight lines y =
(

±
√

−3µ±
√

9µ2 − 1x
)

which

pass through the origin and the infinite singular points. This is due to the
fact that on these lines the Hamiltonian H6 becomes

x2

2

(

a2 + β2

b
+ b(−3µ ±

√

9µ2 − 1)± 2a

√

−3µ±
√

9µ2 − 1

)

,

which is quadratic so that H6 = c has at most two real roots for any c = R.
In addition, there cannot be any singular points on these lines. On y =

−
√

−3µ−
√

9µ2 − 1x the finite singular points of system (V I) are given by

the equations

ẋ =

(

a+ b

√

−3µ−
√

9µ2 − 1

)

x

+
√

9µ2 − 1

√

−3µ−
√

9µ2 − 1x3 = 0

, (38a)

ẏ =−
(

a2 + β2

b
+ a

√

−3µ−
√

9µ2 − 1

)

x

+
√

9µ2 − 1(−3µ −
√

9µ2 − 1)x3 = 0

, (38b)

If we multiply (38a) by

√

−3µ−
√

9µ2 − 1 and then subtract if from (38b)
we get

−a
2 + β2

b
+ b(3µ +

√

9µ2 − 1) = 0,
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which holds only when x = 0 because the coefficient of x2 is strictly negative
due to the fact that we have b > 0 and µ < −1/3. Similar calculations give

the same result for the straight line y =

√

−3µ−
√

9µ2 − 1x.

Having established the above properties, we get the global phase portrait
1.13 of Figure 1. This phase portrait is realized for the values a = −b = β =
−µ = 1.

Next we assume that all of the saddles are on the boundary of the period
annulus of the center at the origin. Because there are no other finite singular
points and the remaining separatrices of the saddles cannot cross the straight
lines passing through the origin and the infinite singular points, all the
saddles must go to the infinite singular points as shown in the global phase
portrait 1.14 of Figure 1. If, for instance, a = 0 and b = β = −µ = 1, one
actually obtains a topologically equivalent phase portrait. This finishes the
case µ < −1/3.

9.2. The case µ = −1/3. When µ = −1/3 the linear part of system (30)
at both of the singular points (±1, 0) is zero. So we need blow-ups to un-
derstand the local behavior at these points. We will do the computations
for the point (1, 0), and the other point (−1, 0) can be studied in the same
way.

First we move (1, 0) to the origin by the shift u 7→ u + 1, and get the
system

u̇ = u2(u+ 2)2 − v2
(

bu2 + 2(a+ b)u+ 2a+ b+
a2 + β2

b

)

,

v̇ = uv(u+ 1)(u+ 2)− v3(bu+ a+ b).

Now if we do the blow-up (u, v) 7→ (u,w) with w = v/u and eliminate the
common factor u, we get the system

u̇ = u(u+ 2)2 − uw2

(

bu2 + 2(a+ b)u+ 2a+ b+
a2 + β2

b

)

,

ẇ = −w(u+ 2) + w3

(

(a+ b)u+ 2a+ b+
a2 + β2

b

)

.

(39)

We see that in system (39), when u = 0 we have ẇ = 0 if and only if w = 0
or

w = ±
√
2

√

2a+ b+
a2 + β2

b

= ±
√
2b

√

(a+ b)2 + β2
.

So, on the w-axis, system (39) has one singular point if b < 0, and three
otherwise. The linear part of system (39) when u = 0 is









4−
(

2a+ b+
a2 + β2

b

)

w2 0

−w + w3(a+ b) −2 + 3

(

2a+ b+
a2 + β2

b

)

w2









.

Hence the origin is a saddle, whereas the other two singular points, when
they exist (depending on the sign of the parameter b), are repelling nodes.
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Therefore the local phase portrait at the singular point (1, 0) of system (30),
similar to that of system (III) at the origin of U1 (see Figure 5 and Figure 6),
consists of two hyperbolic sectors when b < 0, and two parabolic and two
elliptic ones when b > 0.

