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BIFURCATION OF RELATIVE EQUILIBRIA OF THE (1+3)-BODY
PROBLEM∗
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Abstract. We study the relative equilibria of the limit case of the planar Newtonian 4-body
problem when three masses tend to zero, the so-called (1+3)-body problem. Depending on the values
of the infinitesimal masses the number of relative equilibria varies from ten to fourteen. Six of these
relative equilibria are always convex, and the others are concave. Each convex relative equilibrium
of the (1+3)-body problem can be continued to a unique family of relative equilibria of the general
4-body problem when three of the masses are sufficiently small and every convex relative equilibrium
for these masses belongs to one of these six families.

Key words. celestial mechanics, relative equilibria, (1 + n)-body problem

AMS subject classifications. 70F10, 70F15, 37N05, 70K42, 70K50

DOI. 10.1137/140978661

1. Introduction. A configuration of the N -body problem is central if the accel-
eration vector for each body is a common scalar multiple of its position vector (with
respect to the center of mass). The planar central configurations are often called
relative equilibria, that is, solutions of the N -body problem that remain fixed in a
rotating frame.

The planar central configurations of the N -body problem are completely known
only for N = 2, 3. Counting up to rotations and translations in the plane, there is a
unique class of central configurations when N = 2, and there are exactly five classes
of central configurations for each choice of three positive masses when N = 3: the two
classes of equilateral triangle central configurations found in 1772 by Lagrange [22]
and the three classes of collinear central configurations found in 1767 by Euler [16].

On the number of classes of central configurations of the N -body problem when
N > 3 there are only partial results. Thus there are exactly N !/2 classes of collinear
central configurations for a given set of N positive masses; see Moulton [32]. Using
Morse theory Palmore obtained a lower bound of the number of central configurations
under a nondegeneracy assumption [33]. For N = 4, there are 12 collinear central
configurations, and Palmore’s lower bound is 34.
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A numerical study for the number of central configurations for N = 4 and ar-
bitrary masses was done by Simó in [39]. In a computer assisted proof Hampton
and Moeckel [21] proved the finiteness of the number of central configurations for
N = 4 and any choice of the masses. This result was obtained analytically by Albouy
and Kaloshin [5], who also extended this result to N = 5 for almost all choices of
the masses. The question about the finiteness of the number of classes of central
configurations remains open for N > 5.

Some partial results on the central configurations of the 4-body problem are the
following ones. Assuming that every central configuration of the 4-body problem
has an axis of symmetry when the four masses are equal, Llibre in [26] computed
the planar central configurations of this 4-body problem by studying the intersection
points of two planar curves. Later, Albouy in [1, 2] provided a complete analytic
proof of the central configurations of the 4-body problem with equal masses.

Bernat, Llibre, and Pérez–Chavela in [10] characterized the kite planar non-
collinear classes of central configurations having some symmetry for the 4-body prob-
lem with three equal masses; see also Leandro [23]. The characterization of the convex
central configurations with an axis of symmetry and the concave central configura-
tions of the 4-body problem when the masses satisfy that m1 = m2 �= m3 = m4 is
done in Álvarez and Llibre [6]. Results on the co-circular 4-body problem can be
found in [14].

MacMillan and Bartky in [27] proved that for any four positive masses and any
assigned order, there is a convex planar central configuration of the 4-body problem
with that order. (See Xia [42] for a simpler proof.) Albouy, Fu, and Sun [3] (see also
[27, 35]) stated the conjecture that there is a unique convex planar central configu-
ration of the 4-body problem for each ordering of the masses in the boundary of its
convex hull.

A number of works have considered special cases of the 4-body problem where
one or more of the masses is infinitesimal. The case of 3 equal large masses and
1 infinitesimal mass was studied by Lindow [24, 25]. Pedersen made a thorough
numerical study of the generalization to 3 unequal large masses. He found that when
the 3 large masses form a Lagrangian equilateral triangle, there can be 8, 9, or 10
relative equilibrium positions for the small mass, depending on the values of the large
masses [34]. In the two-dimensional normalized mass space, there is a bifurcation
curve separating the masses with 8 and 10 relative equilibria. This was confirmed by
work of Gannaway [19] and Arenstorf [7]. A rigorous computer-assisted study of the
bifurcations is due to Barros and Leandro [8, 9]. A similar bifurcation curve appears
in the present work.

In [41] Xia studied the number of central configurations of the N -body problem
when there are 2 or 3 large masses and each of the remaining masses is sufficiently
small compared to the previous one. When N = 4 this gave new results on the
(2 + 2)-body problem of 2 large and 2 small masses when the 2 small masses satisfy
m3 >> m4. The central configurations of the (2 + 2)-body problem when m1 = m2

and m3 = m4 but these last 2 masses are infinitesimal are characterized in Corbera
and Llibre [13].

