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Introduction

The main objective of classical Celestial Mechanics is the study of the n-body
problem, which consists of describing the motion of n point masses moving in
the Euclidean 3—dimensional space under the action of their mutual newtonian
gravitational forces. The formulation of the n—body problem appears at first
time in the Philosophiae Naturalis Principia Mathematica of Newton (1687). It
is in this treatise where the laws of mechanics and the universal gravitational at-
traction law allowed to formulate the n—body problem as a system of differential
equations.

Up to the Méthodes Nouvelles de la Mécanique Céleste of Poincaré (1899) the
differential equations that appear in Celestial Mechanics problems were treated
from a quantitative point of view. Poincaré left the classical methods of inte-
gration and quadrature aside and he initiated qualitative methods in order to
give a complete description of the orbits on the phase space (the space where the
differential equation is defined). We can say that Poincaré started the modern
qualitative theory of differential equations.

The 2—body problem is integrable in the classical sense. Using the first inte-
grals of the energy h and the angular momentum ¢, we can classify all possible
orbits of the 2—body problem in the following way. If ¢ # 0, then the motion is
confined on a plane and we have: circular or elliptic orbits when h < 0; parabolic
orbits when A = 0; and hyperbolic orbits when A > 0. If ¢ = 0, then the motion
is confined on a straight line and we have: elliptic collision orbits when h < 0,
parabolic collision orbits when A = 0 and hyperbolic collision orbits when h > 0.

The n-body problem for n > 2 has resisted all attempts to be solved; indeed
it is believed that the problem cannot be integrated in the classical sense, in fact
there are partial results in this direction. Over the years many special types of
solutions have been found by using distinct mathematical techniques, but really
not many things can be said about the behaviour of the solutions. The 3—-body
problem is the most studied of the n—body problems; and, in particular, special
cases of the 3—body problem, the restricted 3—body problems (i.e. when one of
the masses is small enough so that its influence on the other two is negligible).

4
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The study of the restricted 3—body problems is a first step in order to understand
the dynamics of the full 3—body problem.

The restricted 3—body problems consist of describing the motion of an in-
finitesimal mass that moves under the influence of the gravitational attraction
of two bodies, called primaries, which describe a solution of the 2—body prob-
lem. We can classify the restricted 3—body problems depending on the kind of
motion of the primaries and the dimension of the space where takes place the
motion of the infinitesimal mass. In this way we have thirty different restricted
3—body problems, the most studied of which is undoubtedly the planar circu-
lar restricted 3—body problem followed by the planar elliptic restricted 3—body
problem. These two restricted 3—body problems have a lot of interest in Celestial
Mechanics because they have many applications to different kind of motions in
the solar system, binary stars, etc.

Two different restricted 3—body problems that have got a lot of interest from a
mathematical point of view are the circular and elliptic Sitnikov problems, which
are special cases of the spatial circular (respectively elliptic) restricted 3—body
problem. The Sitnikov problems are characterized by two equally massive bodies
moving on circular (or elliptic) orbits and an infinitesimal mass, the motion of
which is confined to the axis perpendicular to the plane of motion of the primaries
that passes through their center of mass. In the historical development the cir-
cular Sitnikov problem was studied first. MacMillan (1913) presented it like an
example of an integrable case of restricted 3—body problem. But the importance
of the Sitnikov problems arise when Sitnikov in 1960 used the elliptic Sitnikov
problem to show, for the first time, the possibility of the existence of oscillatory
motions in the 3—body problem. The existence of this kind of motions was pre-
dicted by Chazy in 1922-32, who gave a classification of the final evolutions of the
3—body problem. Later on Alekseev (1968-69) used the elliptic Sitnikov problem
to prove that all possible combinations of final evolutions in the sense of Chazy
were realized. Moser (1973) gave a new presentation of Alekseev’s results relying
on a geometric point of view. Since then many other authors have studied the
elliptic Sitnikov problem. We know around thirty papers studying the circular
or elliptic Sitnikov problems. It is possible to find some analytical and numerical
results on periodic orbits of the circular and elliptic Sitnikov problems, see for
additional information Section 1.4.