Performing the same procedure for the point (−1, 0) reveals that the local
behavior around this point is the same as that of (1, 0) with the direction of
the flow reversed.

Now we analyze the finite singular points. We will show that in this case
also system (V I) can have at most six finite singular points other than the
origin. When y 6= 0, the number of finite singular points is given by the
number of roots of (34), which is at most four since µ = −1/3. When y = 0,
on the other hand, system (V I) becomes

ẋ = ax,

ẏ = x

(

x2 − a2 + β2

b

)

,

which has at most two finite singular points other than the origin, proving
the claim.

Next we count the indices of the singular points. We note that in this
case we have to distinguish the phase portraits when b < 0 and when b > 0.

Case 1 (b < 0): In this case the infinite singular points and the centers
at the origins of U1 and V1 have a total index of 2 on the Poincaré sphere.
Hence, in the Poincaré disk, the total index of the remaining possible six
finite singular points must be 0. Then, other than the origin, there are either
(i) no more singular points, (ii) two cusps, (iii) 2 saddles and 2 centers, (iv)
2 saddles, 2 centers and 2 cusps.

We can immediately eliminate case (iv) since by Lemma 15, it would
require the existence of a case with eight such points which is not possible.
The global phase portrait in case (i) is also immediate, see the phase portrait
1.15 in Figure 1.

Consider case (iii). The two saddles must be on the boundary of the
period annulus of the center at the origin. Note that they cannot be located
on the straight lines y = ±x which pass through the origin and the infinite
singular points. On y = x, for instance, system (V I) becomes

ẋ = (a+ b)x,

ẏ = −
(

a2 + β2

b
+ a

)

x,

and both polynomials are zero only when x = 0, which implies that the
only finite singular point on the straight line y = x is the origin. The same
holds for the straight line y = −x. Moreover, the remaining separatrices of
these saddles neither can return the same point, see Figure 8, nor can cross
y = ±x because on the lines y = ±x the Hamiltonian H6 becomes

H6 =
(a± b)2 + β2

2b
x2,

meaning that it can have the same fixed value at most at two points. This
means that those separatrices must go to infinite singular points, yet the
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infinite singular points only have hyperbolic sectors. Therefore case (iii) is
eliminated too.

Since case (ii) cannot exist without case (iii), the only global phase por-
trait of system (V I) when µ = −1/3 and b < 0 is the one in case (i).

Case 2 (b > 0): When b > 0 the total index of the infinite singular
points and the finite centers on the Poincaré sphere is 10. Hence the total
index of the remaining finite singular points on the Poincaré disk must be
-4. Since there are at most six such points, by Lemma 15 there has to be
four saddles.

We first consider the possibility that only two of the saddles are on the
boundary of period annulus of the center at the origin. As always, these
saddles cannot be connected with the remaining two. So, they must go to
the infinite singular points. Remember that these saddles are not on the
straight lines y = ±x, and that their separatrices cannot cross these lines
anymore. Then, in accordance with the fact that the infinite singular points
have elliptic sectors, the global phase portrait follows, see 1.16 in Figure 1.
Setting a = b = β = 1 provides a realization of such a phase portrait.

If all of the saddles are on the boundary of the center at the origin, then
due to the same reasons in the previous case, the global phase portrait 1.17
of Figure 1 is obtained. This phase portrait is achieved for a = 0 and
b = β = 1.

9.3. The case µ > −1/3. Finally, when µ > −1/3, system (V I) has no

infinite singular points since −3µ±
√

9µ2 − 1 is not real when −1/3 < µ <
1/3, and is negative when µ ≥ 1/3.

As for the finite singularities, since we already have the centers at the
origins of U3 and V3 on the Poincaré sphere, the total index of the remaining
possible eight finite singular points on the Poincaré disk must be 0. Hence
we have the following possibilities: (i) no singular points, (ii) 2 cusps, (iii)
two saddles and two centers, (iv) two saddles, two centers, and two cusps,
(v) four saddles and four centers. Of course if µ = 1/3, there are non-isolated
singular points when a = 0 and b = β, so we will study this case separately.
Note that case (ii) is immediately discarded by the proof of statement (c)
of Lemma 15 showing that there cannot be a cusp on the boundary of the
period annulus of the center at the origin.