The central configurations in the case of one large mass and n infinitesimal arbi-
trary masses go back to Maxwell [28], who studied a regular polygonal ring of small,
equal masses around a large central mass as a model for one of the rings of Saturn.
Hall initiated the study of more general central configurations of the (1 + n)-body
problem [20]. He proved that if the n small masses are equal and if n ≥ e27,000, then



BIFURCATION OF RELATIVE EQUILIBRIA 1379

there is a unique class of central configurations, the regular (1 + n)-gon of Maxwell.
Casasayas, Llibre, and Nunes in [11] obtained the same result under the assumption
that n ≥ e73. Moeckel [29] studied the linear stability of the central configurations of
this problem; see also Roberts [37] and Scheeres and Vinh [38]. A paper of Renner
and Sicardy studies the question of which (1 + 3)-body configurations admit posi-
tive masses and which are linearly stable [36]. A recent paper by Verrier and McInnes
studies the Lyapunov orbits near the relative equilibrium motions for the case of equal
small masses [40].

Bifurcations of the central configurations of the (1 + 3)-body problem when two
of the infinitesimal masses are equal has been studied by Corbera et al. in [12]. The
goal of this paper is to generalize these results to the case when the three infinitesimal
masses are not necessarily equal. In particular, we will characterize the relative equi-
libria of the planar Newtonian 4-body problem with three infinitesimal masses and
study the bifurcations as the mass ratios of the small masses vary. We will also settle
the convexity conjecture, that the 4-body problem has exactly one convex relative
equilibrium for each cyclic ordering of the masses, in the particular case that three
of the masses are sufficiently small. Most of our work is based on exact symbolic
computations, and we aim for a rigorous description of the bifurcations in both the
configuration space and the mass space.

2. The planar (1 + n)-body problem. Consider the planar (n + 1)-body
problem with masses mi > 0, i = 0, . . . , n. If xi ∈ R2 are the positions of the
bodies, then x = (x0, . . . , xn) will be called the configuration vector. Newton’s laws
for motion can be written as

Mẍ = ∇U(x),

where M = diag(m0,m0,m1,m1, . . . ,mn,mn) is the 2(n+ 1)× 2(n+1) mass matrix
and

U(x) =
∑
i<j

mimj

rij
, rij = |xi − xj |,

is the Newtonian potential. A relative equilibrium is a configuration which becomes an
equilibrium in a uniformly rotating coordinate system. If we assume that the rotation
has angular speed 1, then x is a relative equilibrium if and only if

(1) ∇U(x) +Mx = 0.

Relative equilibria, normalized in this way, are exactly the critical points of the func-
tion

(2) G(x) = U(x) + 1
2I(x),

where

I(x) = xTMx =
∑

mi|xi|2

is the moment of inertia with respect to the origin. Also, any configuration satisfying
(1) has center of mass at the origin:∑

mixi = 0 ∈ R2.
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Hall studied the limiting case when all but one of the masses tend to zero [20].
Suppose m0 = 1 and mi = εμi, 1 ≤ i ≤ n, where the μi are fixed constants and ε > 0
is a small parameter. We are interested in the limit configurations xε → x̄ where ε
runs through a sequence εk → 0. Such a limit configuration x̄ will be called a relative
equilibrium of the (1 + n)-body problem. In general, it is possible that several of the
small masses coalesce in the limit, but it will assumed here that x̄i �= x̄j for i �= j.

Using a slightly different normalization, Hall derived several remarkable properties
of x̄. Here we describe the analogous results for our normalization. First consider any
sequence xε as above, convergent or not. Then it is not hard to see that all of the
norms |xεi |, i = 0, . . . , n, remain bounded [31]. So there is a convergent subsequence,
and we may as well assume that the limit x̄ exists. The center of mass equation

(3) x0 + ε
∑

μixi = 0

implies that x̄0 = 0; i.e., the large mass converges to the origin.
To derive the other properties of x̄ it is convenient to introduce new coordinates

y0 ∈ R2, ri > 0, θi ∈ R by setting

x0 = εy0, xi = ri(cos θi, sin θi), i = 1, . . . , n.

The function G(x) from (2) becomes

G(y0, ri, θi, ε) = ε

(∑ μi

ri
+

1

2

∑
μir

2
i

)

+ ε2

⎛
⎝1

2
|y0|2 +

∑ μiy0 · (cos θi, sin θi)
r2i

+
∑
i<j

μiμj

rij

⎞
⎠+O(ε3).

In the new coordinates, the relative equilibria xε are represented by solutions of the
system of equations

(4)

fi(y0, ri, θi, ε) = ε−1Gri = 0,

gi(y0, ri, θi, ε) = ε−2Gθi = 0,

h0(y0, ri, θi, ε) = ε−2Gy0 = 0.