In this work we study an especial case of the spatial 3—body problem, the
spatial isosceles 3—body problem. This problem consists of describing the motion
of two equally massive bodies m; = my having initial conditions and velocities
symmetric with respect to a straight line which pass through their center of mass,
and a third body, with mass m3 = p, having initial position and velocity on this
straight line. That problem is called isosceles problem because the three bodies
form an isosceles triangle at any time, eventually degenerated to a segment.
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The most interesting application of the spatial isosceles 3—body problem is
given by Xia in [62]. Xia used two spatial isosceles 3—body problems to prove that
five bodies can escape to infinity in a finite time without collision. Other works
on the spatial isosceles 3—body problem can be [45], see the references inside. If
in the spatial isosceles 3—body problem the initial positions and velocities of the
three bodies are contained in a plane, then the motion remains always in this
plane, and we have the so called planar isosceles 3—body problem. There are a lot
of papers about the planar isosceles 3—body problem, for instance, [46], [22],...

When the third body of the spatial isosceles 3—body problem has infinitesi-
mal mass (i.e. u = 0) then we obtain the restricted isosceles 3—body problems.
Depending on the motion of the primaries we have seven different cases for the
spatial restricted isosceles 3—body problems. Here we only consider, due to its
richness in periodic orbits, the cases in which the primaries move in circular or
elliptic orbits of the 2—body problem, the circular and elliptic restricted isosceles
problems; also called the circular and elliptic Sitnikov problems.

The isosceles problem and the restricted isosceles problems possess the first
integral of the angular momentum. Using this first integral we reduce in two di-
mensions (an angle an its derivative) the phase space of these problems obtaining
the reduced isosceles problem and the reduced restricted isosceles problems respec-
tively. We note that the circular and elliptic Sitnikov problems that appear in
the literature are essentially our reduced circular and elliptic Sitnikov problems.

In appropriate coordinates we will see that the periodic orbits of the reduced
circular Sitnikov problem give 2-dimensional invariant tori on the phase space
of the restricted isosceles 3—body problem. These tori are formed by union of
either periodic or quasi—periodic orbits, and they are not KAM tori. The main
result of this work is to prove that such invariant tori persist when we pass
from the restricted isosceles 3—body problem to the isosceles 3—body problem
for © > 0 sufficiently small. Consequently these tori persist inside the general
spatial 3—body problem. The main tool for proving this result will be the classical
Poincaré’s analytic continuation method of periodic orbits.

This memoir is divided in six chapters and eight appendices. Chapters, sec-
tions, and subsections are numbered in arabic numbers. Thus, 3.1.4 refers to
subsection 4 in Section 1 of Chapter 3. Appendices are also numbered in arabic
numbers and they appear at the end of the memoir. The numeration of theo-
rems, propositions, lemmas, corollaries, etc., will be reset in each section and they
are numbered in the order that appear inside the section. So a typical theorem
reference might be Theorem 2.4.2 meaning the second theorem in Section 4 of
Chapter 2. Formulas, figures, and tables are numbered like theorems, but inde-
pendent on theorems, propositions, ... Hence Figure 2.4.3 is the third figure in
Section 4 of Chapter 2. We will use the symbol m to denote the end of the proof of
a Theorem, Proposition, ... and the symbol O to denote the end of a remark. The
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numeration in appendices is quite different. A typical reference of an appendix is
for instance Lemma A.4.1, meaning the first lemma of Appendix 4. Now we give
a summary of the contents and the main results of each one of these chapters.

In Chapter 1 we give the basic definitions and results about the n—body
problem, the 2—body problem, and the restricted 3—body problems that we
need in this work. We put more emphasis summarizing the known results about
the circular and elliptic Sitnikov problem that are needed for the development of
this memoir.

In Chapter 2 we define the isosceles 3—body problem and the restricted isosce-
les 3—body problems (x = 0). We prove that the phase portrait of these problems
on each level of angular momentum c¢ with ¢ # 0 is the same. Notice that the
angular momentum ¢ = 0 contains the triple collision orbits, and collision orbits
are not treated in this work. Fixed a value of the angular momentum ¢ # 0,
we reduce in two units the dimension of the phase space of the isosceles problem
introducing the reduced isosceles problem and the reduced restricted isosceles
problems.

