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BIFURCATION DIAGRAMS FOR HAMILTONIAN

NILPOTENT CENTERS OF LINEAR PLUS CUBIC

HOMOGENEOUS POLYNOMIAL VECTOR FIELDS

ILKER E. COLAK, JAUME LLIBRE, AND CLAUDIA VALLS

Abstract. Following the work done in [8] we provide the bifurcation
diagrams for the global phase portraits in the Poincaré disk of all Hamil-
tonian nilpotent centers of linear plus cubic homogeneous planar poly-
nomial vector fields.

1. Introduction

To distinguish when a singular point of a real planar polynomial differen-
tial system is a focus or a center is one of the main problems in the qualitative
theory of differential systems. The definition of a center mainly goes back
to Poincaré, who in [17] defines a center for a vector field on the real plane
as a singular point having a neighborhood filled with periodic orbits with
the exception of the singular point.

There are three types of centers for analytic differential systems. An
analytic system having a center can be written in one of the following forms
after an affine change of variables and a rescaling of the time variable:

ẋ = −y + P (x, y), ẏ = x + Q(x, y), called a linear type center,
ẋ = y + P (x, y), ẏ = Q(x, y), called a nilpotent center,
ẋ = P (x, y), ẏ = Q(x, y), called a degenerate center,

where P (x, y) and Q(x, y) are real analytic functions without constant and
linear terms, defined in a neighborhood of the origin. Poincaré [18] and
Lyapunov [14] provide an algorithm for the characterization of linear type
centers, see also Chazy [5] and Moussu [16]. There is also an algorithm for
the characterization of nilpotent and some class of degenerate centers due
to Chavarriga et al. [4], Cima and Llibre [6], Giacomini et al. [10], and Giné
and Llibre [11].

The study of centers of polynomial differential systems started with the
characterization of the centers of quadratic ones, and these studies are his-
torically traced back to mainly Kapteyn [12, 13] and Bautin [1]. For more

recent works see Schlomiuk [19] and Żo la̧dek [24]. Even though the cen-
ters of polynomial differential systems with degrees higher than 2 are not
classified completely, there are many partial results. For instance the linear
type centers of cubic polynomial differential systems of the form linear with
homogeneous nonlinearities of degree 3 were characterized by Malkin [15],
and by Vulpe and Sibiirski [22]. On the other hand, for systems with higher
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degree homogeneous nonlinearities the linear type centers are not fully char-
acterized, but see Chavarriga and Giné [2, 3] for some of the main results.
Despite these advances the path to characterize and classify the centers of
all polynomial differential systems of degree 3 and greater is long. We note
that there are some interesting results in some subclasses of cubic systems
due to the works of Rousseau and Schlomiuk [20], and Żo la̧dek [25, 26].

In [21] Vulpe provides all the global phase portraits of quadratic poly-
nomial differential systems having a center. Then the bifurcation diagrams
for the global phase portraits of these systems is given in [19]. The global
phase portraits of linear type and nilpotent centers of polynomial differen-
tial systems having linear plus cubic homogeneous terms are presented in [7]
(see also [9]) and in [8] respectively. In this work we provide the bifurcation
diagrams for the global phase portraits of the latter.

We say that two vector fields on the Poincaré disk are topologically equiv-
alent if there exists a homeomorphism from one onto the other which sends
orbits to orbits preserving or reversing the direction of the flow. In [8] the
global phase portraits on the Poincaré disk of all Hamiltonian planar poly-
nomial vector fields with only linear and cubic homogeneous terms having
a nilpotent center at the origin are given by the following theorem:

Theorem 1. A Hamiltonian planar polynomial vector field with linear plus
cubic homogeneous terms has a nilpotent center at the origin if and only if,
after a linear change of variables and a rescaling of its independent variable,
it can be written as one of the following six classes:

(I) ẋ = ax + by, ẏ = −a2

b
x− ay + x3, with b < 0.

(II) ẋ = ax + by − x3, ẏ = −a2

b
x− ay + 3x2y, with a > 0 and b 6= 0.

(III) ẋ = ax + by − 3x2y + y3, ẏ =
(

c− a2

b + c

)

x− ay + 3xy2, with either

a = b = 0 and c < 0, or c = 0, ab 6= 0, and a2/b− 6b > 0.

(IV) ẋ = ax + by − 3x2y − y3, ẏ =
(

c− a2

b + c

)

x− ay + 3xy2, with either

a = b = 0 and c > 0, or c = 0, a 6= 0, and b < 0.