These equations depend smoothly on all variables on the open set where all rij �= 0.
Since the variables are bounded and since we are assuming that the limiting positions
are distinct, it follows that the limit configuration x̄ is represented by a solution of
the corresponding equations with ε = 0.

When ε = 0 we have

fi(y0, ri, θi, 0) = μi(ri − r−2
i ) = 0,

so ri = 1. In other words, for the limiting configuration, all of the small bodies are
on the unit circle. Setting ε = 0 and ri = 1 we find

h0(y0, 1, θi, 0) = y0 +
∑

μi(cos θi, sin θi) = 0,

which is the center of mass equation (3) in the new variables. Finally, setting ε =
0, ri = 1 and eliminating y0 using the center of mass equation, gi reduces to

(5)

n∑
j �=i

μj sin(θj−θi)
(

1

r3ij
− 1

)
= 0
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for 1 ≤ i ≤ n, where

(6) r2ij(θ) = 2(1− cos(θi−θj)) = 4 sin2(θi−θj)/2

are the Euclidean distances between the points on the circle. Hall observed that this
equation could be viewed as the equation for critical points of the function:

V (θ) =
∑
i<j

μiμj

(
1

rij(θ)
+
r2ij(θ)

2

)
,

where the ranges of the summation indices do not include 0. Thus the vector of angles
associated to a relative equilibrium of the (1 + n)-body problem is a critical point of
V (θ).

Fig. 1. Relative equilibria of the (1 + 3)-body problem with equal small masses: μ1 = μ2 = μ3.
Convex hulls are indicated with dashed lines.

Figure 1 shows the relative equilibria of the (1 + 3)-body problem with equal
small masses μ1 = μ2 = μ3 found by Hall [20]. Counted up to rotation there are
14 solutions. For the convex shape (left), the small masses can be labeled in six
rotationally distinct ways. The equilateral and isosceles shapes account for 2 and 6
solutions, respectively.

Conversely, given a critical point θ of V we would like to conclude that the
corresponding configuration x̄ with x̄0 = 0 and x̄i = (cos θi, sin θi) is a limit of a
sequence of relative equilibria for positive masses. We will now show that this is the
case, at least if a nondegeneracy condition holds. We call a critical point of V (θ)
nondegenerate up to symmetry if the nullity of the Hessian D2V (θ) is exactly one,
the smallest value compatible with the rotational symmetry of V (θ).

Proposition 1. Suppose θ is a nondegenerate critical point of V (θ) up to sym-
metry and let x̄ be the corresponding (n + 1)-body configuration. Then there exists a
smooth curve of relative equilibria xε, 0 < ε < ε0, of the (n + 1)-body problem with
masses (1, εμ1, . . . , εμn) such that xε → x̄ as ε→ 0.

Proof. We will apply the implicit function to the system (4) near the ε = 0
solution with angles θi, ri = 1 and y0 given by the center of mass condition. We can
eliminate the rotational symmetry of the problem by taking θ1 = 0 and forgetting
about the corresponding equation g1. To apply the implicit function theorem we need
the Jacobian determinant of the system to be nonzero when ε = 0 and evaluated
at our solution. The matrix is block diagonal, and the blocks corresponding the
ri and y0 variables are easily seen to be nonsingular. The hypothesis that θ is a
nondegenerate critical point of V up to symmetry is exactly what is needed for the
block corresponding to θ2, . . . , θn to be nonsingular. Therefore we can apply the
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implicit function theorem to get a smooth continuation of x̄ to a solution for 0 < ε <
ε0.

For given angles θ = (θ1, . . . , θn), (5) can be viewed as an n× n system of linear
equations

(7) A(θ)μ = 0

for the mass vector μ = (μ1, . . . , μn). Note that the matrix A(θ) is antisymmetric. It
follows that if n is odd, there is always at least one nonzero mass vector μ satisfying the
equation. We will see that for n = 3, this mass vector is unique up to normalization
so that we get a well-defined normalized mass mapping μ(θ1, θ2, θ3). Our results are
obtained by studying this mapping.

It is interesting that for even n the situation is different. A given vector of angles
will not give a relative equilibrium for any choice of masses unless the determinant of
A(θ) vanishes. If it does vanish, there will be at least a two-dimensional set of mass
vectors. This phenomenon was already noted in [36]. A similar even-odd dichotomy
appears in the collinear n-body problem [4].

3. The mass mapping for the (1+3)-body problem. In this section we de-
fine several versions of a mass mapping which assigns to each triple of angles (θ1, θ2, θ3)
a corresponding mass vector making the given configuration a critical point of the
(1+3)-body potential. Assume without loss of generality that the three angles satisfy

(8) 0 ≤ θ1 < θ2 < θ3 < 2π.