The purpose of this work is to find periodic orbits of the reduced isosceles
problem for g > 0. Results of Alekseev [2] for the reduced isosceles problem
when g > 0 is small enough show the existence of infinitely many periodic orbits,
with larger periods, that are close to a heteroclinic loop formed by two parabolic
orbits of the elliptic Sitnikov problem. Here we are interested in periodic orbits
that are not necessarily close to the parabolic ones.

We analyze the symmetries of the reduced isosceles problem: the r—symmetry

(t,r, 7, 2,2) — (=t,r,—7F, —2, %),
and the t—symmetry
(t,r, 7, 2,2) — (=t,r, =7, 2,—%) .

These symmetries will be used in Chapter 4 in order to find r—symmetric and
t—symmetric periodic orbits of the isosceles problem for g > 0 small. We still
distinguish another type of symmetric periodic orbits, the double—symmetric pe-
riodic orbits, which are simultaneously r—symmetric and t—symmetric periodic
orbits, see Chapter 2 for precise definitions. We also present some results about
symmetric periodic orbits of the reduced circular and elliptic Sitnikov problems.
In particular, we prove the following theorem.

Theorem A  The following statements hold.

(a) All periodic orbits of the reduced circular Sitnikov problem are double-
symmetric.
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(b) For all e € (0,1) except perhaps for a discrete set of values of e, there
exist four different types of periodic orbits of the reduced elliptic Sitnikov
problem: non—symmetric periodic orbits, double—symmetric periodic orbits,
and r—symmetric and t—symmetric periodic orbits that are not double—
symmetric.

Finally we give some results about the existence of periodic orbits of the
reduced isosceles problem for p > 0 (not necessarily small), near the Euler equi-
librium point, by using the Lyapunov Center Theorem.

In Chapter 3 we develop the Poincaré’s analytic continuation method. The
idea of this method is to use a known periodic solution and, by small changes
of the parameters and of the initial conditions, continue it. In this chapter we
also compute analytically the solution of the variational equations of the Kepler
problem and of the circular Sitnikov problem along a given periodic orbit. The
knowledge of an analytic expression for the solution of those variational equations
is a key point in the development of this work.

In Chapter 4 we apply the Poincaré’s analytic continuation method to con-
tinue the periodic orbits (double-symmetric) of the reduced circular Sitnikov
problem to symmetric periodic orbits of the reduced isosceles problem for small
values of 1 > 0. We continue those periodic orbits in two different ways. The
first one goes directly from the reduced circular Sitnikov problem to the reduced
isosceles problem. The second one uses two steps, first we continue the periodic
orbits from the reduced circular Sitnikov problem to symmetric periodic orbits of
the reduced elliptic Sitnikov problem for small values of the eccentricity e, and
after we continue those symmetric periodic orbits of the reduced elliptic Sitnikov
problem to the reduced isosceles problem for small values of ;1 > 0. Both ways
do not give the same information.

The main result of this chapter is the following theorem.

Theorem B  Let v be a periodic orbit of the reduced circular Sitnikov problem
with period T > n/\/2. Then v can be continued to the following families of
periodic orbits of the reduced isosceles problem with angular momentum ¢ = 1/4
and p > 0 sufficiently small.

(a) Case T = 2mw with w > 1/(2v/2) an irrational number.

(i) v can be continued to one 2-parameter family (that depends on p and
7) of double-symmetric periodic orbits with period T sufficiently close
toT.

(b) Case T = 27p/q for some p,q € N coprime with p > q/(2v/2).
(i) p odd:
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(1) v can be continued to one 2-parameter family (that depends on
w and ) of double—symmetric periodic orbits with period T suffi-
ciently close to T.

(2) ~ can be continued to two 2-parameter families (that depend on
and e) of r—symmetric periodic orbits with period 2mp/(1 — e?)3 =
qT/(1 — €?)? where e > 0 is sufficiently small.

(3) v can be continued to two 2-parameter families (that depend on u
and e) of t—symmetric periodic orbits with period 2mp\/(1 — e?)3 =
qTy/(1 — €2)? where e > 0 is sufficiently small.

(ii) p even and q = 1:

(1) ~v can be continued to two 2-parameter families (that depend on
and e) of double-symmetric periodic orbits of period 2mp\/(1 — €?)3
= qT\/(1 — €?)3 where e > 0 is sufficiently small.