(V) ẋ = ax+by−3µx2y+y3, ẏ =
(

c− a2

b + c

)

x−ay+x3+3µxy2, with either

a = b = 0 and c < 0, or c = 0, b 6= 0, and (a4 − b4 − 6a2b2µ)/b > 0.

(VI) ẋ = ax+by−3µx2y−y3, ẏ =
(

c− a2

b + c

)

x−ay+x3+3µxy2, with either

a = b = 0 and c > 0, or c = 0, b 6= 0, and (a4 + b4 + 6a2b2µ)/b < 0.

where a, b, c, µ ∈ R. Moreover the global phase portraits of these six families
of systems are topologically equivalent to the following of Figure 1:

(a) 1.1 for systems (I) and (IV );
(b) 1.2 for systems (II);
(c) 1.3, 1.4 or 1.5 for systems (II);
(d) 1.2, 1.6, 1.7 or 1.8 for systems (V );
(e) 1.9, 1.10, 1.11 or 1.12 for systems (V I).
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1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

Figure 1. Global phase portraits of the vector fields in Theo-
rem 1 which have a nilpotent center at the origin. The separatrices
are in bold.

Note that for the above systems we have a = 0 whenever b = 0. Before
stating our main result we make the following remark.

Remark 2. A system in class (V ) with a = c = 0 can be transformed to
a system inside the same class with a = b = 0 and c 6= 0 doing the change
(x, y) 7→ (y, x), c 7→ b and µ 7→ −µ. Hence when c = 0 we can assume
a 6= 0. Similarly we can assume a 6= 0 in systems (V I) whenever c = 0(in
this case the change of variables is (x, y) 7→ (−y, x)).

On the other hand, via the rescaling of the variables (x, y, t) 7→ (x/
√

|a|,
y/

√

|a|, |a|t) and the parameter b 7→ b/|a| we can assume a = 1 in the
families of systems (III) − (V I) when c = 0.

Finally a further change of variables (x, y, t) 7→ (−y, x,−t) together with
b 7→ 1/b and µ 7→ −µ allows to assume b > 0 for systems (V ) when b 6= 0.

Taking into account Remark 2, when c = 0 we will assume a = 1 for
classes (III) − (V I), and b > 0 for systems (V ) throughout the rest of this
paper. Our main result is the following:

Theorem 3. The global phase portraits of Hamiltonian planar polynomial
vector fields with linear plus cubic homogeneous terms having a nilpotent
center at the origin are topologically equivalent to the following ones of Fig-
ure 1 using the notation of Theorem 1.

(a) For systems (I) and (IV ) the phase portrait is 1.1.
(b) For systems (II) the phase portrait is 1.2.
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1.7

1.8

1.2

1.2

1.2

1.6

F = 0

b

µµ

c

∅ ∅

D < 0

D = 0

D > 0

(b = 0) (b > 0)

Figure 2. The bifurcation diagrams for systems (V ) when b = 0
and when b > 0. Note that when b > 0 we have c = 0. In the
figure F = 1 − b4 − 6b2µ.

(c) For systems (III) the phase portraits are 1.3, 1.4 and 1.5 when b = 0,
b < 0 and b > 0 respectively.

(d) For systems (V ) with b = 0 the phase portrait is 1.2 and 1.6 when
µ ≤ 0 and µ > 0 respectively, and with b > 0 the phase portraits
are 1.2, 1.7 and 1.8 when D < 0, D > 0 and D = 0 respectively.
Here D = −b2 − 6b2µ + 4(1 − b4)µ3 + 3b2µ4, and the corresponding
bifurcation diagrams are shown in Figure 2.

(e) For systems (V I) with µ > −1/3 the phase portrait is 1.11, with
µ = −1/3 the phase portrait is 1.10, and with µ < −1/3 the phase
portraits are 1.9 if b = 0, 1 and 1.12 otherwise. The corresponding
bifurcation diagrams are shown in Figure 3.

We remark that all the equations controlling the bifurcations of the global
phase portraits described in Theorem 3 are algebraic curves.

Observe that each of the classes (I), (II) and (IV ) have a unique global
phase portrait. Also the bifurcation diagram of the phase portraits of sys-
tems (III) is trivial and follows directly from the work done in [8]. Conse-
quently it remains to prove the last two statements of Theorem 3, and we will
prove them in the following sections. We note that the explicit expressions
of the finite singular points of classes (V ) and (V I) are complicated, making
it difficult to study their types or even their existence on the real plane.
Therefore we will follow different approaches in determining the bifurcation
diagrams for these last two classes.