Then for i < j we can take the square root in (6) to get

rij = 2 sin(θj−θi)/2 = 2(sin θj/2 cos θi/2− sin θi/2 cos θj/2),

where all of the half-angles lie in the interval [0, π). By using the tangent substitutions,

sinα =
2 tanα/2

1 + tan2 α/2
, cosα =

1− tan2 α/2

1 + tan2 α/2

in (5) become rational functions in the variables

t1 = tan θ1/4, t2 = tan θ2/4, t3 = tan θ3/4.

The assumptions on the angles imply that the new variables satisfy

0 ≤ t1 < t2 < t3 <∞.

With the help of Mathematica we find that the antisymmetric matrix A(θ1, θ2, θ3)
in (7) becomes

(9) A(t1, t2, t3) =
1

d

⎡
⎣ 0 c −b
−c 0 a
b −a 0

⎤
⎦ ,

where the common denominator

d = 16
(
(t2 − t1)(t3 − t1)(t3 − t2)(1 + t1t2)(1 + t1t3)(1 + t2t3)

(1 + t21)(1 + t22)(1 + t23)
)2
,
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and where a, b, c are polynomials in t1, t2, t3. Note that d > 0 in the region of interest.
To simplify the formulas further we use rotation invariance to assume θ1 = 0.

Then t1 = 0 and (t2, t3) ∈ C, where C is the open, triangular cone

C = {(t2, t3) : 0 < t2 < t3 <∞} ⊂ R2.

We get the following formulas for a, b, c:

(10)

a = t22t
2
3(1 + qt2 − qt3 + t2t3)(1 + rt2 − rt3 + t2t3),

(1 + t2 − t3 + t2t3)(1 − t2 + t3 + t2t3)f,

b = t22(t3 − q)(t3 − r)(t3 − 1)(t3 + 1)(t3 − t2)
2(1 + t22)

2(1 + t2t3)
2g(t3),

c = −t23(t2 − q)(t2 − r)(t2 − 1)(t2 + 1)(t2 − t3)
2(1 + t23)

2(1 + t2t3)
2g(t2),

f = (1 + t42)(1 + t43) + 4(t3 − t2)(1 + t22)(1 + t23)(1 + t2t3)

+ 18(t22 + t23)(1 + t22t
2
3)− 32t2t3(t

2
2 − 1)(t23 − 1)− 60t22t

2
3,

g(x) = 1 + 4x+ 18x2 + 4x3 + x4,

where

q = tan
π

12
= 2−

√
3, r = tan

5π

12
= 2 +

√
3 = 1/q.

Note that these are the tangents of the quarter-angles of 60◦, 300◦, respectively. Later
on, the numbers

tan
π

6
=

1√
3
, tan

π

4
= 1, tan

π

3
=

√
3

will also play a role.
Given (t2, t3) ∈ C we want to solve A(0, t2, t3)μ = 0 to find masses. From now on

this equation will be written simply as

(11) A(t2, t3)μ = 0.

Lemma 1. The kernel of the matrix A(t2, t3) is spanned by the vector

μ = (a, b, c)

for all (t2, t3) ∈ R2 \ (0, 0).
Proof. From the form (9) of the antisymmetric matrix A, it follows that the

kernel of A is spanned by the vector μ = (a, b, c) unless a = b = c = 0. Computing
a Gröbner basis of the polynomial ideal spanned by a, b, c gives a list of polynomials
including t53(1 + t23)

11. It follows that any solution of a = b = c = 0 must have t3 = 0.
Substituting this into the Gröbner basis yields the polynomial 60t42(1 + t22)

2, which
shows that we must also have t2 = 0.

Define an unnormalized mass mapping μ : C → R3 \ (0, 0, 0) by

μ(t2, t3) = (a(t2, t3), b(t2, t3), c(t2, t3)).

For each (t2, t3), the vector μ(t2, t3) gives a triple of masses, not all zero, such that
(11) holds. From the lemma, we see that we could use the same formula to define a
smooth map on the larger domain R2 \ (0, 0). However, C contains representatives of
all the (1 + 3)-body shapes satisfying our ordering assumption (8).
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Of course the mass vector is determined only up to a constant multiple, so we will
also define some other versions of the mass mapping which eliminate the ambiguity.
The kernel of A(t2, t3) is really a line through the origin in R3 or, equivalently, an
element of the projective plane RP(2). One way to “normalize” the masses is just to
view μ = (a, b, c) as a set of homogeneous coordinates for a point of RP(2), which
we denote by [a, b, c]. With this notation we can define the projective mass mapping
μpr : C → RP(2) by

μpr(t2, t3) = [a(t2, t3), b(t2, t3), c(t2, t3)].

Instead of using projective space, we could normalize the masses in some way.
For example, we could define a spherical mass mapping μsph : C → S

2 by

μsph(t2, t3) = (a, b, c)/
√
a2 + b2 + c2,

where we still need to identify antipodal mass vectors μ,−μ. Or, as is common, we
could define a simplicial mass mapping

μsimp(t2, t3) = (a, b, c)/(a+ b+ c),

so that the sum of the normalized masses is 1. But this is less convenient theoretically
since it is valid only on the open subset of C where the denominator is nonzero.