(1ii) p even and q # 1:

(1) v can be continued to one 2-parameter family (that depends on
w and ) of double-symmetric periodic orbits with period T suffi-
ciently close to T

(2) ~ can be continued to two 2-parameter families (that depend on
and e) of double-symmetric periodic orbits of period 2mp\/(1 — €?)3

= qT\/(1 — €?)3 where e > 0 is sufficiently small.

In this chapter we also give sufficient conditions to continue an arbitrary
symmetric periodic orbit of the reduced elliptic Sitnikov problem to the reduced
isosceles problem for small values of p > 0.

An important by—product result in this chapter is the continuation of some
periodic orbits of the reduced circular Sitnikov problem to symmetric periodic
orbits of the reduced elliptic Sitnikov problem, which is summarized as follows.

Theorem C  The periodic orbits of the reduced circular Sitnikov problem with
period T = 2mp/q, for given p,q € N coprime p > q/(2V/2), can be continued to:

(a) two families of r—symmetric periodic orbits and two families of t—symme-
tric periodic orbits (that are not double-symmetric) of the reduced elliptic
Sitnikov problem, with period 2mp = ¢T', for e > 0 sufficiently small, when
p s odd;

(b) two families of double—symmetric periodic orbits of the reduced elliptic Sit-
nikov problem, with period 2np = qT', for e > 0 sufficiently small, when p
1S even.
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In Appendix 8 we present different proofs of the basic results of Chapter 4
by using transversality arguments instead of the Implicit Function Theorem ar-
guments based in the Poincaré’s analytic continuation method. We note that
somehow the transversality arguments can be thought like a more general version
of the Implicit Function Theorem for arbitrary manifolds.

In Chapter 5 we give sufficient conditions to continue an arbitrary periodic
orbit of the reduced elliptic Sitnikov problem (symmetric or not) to the reduced
isosceles problem for ;1 > 0 small enough. The only periodic orbits of the re-
duced elliptic Sitnikov problem that we know analytically are the ones given
by Theorem B. Then, using the results of Chapter 4, these periodic orbits can
be continued to symmetric periodic orbits of the reduced isosceles problem for
i > 0 sufficiently small. If we continue one of these symmetric periodic orbits
without using conditions of symmetry, then we will obtain again the symmetric
periodic orbits given in Chapter 4. Nevertheless in Appendix 6, using numerical
computations, we show that some of these periodic orbits can also be continued
without using conditions of symmetry, and we see the difficulties of this kind of
continuation in the reduced isosceles problem.

Finally, in Chapter 6, we see that, adding the angular variable, each periodic
orbit of the reduced isosceles problem gives a 2—dimensional invariant torus on
the phase space of the isosceles problem that can be filled with either periodic
or quasi—periodic orbits. Then we summarize the results about periodic orbits of
the reduced isosceles problem obtained from Chapters 1 to 4, translated in the
language of tori for the isosceles problem. The main result of this chapter can be
summarized as follows.

Theorem D  Let v be a periodic orbit of the reduced circular Sitnikov problem
with period T > 7T/\/§ Then v gives a 2—dimensional invariant torus I of the
circular restricted isosceles problem. This torus can be continued to the following
famalies of 2—dimensional tori of the isosceles problem with p > 0 sufficiently
small. These tori are filled of either periodic or quasi—periodic orbits.

(a) Case T = 2mw with w > 1/(2v/2) an irrational number.

(i) Ty can be continued to one 2—parameter family (that depends on p and
T with T sufficiently near T ) of 2—dimensional tori.

(b) Case T = 2mp/q for some p,q € N coprime with p > q/(2v/2).
(i) p odd:

(1) Ty can be continued to one 2-parameter family (that depends on
w and T with T sufficiently near T') of 2— dimensional tori.

(2) Ty can be continued to four 2—parameter families (that depend on
w and e with e > 0 sufficiently small) of 2— dimensional tori.
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(ii) p even and q = 1:
(1) Tz can be continued to two 2-parameter families (that depend on
w and e with e > 0 sufficiently small) of 2— dimensional tori.
(1ii) p even and q # 1:
(1) TIp can be continued to one 2-parameter family (that depends on
w and T with T sufficiently near T') of 2— dimensional tori.

(2) Tlp can be continued to two 2-parameter families (that depend on
p and e with e > 0 sufficiently small) of 2— dimensional tori.