2. Bifurcation diagram for systems (V )

Recall that for systems (V ) we have b ≥ 0. According to [8] when a = b =
0 systems (V ) have the global phase portraits (up to topological equivalence)
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1.9

1.9

1.101.10

1.11 1.11

1.12 1.12

1.121.12

G = 0G = 0

b

µµ

c

∅

∅

∅

µ = − 1

3

µ = − 1

3

(b = 0) (b 6= 0)

Figure 3. The bifurcation diagram for systems (V I) when b = 0
and when b 6= 0. Note that when b 6= 0 we have c = 0. In the
figure G = 1 + b4 + 6b2µ.

1.2 and 1.6 of Figure 1 when µ ≤ 0 and µ > 0 respectively. On the other
hand, when b > 0 there are three possible phase portraits: 1.2, 1.7 and 1.8
of Figure 1. The information in [8] is not enough to determine exactly when
each phase portrait is achieved by these systems.

When b > 0, by Remark 2 systems (V ) can be written as

ẋ = x + by − 3µx2y + y3, (1a)

ẏ = −x/b− y + x3 + 3µxy2, (1b)

with

1 − b4 − 6b2µ > 0. (2)

We see that each of these three phase portraits has a different number of
finite singular points, hence we will use this property to distinguish them.
The explicit expressions of the finite singular points are complicated, and
since we are only interested in the number of finite singular points we will
make use of Yang’s work [23] on the number of real roots of polynomials
depending on their coefficients.

First we equate (1a) to zero, solve for x and get

x1,2 =
1 ±

√

1 + 12bµy2 + 12µy4

6µy
. (3)

We see that (3) is not defined when µy = 0, so we need to address this case
separately.

When y = 0 we have (1a) equal to zero if and only if x = 0, so we can
assume y 6= 0 because we are not interested in the origin. On the other
hand, when µ = 0 we can easily calculate the finite singular points of sys-
tems (1) and see that other than the origin there are only two, namely
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±
(

b1/3
√

(1 − b4/3)/b,−
√

(1 − b4/3)/b
)

. Note that these points are real be-
cause when µ = 0 inequality (2) yields b < 1. Therefore when µ = 0 the
global phase portrait of systems (1) is topologically equivalent to 1.2 of
Figure 1.

Now we can assume µy 6= 0, substitute (3) into (1b) and obtain

ẏ1,2 =
1

54bµ3y3

(

b + 9µ(b2 − µ)y2 + 9bµ(1 − 3µ2)y4

±
√

1 + 12bµy2 + 12µy4
(

b + 3µ(b2 − 3µ)y2 + 3bµ(1 + 9µ2)y4
)

)

,

where ẏ1 and ẏ2 denote ẏ with x substituted by x1 and x2 respectively. Each
root of ẏ1 and ẏ2 will be paired with at most one x by (3). Therefore the
number of roots of ẏ1 and ẏ2 provides important information on the number
of finite singular points of systems (1). So we compute the product ẏ1ẏ2 and
obtain the sextic polynomial

− 1

27b2µ3

(

b2(1 + 9µ2)2y6 + 3b(1 + 9µ2)(b2 − 2µ + 3b2µ2)y4

+ 3(b4 + 3µ2 + 6b4µ2 − 18b2µ3)y2 − b(1 − b4 − 6b2µ)
)

.

(4)

Then we study the relation between the number of roots of (4) and the
number of finite singular points of systems (1).

First we claim that the number of finite singular points cannot be less
than the number of roots of (4). Now we prove our claim. If we define

s1 =b + 3µ(b2 − 3µ)y2 + 3bµ(1 + 9µ2)y4,

s2 =b + 9µ(b2 − µ)y2 + 9bµ(1 − 3µ2)y4,

s3 =1 + 12bµy2 + 12µy4,

then we have ẏ1,2 = (s2±
√
s3s1)/54bµ3y3, and polynomial (4) can be rewrit-

ten as
1

2916b2µ6y6
(s22 − s3s

2
1). (5)

The number of finite singular points are less than the number of roots of
(4) only when s3 < 0 because then (3) become complex. If s3 < 0 then (5)
is zero if and only if s1 = s2 = 0. But if we subtract s2 from s1 we obtain

6bµ
(

− b + (9µ2 − 1)y2
)

y2. (6)

Since we have b > 0 and µy 6= 0, (6) is zero if and only if y = ±
√

b/(9µ2 − 1),
where 9µ2 − 1 must be positive. Then we substitute these y into s1 and s2,
and see that they are roots of these two polynomials provided that we have

1 − 9µ2 + 54b2µ3 = 0. (7)

We note that equation (7) further requires µ > 0 because we have 9µ2−1 >
0. But this means that s3 > 0, and this is a contradiction to the assumption
that s3 < 0. Hence we conclude that s3 ≥ 0, so x1,2 are real whenever y is
a root of (4), and this proves the claim.