4. The positive mass region and the symmetries. In this section we find
the subset of C such that the kernel of A(t2, t3) contains a vector with all components
positive. The result is shown as the shaded region in Figure 2 consisting of three open
“triangles” and an open “hexagon.” Note that in all the figures related with the subset
C the horizontal axis is t2 and the vertical one is t3. These four connected components
are bounded by lines and simple curves, as we will show below. We will denote this
open subset by C+ ⊂ C and call it the positive mass region. We also introduce the
notation

P = {μ = (μ1, μ2, μ3) ∈ S2 : μi > 0}

for the open octant of the mass sphere consisting of positive mass vectors. Later we
will see that the triangular components of C+ represent convex 4-body configurations,
while the hexagonal component corresponds to nonconvex configurations where the
large mass is inside the triangle formed by the small ones.

The normalized mass vector is uniquely given by μsph up to an overall sign, so it
suffices to find the regions where the polynomials a, b, c of (10) are all positive or all
negative. This is an open set bounded by the curves where one of polynomials is zero.
From the factorizations in (10), it is easy to see that in C we have b = μ2 = 0 only
on the three horizontal lines t3 = q, 1, r (the bold red lines in Figure 2). Similarly,
c = μ3 = 0 on the (blue) vertical lines t2 = q, 1, r. The analysis of the case a = μ1 = 0
is slightly more complicated. We will show below that the factor f does not vanish
in C. Each of the other nontrivial factors determines a curve which can be viewed
as a graph of a rational function t3 = h(t2). The four factors in parentheses give,
respectively,

t3 =
1 + qt2
q − t2

,
1 + rt2
r − t2

,
1 + t2
1− t2

,
t2 − 1

1 + t2
.

In the region C, the graphs are the bold green curves in the figure. The last one does
not intersect C. From the formulas it is easy to check that the pattern of intersections
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Fig. 2. The positive mass region C+ (left) and the positive mass octant P (right). Shapes of
(1 + 3)-body configurations are represented by positive (t2, t3) above the diagonal (left). The set of
shapes for which a positive mass vector exists, C+, is shaded. There is a shaded “hexagon” and three
shaded triangles (one small bounded one and two infinitely tall ones). Also shown are fixed curves
of the nonlinear reflection symmetries. The positive mass vectors on the unit sphere are shown on
the right together with the curves where some mass is zero or where two masses are equal.

of these curves with the horizontal and vertical lines is as shown. It is also elementary
to check the signs of a, b, c in each connected component of the complement. The
signs are (+,+,+) in the three shaded triangles and (−,−,−) in the shaded hexagon.
In the other regions, a, b, c are not all of the same sign, so no positive mass vector is
possible.

The color coding of the boundary curves of the shaded regions on the left side of
Figure 2) corresponds to that of the boundary arcs of the positive octant P on the
right. For example, under the normalized mass map μsph the green, red, and blue
boundary curves of the shaded triangles map to the corresponding boundary arcs of
P . The same holds for the hexagon if we use the map −μsph. To avoid writing the
minus sign, introduce the notation μP : C+ → P for the map which equals μsph on
the triangular parts of C+ and −μsph on the hexagonal part.

To see that f(t2, t3) is never zero in C we use the change of variables

t2 =
u2v2

(1 + u2)
, t3 = v2,

which maps the entire (u, v)-plane onto the cone C. Substitution into f gives a poly-
nomial with 31 terms:

f̂(u, v) = 1 + 4u2 + 6u4 + · · ·+ 4u8v12 + 4u6v14 + u8v16.
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All of these terms involve only even powers of u, v and all of the coefficients are positive
integers. It follows that f̂(u, v) > 0 in R2 and so f(t2, t3) > 0 in C.

Even with our assumptions that 0 = θ1 < θ2 < θ3 there is still a sixfold symmetry
in the problem. Suppose that a vector θ = (0, θ2, θ3) satisfying our assumptions is a
relative equilibrium for mass parameters μ = (μ1, μ2, μ3). If we reflect through the x-
axis we obtain a configuration (0, 2π−θ2, 2π−θ3) which does not satisfy the ordering
assumptions. However, the permuted vector θ′ = (0, 2π− θ3, 2π− θ2) is in the correct
order and is a relative equilibrium for the permuted mass vector μ′ = (μ1, μ3, μ2).
The angle symmetry transformation θ �→ θ′ corresponds to the transformation

(t2, t3) �→
(

1

t3
,
1

t2

)

of the quarter-angle tangents.
Another symmetry transformation is obtained by reflecting and permuting masses

μ1, μ3. Then it is necessary to rotate the configuration to put the first body at θ′1 = 0.
The result is the angle transformation θ �→ θ′ = (0, θ3−θ2, θ3), and the corresponding
map of the tangents is

(t2, t3) �→
(
t3 − t2
1 + t2t3

, t3

)
.