Case (i) can occur only if b < 0 so that the flow around the origin and
the infinity match. Then we easily get the phase portrait 1.18 of Figure 1.
A realization of this phase portrait is attained when a = −b = β = µ = 1.

In case (iii) both of the saddles must be on the boundary of the period
annulus of the center at the origin, as usual. Then, the centers can only
be created if different saddles are connected once again, to avoid having six
points on a straight line through the origin which are on the same energy
level, see Figure 8. Hence the phase portrait turns out to be topologically
equivalent to 1.19 as shown in Figure 1. One actually obtains such a phase
portrait if a = b = β = 1 and µ = 0.

Next we consider case (v). Assume first that all four saddles are on the
boundary of the period annulus of the center at the origin. The remaining
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separatrices of any of the saddles must be on different sides of the straight
line passing through that sadle and the origin, or else one could find a
straight line l through the origin, passing close enough to the saddle and
intersecting three of the separatrices of the saddle, which would, taking into
account the symmetry, lead to the existence of six points on l which are all
in the same energy level. Consequently we obtain the global phase portrait
1.20 of Figure 1. If we take a = 0, b = β = 1 and µ = −1/4, we get the
phase portrait 1.20 up to topological equivalence.

Now assume that only two of the saddles are on the boundary of the period
annulus of the center at the origin. These saddles cannot be connected
with the other saddles, see Figure 9. Since there are no infinite singular
points and Figure 8 is not allowed, their remaining separatrices must coincide
symmetrically with respect to the origin. For the remaining two saddles we
have two possibilities on their locations: they are either outside the region
enclosed by the separatrices of the saddles which are on the boundary of
the period annulus of the center at the origin, or inside. Assume that they
are outside. If each of them had two separatrices that returned to the same
point, there would be a total of six centers in the Poincaré disk, two more
than the actual number. So, these saddles must be connected with each
other at least once. Then, just like the saddles around the origin, their
remaining separatrices must also coincide in order to avoid Figure 8. Then,
because of the counterclockwise flow at infinity, we must have b < 0. This
means that on the positive y-axis (29a) becomes ẋ = by − y3 < 0 which
contradicts the phase portrait. Hence the assumption that these saddles are
outside the region enclosed by the separatrices of the saddles around the
origin is false. Therefore they must be inside, and we have the global phase
portrait 1.21 of Figure 1. The values a = b = β = 1 and µ = −1/4 provides
a realization of this phase portrait.

Consider case (iv). By Lemma 15 it would lead to the global phase
portrait in case (v). Therefore the only possibility is that the global portrait
in this case must be the one 1.22 of Figure 1. The facts that the global phase
portrait 1.19 is obtained when a = b = β = 1 and µ = 0, and that 1.21 is
achieved if a = b = β = 1 and µ = −1/4 lead to the conclusion that the
phase portrait 1.22 is realized when a = b = β = 1 for some µ between 0
and -1/4.

Finally we consider the case µ = 1/3, a = 0 and b = β. In this case
system (V I) becomes

ẋ =y(β − x2 − y2),

ẏ =x(−β + x2 + y2).

We see that other than the origin, the circle x2 + y2 = β is a set of non-
isolated singular points. Then the phase portrait 1.23 of Figure 1 is easily
obtained.
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[6] J. Chazy, “Sur la thèorie de centres”, C. R. Acad. Sci. Paris 221 (1947), 7-10.
[7] F. Chen, C. Li, J. Llibre and Z. Zhang “A unified proof on the weak Hilbert 16th

problem for n=2”, J. Differential Equations 221 (2006), 309-342.
[8] A. Cima and J. Llibre, “Algebraic and topological classification of the homogeneous

cubic vector fields in the plane”, J. Math. Anal. and Appl. 147 (1990), 420-448.
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