Second we consider the case in which the number of finite singular points
could be greater than the number of roots of (4). This is only possible when
ẏ1 and ẏ2 have common roots which produce distinct x in (3), so we must
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have s3 > 0 and s1 = s2 = 0 for a common root. We have seen that this
occurs if and only if equation (7) is satisfied with µ > 1/3. Moreover in
this case the number of common roots of s1 and s2 is two due to the fact
that they have the same constant terms whereas their second order terms
are different since µ 6= 0.

In short the number of finite singular points of systems (1) is equal to
the number of real roots of polynomial (4) unless 1 − 9µ2 + 54b2µ3 = 0 and
µ > 1/3, in which case there are two more singular points.

As we mentioned earlier we will determine the number of roots of (4)
following [23], where the author provides the detailed analysis of the number
of real roots of sextic polynomials.

We first need to compute the “discriminant sequence” {D1, . . . ,D6} of
(4) accordingly (see [23] for definitions and details). Then we will determine
the “sign list” [sign(D1), . . . , sign(D6)] of the discriminant sequence, where
the sign function is

sign(x) =







1 if x > 0,
0 if x = 0,
−1 if x < 0.

And finally we need to construct the associated “revised sign list” [r1, . . . , r6]
which will give all the information about the number of real and complex
roots of our polynomial. Given any sign list [s1, . . . , sn], the revised sign list
[r1, . . . , rn] is obtained as follows:

If sk 6= 0 we write rk = sk.
If [si, si+1, . . . , si+j] is a section of the given sign list such that si+1 =
· · · = si+j−1 = 0 with sisi+j 6= 0, then in place of [ri+1, . . . , ri+j−1]
we write the (j − 1)-tuple

[−si,−si, si, si,−si,−si, si, si,−si, . . .].

Note that this way there are no zeros between nonzero elements of the revised
sign list.

The elements of the discriminant sequence of a sextic polynomial of the
form

x6 + px4 + qx3 + rx2 + sx2 + t

given in [23] are:

D1 = 1, D2 = −p, D3 = 24rp− 8p3 − 27q2,

D4 = 32p4r − 12p3q2 + 96p3t + 324prq2 − 224r2p2 − 288ptr − 120qp2s

+ 300ps2 − 81q4 + 324tq2 − 720qsr + 384r3,

D5 = − 4p3q2r2 − 1344ptr3 + 24p4q2t + 144pq2r3 + 1440ps2r2 + 162q4tp

− 5400rts2 + 1512prtsq + 16p4r3 − 192p4t2 + 72p5s2 − 128r4p2

+ 256r5 + 1875s4 − 64p5rt + 592p3tr2 + 432rt2p2 − 616rs2p3

+ 558q2p2s2 + 1080s2tp2 − 2400ps3q − 324pt2q2 − 1134tsq3

+ 648q2tr2 + 1620q2s2r − 1344qsr3 + 3240qst2 + 12p3q3s− 1296pt3

− 27q4r2 + 81q5s + 1728t2r2 − 56p4rsq − 72p3tsq + 432r2p2sq
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− 648rq2tp2 − 486prq3s,