By composing these two symmetries, we generate the following group of six ra-
tional transformations of C and corresponding mass permutations:

(12)

(
1

t3
,
1

t2

)
, (μ1, μ3, μ2), (t2, t3), (μ1, μ2, μ3),(

t3 − t2
1 + t2t3

, t3

)
, (μ3, μ2, μ1),

(
t3 − t2
1 + t2t3

,
1

t2

)
, (μ2, μ3, μ1),(

t2,
1 + t2t3
t3 − t2

)
, (μ2, μ1, μ3),

(
1

t3
,
1 + t2t3
t3 − t2

)
, (μ3, μ1, μ2).

The transformations in the first column have order two; i.e., they are nonlinear “re-
flections” through certain fixed curves in C. These curves are indicated by the thinner
lines on the left side of Figure 2, and they give a good idea of how the symmetry
group acts. For example, the first symmetry operation in the table fixes the (green)
hyperbola t2t3 − 1 = 0. It maps the large, upper right triangle onto the small, lower
left one while preserving the other triangle and the hexagon. Under the mass map-
ping, the green fixed curve maps to the equal mass curve μ2 = μ3, shown in green on
the right part of the figure.

The equal mass curves in the positive octant are very helpful in trying to under-
stand the mass mapping. The three equal mass curves divide the positive octant into
six triangles, as shown in Figure 2. The triangles correspond to mass triples satisfying
inequalities of the form 0 < μi < μj < μk. We would like to know which parts C+

map into each of these triangles. For this we need to understand the preimages in C+

of the equal mass curves.
For example, consider the preimage of the equal mass curve μ1 = μ3 (the thin red

curve in P). Factorization of a(t2, t3)− c(t2, t3) from (10) shows that the preimage of
this equal mass curve consists of two curves given by

(13) φ1 = 2t2 − t3 + t22t3 = 0, φ2 = 64t22 − 64t62 + · · ·+ 2t82t
7
3 = 0,
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where φ2 has 56 terms. The first equation describes the red symmetry curve in C,
but the second one is a new curve which does not appear in Figure 2. Similarly, each
of the other equal mass curves has two preimage curves. Figure 3 shows a numerical
plot of how these six curves meet one of the positive-mass triangles and the hexagon.
The preimage curves divide C+ into several open regions, each of which must map
entirely into the interior of one of the six open triangles in P .
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Fig. 3. Curves in C+ where two of the corresponding masses are equal: μ1 = μ3 (red), μ1 = μ2

(blue), μ2 = μ3 (green). These curves are the preimages of the equal mass curves in P. The solid
curves indicate the fixed point curves of the reflection symmetries, and the dashed curves give the
other component curves of the preimages.

The behavior of the mass mapping in the triangular shaded regions seems to be
very simple. Comparing the left part of Figure 3 with the right part of Figure 2
suggests that the triangles of C+ could map diffeomorphically to the octant P . In
fact this is the case, as will be proved rigorously in section 6. The mapping from the
hexagon to P seems much more complicated. Indeed, it features singularities which
will be investigated in the next section.

The relative equilibria for a fixed mass vector μ0 are represented by its preimages
under the mass map. For example the mass vector μ0 = (1, 2, 10) has 5 preimages,
1 in each of the three triangles and 2 in the hexagon. The corresponding relative
equilibria are shown in Figure 4. The convex shapes in the top row come from critical
points in the three triangular regions of C+, and the two nonconvex shapes in the
bottom row are from the hexagon. Counting up to rotations, this mass vector admits
10 relative equilibria, since each of the five shown in the figure could be reflected to
get a rotationally distinct solution.

Before moving on, we remark that the relative equilibria of three equal masses are
easy to spot in Figure 3 as intersection points of three curves. Apparently, the equal
mass point has exactly seven preimages, one in each of the three triangles and four in
the hexagon. This follows from previous work on symmetrical cases of the problem
[20, 12]. One thing that is easy to check, however, is that the intersection point of
the three symmetry fixed point curves is the point (t2, t3) = (1/

√
3,
√
3). These are

the quarter-angle tangents of (θ2, θ3) = (2π/3, 4π/3), which represents the equilateral
triangle configuration of the small masses.
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Fig. 4. Relative equilibria of the (1 + 3)-body problem for small masses in the ratios μ1 : μ2 :
μ3 = 1 : 2 : 10.

5. Singularities of the mass mapping. We have constructed a mass mapping
μ : C → R3 \ (0, 0, 0) and corresponding normalized mass mappings. This approach
is sometimes called the inverse problem for relative equilibria; i.e., given the config-
uration, find the masses. A more interesting problem is to fix the masses and try to
find the corresponding relative equilibrium configurations. This amounts to finding
the preimage of a given mass vector μ̄ = (μ̄1, μ̄2, μ̄3) under the mass mapping. We
begin by studying the singularities of the normalized mass mappings, i.e., the points
(t2, t3) where the map is not a local diffeomorphism.

