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BIFURCATION OF RELATIVE EQUILIBRIA OF THE (1+3)-BODY
PROBLEM∗
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Abstract. We study the relative equilibria of the limit case of the planar Newtonian 4-body
problem when three masses tend to zero, the so-called (1+3)-body problem. Depending on the values
of the infinitesimal masses the number of relative equilibria varies from ten to fourteen. Six of these
relative equilibria are always convex, and the others are concave. Each convex relative equilibrium
of the (1+3)-body problem can be continued to a unique family of relative equilibria of the general
4-body problem when three of the masses are sufficiently small and every convex relative equilibrium
for these masses belongs to one of these six families.
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1. Introduction. A configuration of the N -body problem is central if the accel-
eration vector for each body is a common scalar multiple of its position vector (with
respect to the center of mass). The planar central configurations are often called
relative equilibria, that is, solutions of the N -body problem that remain fixed in a
rotating frame.

The planar central configurations of the N -body problem are completely known
only for N = 2, 3. Counting up to rotations and translations in the plane, there is a
unique class of central configurations when N = 2, and there are exactly five classes
of central configurations for each choice of three positive masses when N = 3: the two
classes of equilateral triangle central configurations found in 1772 by Lagrange [22]
and the three classes of collinear central configurations found in 1767 by Euler [16].

On the number of classes of central configurations of the N -body problem when
N > 3 there are only partial results. Thus there are exactly N !/2 classes of collinear
central configurations for a given set of N positive masses; see Moulton [32]. Using
Morse theory Palmore obtained a lower bound of the number of central configurations
under a nondegeneracy assumption [33]. For N = 4, there are 12 collinear central
configurations, and Palmore’s lower bound is 34.
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