D6 = − 32400ps2t3 − 3750pqs5 + 16q3p3s3 − 8640q2p3t3 + 825q2p2s4

+ 108q4p3t2 + 16r3p4s2 − 64r4p4t− 4352r3p3t2 + 512r2p5t2

+ 9216rp4t3 − 900rp3s4 − 17280t3p2r2 − 192t2p4s2 + 1500tp2s4

− 128r4p2s2 + 512r5p2t + 9216r4pt2 + 2000r2s4p + 108s4p5

− 1024p6t3 − 4q2p3r2s2 − 13824t4p3 + 16q2p3r3t + 8208q2p2r2t2

− 72q3p3str + 5832q3p2st2 + 24q2p4ts2 − 576q2p4t2r − 4536q2p2s2tr

− 72rp4qs3 + 320r2p4qst− 5760rp3qst2 − 576rp5ts2 + 4816r2p3s2t

− 120tp3qs3 + 46656t3p2qs− 6480t2p2s2r + 560r2qp2s3 − 2496r3qp2st

− 3456r2qpst2 − 10560r3s2pt + 768sp5t2q + 19800s3rqpt + 3125s6

− 46656t5 − 13824r3t3 + 256r5s2 − 1024r6t + 62208prt4 + 108q5s3

− 874q4t3 + 729q6t2 + 34992q2t4 − 630prq3s3 + 3888prq2t3

+ 2250rq2s4 − 4860prq4t2 − 22500rts4 + 144pr3q2s2 − 576pr4q2t

− 8640r3q2t2 + 2808pr2q3st + 21384rq3st2 − 9720r2q2s2t

− 77760rt3qs + 43200r2t2s2 − 1600r3qs3 + 6912r4qst− 27540pq2t2s2

− 27q4r2s2 + 108q4r3t− 486q5str + 162pq4ts2 − 1350q3ts3

+ 27000s3qt2.

We compute the discriminant sequence of the polynomial (4) and get

D2 =
3A

b(1 + 9µ2)
, D3 =

216AB

b3(1 + 9µ2)3
, D4 =

2596BC

b4(1 + 9µ2)6

D5 =
3888CDE2

b6(1 + 9µ2)10
, D6 =

46656D2E4F

b9(1 + 9µ2)14
,

where

A = − b2 + 2µ− 3b2µ2,

B = (−4b2 + µ + 6b2µ2 + 9b4µ3)µ,

C = − b2 + 2(1 − 4b4)µ− 27b2µ2 − 18(1 − 2b4)µ3 + 9b2(7 + 2b4)µ4

+ 54(2 + 9b4)µ5 − 81b2(7 − 2b4)µ6 − 486b4µ7,

D = − b2 − 6b2µ2 + 4(1 − b4)µ3 + 3b2µ4,

E = 1 − 9µ2 + 54b2µ3,

F = 1 − b4 − 6b2µ.

Observe that we have F > 0 due to (2), and b(1 + 9µ2) > 0. Hence the sign
list of this discriminant sequence is determined only by the signs of A, B,
C, D and E. Note that D6 ≥ 0.

We have seen that systems (1) have six finite singular points other than
the origin when

(i) polynomial (4) has six real distinct roots,



HAMILTONIAN NILPOTENT CENTERS 9

A = 0

B = 0

B = 0

C = 0

C = 0

C = 0

D = 0

E = 0

E = 0

F = 0

(0, 0)
b

µ

4

√

3

125

√

2 −
√

3

1

3

√

5

27

√

1

3

1

1

Figure 4. The graphs of A = 0, B = 0, C = 0, D = 0 and E = 0
on the (b, µ)–plane.

(ii) it has four real distinct roots provided that E = 0 and µ > 1/3, see
(6).

According to [23] the only revised sign list in case (i) is [1, 1, 1, 1, 1, 1].
Hence we need Di > 0 for all i = 1, . . . , 6. Since A must be positive we get
µ,B,C,D > 0. We also have E 6= 0. We plot the graphs of A = 0, B = 0,
C = 0, D = 0, E = 0 and F = 0 in Figure 4 in the first quadrant of the
(b, µ)–plane in order to study these inequalities. It is not difficult to prove
that the curve F = 0 does not intersect E = 0, and that it intersects each
of the remaining curves only once. Also note that µ > 1/3 when E = 0.

Since we are only interested in the case F > 0, which is to the left of the
curve F = 0 in Figure 4, we are not interested in the component of the curve
C = 0 which does not pass through the origin. We see that D is positive on
the left and negative on the right of the curve D = 0 in Figure 4. Moreover
we have A,B,C > 0 whenever D,F > 0. Therefore case (i) characterized
by the conditions D > 0 and E 6= 0.

Due to [23] the unique revised sign list in case (ii) is [1, 1, 1, 1, 0, 0], so
we need A,B,C > 0. Figure 4 shows that these three inequalities and



10 ILKER E. COLAK, JAUME LLIBRE, AND CLAUDIA VALLS

the equality E = 0 are satisfied only when D > 0. Hence case (ii) is
characterized by the conditions D > 0 and E = 0.