The derivative of the unnormalized mass mapping

μ(t2, t3) = (a(t2, t3), b(t2, t3), c(t2, t3))

is a linear mapDμ(t2, t3) : R
2 → R3 represented by the 3×2 Jacobian matrix of partial

derivatives . The derivative of the corresponding spherical mass map μsph = μ/|μ| is
a linear map Dμsph(t2, t3) : R

2 → Tp S
2, where p = μsph(t2, t3). It is obtained from

Dμ(t2, t3) by orthogonally projecting onto the tangent plane to the sphere. Hence
the singular points of μsph are the points where the normal vector (a, b, c) to the
sphere lies in the range of Dμ. If we append the column vector (a, b, c) to Dμ, the
determinant of the resulting 3× 3 matrix vanishes on the singular set. The result is a
complicated polynomial F (t2, t3) given in the appendix. The zero set of F is a curve
in the (t2, t3) plane, and we are interested in the part of the curve which lies in C and
especially the part which lies in the positive mass region C+. We will call this the
singular curve

S = {(t2, t3) ∈ C+ : F (t2, t3) = 0}.

A contour plot gives the black curve in Figure 5. Apparently the singular curve
consists of a convex, simple closed curve lying entirely inside the hexagonal part of
C+. The image B = μP(S) = −μsph(S) of the singular curve in the positive mass
octant is shown in Figure 6. This will be called the bifurcation curve. Apparently it
is a simple closed curve with three cusps. We will justify these figures in the sections
to follow.
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Fig. 5. The singularities of the normalized mass map form a convex oval (the black curve) in
the shaded hexagon surrounding the equilateral point.

Fig. 6. The bifurcation curve in the positive mass octant is a simple closed curve surrounding
the equal mass point. This is the image of the singular curve from Figure 5 under the mass map.

We conclude this section by relating the singularities of the mass mapping to
the degeneracy of the corresponding critical points. If t = (t2, t3) ∈ C, then the
corresponding vector of angles θ = (0, θ2, θ3) is a critical point of Hall’s potential
function V (θ) for masses μ = μ(t2, t3). Proposition 1 shows that this critical point
can be continued to a family of relative equilibria of the 4-body problem if it is
nondegenerate up to symmetry.

Proposition 2. A vector θ = (0, θ2, θ3) is a nondegenerate critical point of
V (θ) up to symmetry if and only if the corresponding vector of quarter-angle tangents
t = (t2, t3) ∈ C is a nonsingular point of the mass mapping.

Proof. We need to relate the nonsingularity of the mass mapping at t to the
properties of the Hessian D2V (θ). We have been working with the 3×3 linear system
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A(θ)μ = 0. This is equivalent to the critical point equation for V (θ) since

A(θ)μ =M−1∇V (θ).

If we recall the form (9) of A and the connection between antisymmetric 3×3 matrices
and the cross project, we have

M−1∇V (θ) =
1

d
μ×

⎡
⎣ab
c

⎤
⎦ ,

where μ = (μ1, μ2, μ3)
T is a constant mass vector. Fixing θ1 = 0 and viewing V (θ)

and A(θ) as a functions of (θ2, θ3) is one way of eliminating the rotational symmetry.
(Note that∇V is still a three-dimensional vector but is now being viewed as a function
of (θ2, θ3).) Replacing (θ2, θ3) with the corresponding quarter-angle tangents (t2, t3)
is just a change of coordinates. If we do this, then the vector (a, b, c) is just the
unnormalized mass map, so the last equation takes the form

(14) M−1(∇V )(t2, t3) =
1

d
μ× μ(t2, t3).

Clearly (t2, t3) is a critical point if the mass vector is μ = μ(t2, t3). Degeneracy of the
critical point is equivalent to the existence of a vector v ∈ R2 \ {0} such that

D(∇V (t2, t3))v = 0.

Differentiating the right side of (14) and then setting μ = μ(t2, t3) gives

1

d
μ(t2, t3)×Dμ(t2, t3)(v) = 0.

This is the same as saying that μ(t2, t3) is in the column space of Dμ(t2, t3), which
gives exactly the equation F (t2, t3) = 0 defining the singular set of the normalized
mass map.

6. Convex relative equilibria. By a convex relative equilibrium of the (1+3)-
body problem we mean a relative equilibrium such that the three bodies on the circle
together with the large mass at the origin form a convex quadrilateral. For the planar
4-body problem with given positive masses, it is known that there are at least six
convex relative equilibria up to rotations, translations, and rescaling, one for each
of the rotationally distinct cyclic orderings of the bodies around the quadrilateral
[27, 42]. It is conjectured that there is exactly one such relative equilibrium for each
cyclic ordering, and this in known to be true for the case of four equal masses [2].

