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Abstract. We study the number of limit cycles bifurcating from the peri-
od annulus of a real planar polynomial Hamiltonian ordinary differential
system with a center at the origin when it is perturbed in the class of
polynomial vector fields of a given degree.
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1. Introduction and Statement of the Main Results

In the qualitative theory of real planar polynomial differential systems, one of
the main problems is the determination of limit cycles of a given vector field.
The notion of limit cycle goes back to Poincaré, see [14–17]. He defined a
limit cycle for a vector field in the plane as a periodic orbit of the differential
system isolated in the set of all periodic orbits. The first works in determining
the number of limit cycles of a given vector field can be traced back to Liénard
[11] and Andronov [1]. After these works, the detection of the number of limit
cycles of a polynomial differential system, intrinsically related to the so-called
16th Hilbert problem [7–9], has been extensively studied in the mathematical
community, see, for instance, the books [3,19] and the papers [5,6,12,13].

One of the main tools of producing limit cycles is perturbing a system
having a center. The notion of center goes back to Poincaré, see [14–17], who
defined a center for a vector field on the real plane as a singular point having
a neighborhood filled with periodic orbits with the exception of the singular
point. If a system has a center, then when we perturb it, we may have a limit
cycle that bifurcates in the perturbed system from some of the periodic orbits
forming a center. This tool is one of the most effective ways of producing limit
cycles, but it requires the knowledge of the first integral of the unperturbed
system (the one having a center). It is well known that the determination of
first integrals is also a very hard problem. This is why in this paper, we will
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