We have shown that systems (1) have six finite singular points other
than the origin independent of E, and that their global phase portraits are
topologically equivalent to 1.7 of Figure 1 if and only if D > 0.

Now we study systems (1) having four finite singular points different from
the origin. This can be achieved if and only if

(iii) either (4) has four real distinct roots provided that E 6= 0,
(iv) or (4) has two real distinct roots and E = 0.

Hence the possible revised sign lists that we need to study are [1, 1, 1, 1, 0, 0]
and [1, 1, 0, 0, 0, 0] corresponding to cases (iii) and (iv) respectively.

In case (iii) we need A,B,C > 0 and D = 0. We again have µ > 0
because A > 0. From Figure 4 we see that when F > 0 and D = 0 we
have A,B,C > 0 unless µ =

√

5/27. On the other hand case (iv) requires

B = E = 0, which is possible only when µ =
√

5/27, at which we have

D = 0. Therefore whether µ =
√

5/27 or not, systems (1) have four finite
singular points additional to the origin if and only if D = 0. Consequently
the global phase portrait is 1.8 of Figure 1 if and only if D = 0.

Finally it only remains to study systems (1) having only two additional
finite singular points, in which case their global phase portraits are topo-
logically equivalent to 1.2 of Figure 1. But as a trivial result of the above
study this case can be realized if and only if D < 0.

In light of all the information that we obtained, for systems (V ) we get
the bifurcation diagram given in Figure 2.

3. Bifurcation diagram for systems (V I)

In [8] it is shown that for µ = −1/3 and µ > −1/3, the global phase
portraits of systems (V I) are topologically equivalent to 1.10 and 1.11 of
Figure 1, respectively. When µ < −1/3, the unique global phase portrait is
1.9 of Figure 1 if b = 0, but there are two possibilities if b 6= 0: 1.9 and 1.12.
We are going to distinguish these last two phase portraits using the facts
that systems (V I) are Hamiltonian and that there are four finite singular
points on the same energy level in the former but only two in the latter.

When b 6= 0, due to Remark 2 systems (V I) are written as

ẋ = x + by − 3µx2y − y3, (8a)

ẏ = −x/b− y + x3 + 3µxy2, (8b)

where
1 + b4 + 6b2µ

b
< 0, (9)

with the Hamiltonian

H(x, y) = −x4 + y4

4
− 3µx2y2

2
+

x2

2b
+

by2

2
+ xy.

Assume µ < −1/3. We are going to look for the number N of distinct
real solutions of the three equations ẋ = 0, ẏ = 0 and H − h = 0, where
h ∈ R r {0}. Note that h 6= 0 because the only singular point of systems
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(8) at which H = 0 is the origin. Indeed, evaluating H at a singular point
(x0, y0) of systems (8) we get

H(x0, y0) = H(x0, y0) − y0ẋ− x0ẏ

4
=

(x0 + by0)
2

4b
= h,

due to the fact that ẋ = ẏ = 0 at (x0, y0). Then we have h = 0 if and only
if x0 + by0 = 0. But when x0 = −by0 we obtain

ẋ = −(1 + 3b2µ)y30 = 0,

ẏ = −b(b2 + 3µ)y30 = 0.

If y0 6= 0, then, since b 6= 0, we need to have 1 + 3b2µ = 0 = b2 + 3µ. Hence
we get b2 = −3µ and 1 − 9µ2 = 0, which is not possible because µ < −1/3.
So we have y0 = x0 = 0.

In order to simplify our calculations we multiply H by 4 and calculate
the Gröbner basis of the three polynomials ẋ, ẋ and 4H − h. We see that
it consists of 27 polynomials in the variables x and y. Due to the length
of these polynomials we cannot present all of them here but we provide all
the necessary information that we get from them. First of all there are 21
polynomials that do not contain x, and they are of degrees varying between
two and six in y. In particular, 7 of these polynomials are of the form py2+q,
where p and q are constants in terms of the parameters b and µ. Second,
there is another polynomial that is linear in x such that the coefficient of
x is 809238528h, which is different from zero. This means that whenever
p 6= 0 in one of the 7 polynomials of the form py2 + q we have N ≤ 2, and
therefore at most two singular points of systems (8) are on the same energy
level.

We pick 4 of these 7 polynomials and call them P1, P2, P3 and P4. Due
to the length of these polynomials, we will only provide the coefficients of
their quadratic terms:

p1 = h(b4 − 1)2
(

− 27b2(b4 − 1)2 + 16(b4 + 1)3h− 48b2(b4 + 1)2h2

+ 48b4(b4 + 1)h3 − 16b6h4
)

,

p2 = h(b4 − 1)
(

10368(b4 − 1)3 + 24(192µ + 1399b2 − 846b6 − 233b10

− 256b14)h + 4(b4 − 1)(520 + 5759b4 + 4345b8)h2 − 2(155b2 − 5046b6

+ 6139b10 + 864b14 + 6336µ)h3 + (b4 − 1)(1592 + 13109b4 + 3731b8)h4

+ (5577b2 − 466b6 − 3399b10 + 880b14 + 7776µ)h5 − 2(b4 − 1)(721

+ 2240b4 + 1151b8)h6 − 4(656b2 + 203b6 − 861b10 + 152b14 + 450µ)h7

+ 4(b4 − 1)(153 + 230b4 + 445b8)h8 + 16(74b2 + 43b6 − 118b10 + 4b14

+ 9µ)h9 − 32(b4 − 1)(b4 − 2)(6b4 − 1)h10 + 64(b4 − 1)b2(3b4 + 2)h11

− 64(b4 − 1)b4h12
)

,

p3 = h(b4 − 1)
(

96(−149 + 328b4 − 369b8 + 126b12 − 192b2µ) + 2(24419b2

− 15526b6 − 2429b10 − 3584b14 + 8640µ)h − (5136 − 14383b4 + 26286b8

− 29327b12 − 36864b2µ)h2 + (6053b2 + 10182b6 − 20571b10 − 8144b14

− 37440µ)h3 + 2(b4 − 1)(4923 + 21104b4 + 11621b8)h4 + 4(4688b2
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+ 2065b6 − 6775b10 + 520b14 + 1494µ)h5 − 4(b4 − 1)(523 − 494b4

+ 1527b8)h6 − 16(254b2 + 145b6 − 402b10 + 12b14 + 27µ)h7

+ 32(b4 − 1)(6 − 47b4 + 18b8)h8 − 192(b4 − 1)b2(2 + 3b4)h9

+ 192(b4 − 1)b4h10
)

,

p4 = h
(

254016(b4 − 1)(119b2 − 78b6 + 23b10 + 192µ) − 96(13289 + 46216b4

− 329710b8 + 282592b12 − 37475b16 − 479808b2µ + 329280b6µ

− 225792µ2)h + 2(5152135b2 − 3602421b6 + 34453b10 + 2916057b14

− 2091776b18 + 13070016µ − 5844672b4µ)h2 + (7140592 + 9690755b4

− 24071593b8 − 1663991b12 + 10710573b16 − 3612672b2µ− 27095040µ2)h3

− (12340399b2 − 11814493b6 − 7892771b10 + 9122145b14 − 551056b18

+ 9119808µ − 5507136b4µ)h4 − 2(1165263 − 456814b4 − 917952b8

− 250482b12 + 761041b16 − 2709504µ2)h5 − 4(b4 − 1)(683024b2

− 241779b6 − 455259b10 + 45544b14 + 94590µ)h6 + 4(b4 − 1)2(45471

− 694b4 + 137435b8)h7 + 16(b4 − 1)(22918b2 + 11021b6 − 33866b10

− 292b14 − 657µ)h8 + 32(b4 − 1)2(146 + 6131b4 + 438b8)h9

− 4672(b4 − 1)2b2(2 + 3b4)h10 + 4672(b4 − 1)2b4h11
)

,

where pi is the coefficient of the quadratic term of the polynomial Pi.

We compute the resultant of p1 and p2 with respect to h, remove the
nonzero constant and the repeating factors, and obtain

r1 =b(b4 − 1)(1 + 2b2 − b4)(1 − 2b2 − b4)(32 − 155b2 + 138b4 − 155b6 + 32b8)

(32 + 155b2 + 138b4 + 155b6 + 32b8)(128 + 87b4 + 128b8)
(

b2 − 6b2µ2 + 4(1 + b4)µ3 − 3b2µ4
)

,

When r1 6= 0, due to the properties of the resultant we know that the
coefficients p1 and p2 cannot be zero simultaneously, and as a result N ≤ 2.
Therefore we are going to study the number N when r1 = 0.

Since b 6= 0, we begin with b4 − 1 = 0. If b = 1, systems (8) become

ẋ = x + y − 3µx2y − y3, ẏ = −x− y + x3 + 3µxy2. (10)

Then we can explicitly calculate their finite singular points and we get

(0, 0), ±(
√

M1M2(1 − 3µ),
√

M1), and ± (
√

M2M1(1 − 3µ),
√

M2),

where

M1,2 = 1 ±
√

3(3µ2 − 2µ− 1)

1 − 3µ
.

Observe that

3µ2 − 2µ − 1 > 3

(

−1

3

)2

− 2

(

−1

3

)

− 1 = 0

and

3(3µ2 − 2µ − 1) = 9µ2 − 6µ − 3 < 9µ2 − 6µ + 1 = (1 − 3µ)2
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whenever µ < −1/3, hence M1,2 are positive. In addition, it is easy to
check that we have H = (3µ + 1)/

(

4(3µ − 1)
)

at the finite singular points
other than the origin. This means that systems (10) have four finite singular
points which are on the same energy level, and therefore their global phase
portraits are topologically equivalent to 1.9 of Figure 1.

If b = −1 then we have

1 + b4 + 6b2µ

b
= −2 − 6µ > 0

whenever µ < −1/3, which means that systems (8) cannot have a center at
the origin (see (9)). So we have b 6= −1.

Now we study the case 1+2b2−b4 = 0. Solving for b yields b = ±
√

1 +
√

2.
When we substitute these values into p1 (note that p1 is an even polynomial
in the variable b), equate it to zero and solve for h, we obtain h = 1/

√
2.

Then we substitute both of these b and h into p4 and get

4741632(µ2 − 2
√

2µ− 1),

which is greater than zero for µ < −1/3. This means that when 1+2b2−b4 =
0 we have p4 6= 0, hence N ≤ 2.

If 1 − 2b2 − b4 = 0, we can show by repeating the same calculations that
we did in the case with 1 + 2b2 − b4 = 0 that N ≤ 2.

Next is the case 32−155b2 +138b4−155b6 +32b8 = 0. Following the same
steps as in the last two cases is a little cumbersome here due to the higher
degree of this polynomial in b. Instead we calculate the resultant of p1 and
p3 with respect to h, and see that the only factor that does not appear in
r1 is

r2 = 4218421248 − 204309374976b4 + 3256825307355b8 − 5943760217597b12

− 1853261127177b16 − 373307956717041b20 + 1715045088159217b24

− 2179298014880247b28 + 357602721621501b32 − 81806891966683b36

+ 3902515292160b40 − 354375696384b44 + 7247757312b48 .

Then we calculate the resultant of 32− 155b2 + 138b4 − 155b6 + 32b8 and r2
with respect to b and see that it is not zero. Therefore in this case even if
p1 = p2 = 0, we have p3 6= 0, and consequently we have N ≤ 2.

The next two factors in r1 cannot be zero for real b, so it only remains to
study the case w = b2 − 6b2µ2 + 4(1 + b4)µ3 − 3b2µ4 = 0. However this case
is not possible because for µ < −1/3 we have

w < b2 − 6b2
(

−1

3

)2

+ 4(1 + b4)

(

−1

3

)3

− 3b2
(

−1

3

)4

= − 4

27
(b4 − 1)4 ≤ 0.

As a result of the above analysis we conclude that when µ < −1/3 systems
(8) have the global phase portrait 1.9 of Figure 1 if and only if b = 1.
Therefore we obtain the bifurcation diagram for systems (V I) as shown in
Figure 3.



14 ILKER E. COLAK, JAUME LLIBRE, AND CLAUDIA VALLS

Acknowledgments

The first author has been supported by AGAUR FI–DGR 2010. The
second author has been supported by the grants MINECO/FEDER MTM
2009–03437, AGAUR 2014SGR 568, ICREA Academia and FP7–PEOPLE–
2012–IRSES-316338 and 318999. The third author has been supported by
AGAUR PIV–DGR–2010, and by the Portuguese National Funds through
FCT-Fundação para a Ciência e a Tecnologia within the project PTDC/
MAT/117106/2010 and by CAMGSD.

References

[1] N.N. Bautin, “On the number of limit cycles which appear with the variation of
coefficients from an equilibrium position of focus or center type”, Mat. Sb. 30 (1952),
181-196; Mer. Math. Soc. Transl. 100 (1954) 1–19.
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[3] J. Chavarriga and J. Giné, “Integrability of a linear center perturbed by a fifth
degree homogeneous polynomial”, Publ. Mat. 41 (1997), 335–356.
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