In this section we will prove such an existence and uniqueness theorem for the
(1 + 3)-body problem. As a corollary we will settle the 4-body uniqueness question
for masses of the form (1, εμ1, εμ2, εμ3) with ε > 0 sufficiently small. In addition, we
will prove that these convex relative equilibria are linearly stable.

To find the part of the cone C representing convex configurations, first note that
the ordering assumption 0 = θ1 < θ2 < θ3 means that the counterclockwise order of
the four bodies is either 0123, 0312, or 0231, where 0 represents the large mass. Taking
into account the symmetries and the corresponding mass permutations from (12), it
suffices to consider the case 0123. This amounts to requiring 0 = θ1 < θ2 < θ3 ≤ π
or equivalently 0 < t2 < t3 < 1. The intersection of the positive mass region C+ with
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this set consists of just one of the three triangular regions, the lower, bounded one
shown in Figure 3:

T =

{
(t2, t3) : t2 < q, q < t3 <

1 + rt2
r − t2

}
.

Proposition 3. The normalized mass map μS restricts to a diffeomorphism
μS : T → P.

Proof. Since the components (a, b, c) have sign pattern (+,+,+) in T , μsph maps
T into P . Next we show that the restriction of μsph is a local diffeomorphism by
proving that the singular curve does not intersect the triangle T . In fact we will show
that it does not intersect the convexity region U = {0 < t2 < t3 < 1} corresponding
to the cyclic ordering 0123. For this we use the change of variables

t2 =
u2v2

(1 + u2)(1 + v2)
, t3 =

v2

(1 + v2)
,

which maps the entire (u, v)-plane onto U . Substituting into the polynomial F (t2, t3)
defining the singular set gives a complicated polynomial

F̂ (u, v) = v2(1 + 18u2 + 153u4 + · · ·+ 91521024u34v68 + 9633792u36v68),

where the factor in parentheses has 665 terms involving only even powers of the
variables. Remarkably, every term has a positive integer coefficient. It follows that
F (t2, t3) > 0 on the convexity region U .

To show that the restriction of μsph is a diffeomorphism we will show that it is
a proper map; i.e., the preimage of any compact subset of P is a compact subset
of T . Then a general result from topology shows that it is a covering map [18].
Since P is simply connected, it follows that any covering map is one-sheeted, i.e., is a
homeomorphism, and hence a diffeomorphism.

To show that μsph : T → P is proper, note that it extends continuously to the
boundaries. Indeed, μsph is defined and smooth on all of C. Moreover, since the
boundary of the triangle T consists of curves where a mass vanishes, the extended
μsph maps the boundary ∂T to the boundary ∂P . Now let K ⊂ P be any compact
set. Since K ⊂ P , we have K ∩ ∂P = ∅. Let tn be any sequence in the preimage
μ−1
sph(K). We need to show it has a convergent subsequence tnk

→ t̄ ∈ T . Since the
closure of T is compact, it certainly has a convergent subsequence with t̄ ∈ T ∪ ∂T .
But if t̄ ∈ ∂T , then its image μsph(t̄) would be a point of K ∩ ∂P , a contradiction. It
follows that t̄ ∈ T as required.

It follows from this result that for every choice of mass parameters μi > 0 there
exists exactly one convex critical point in each of the three triangular regions of C+.
To see that these are really relative equilibria of the (1+3)-body problem according to
our definition, we need to check that these can be continued to relative equilibria of the
4-body problem for small ε > 0. But the proof shows that the convex critical points
are nonsingular points for the mass map. By Proposition 2, they are nondegenerate
up to symmetry, and then Proposition 1 shows that they can be continued. These
convex critical points have cyclic orders 0123, 0312, and 0231. The other three cyclic
orders are not represented by points of C+ but can be obtained by reflecting. Hence,
the following theorem holds.

Theorem 1. For every choice of mass parameters μi > 0 there exists exactly one
convex relative equilibrium of the (1 + 3)-body problem for each cyclic ordering of the
four masses.
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There is an interesting alternative way to prove the existence of at least one
convex critical point of V which has some parallels with the existence proof for the
general 4-body problem [42]. Even though we have already proved existence and
uniqueness, we will now characterize them variationally as minimizers of V on the set
of convex configurations. Setting θ1 = 0 we can express V as a function V (t2, t3) of
the quarter-angle tangents.

Proposition 4. For any choice of mass parameters μi > 0, V (t2, t3) attains a
minimum on the open triangle 0 < t2 < t3 <

1√
3
(which contains T ).

Proof. T is the region on the left in Figure 3. The top point of T is (2 −√
3, 1/

√
3), so T is contained in the triangle in the statement of the proposition. We

have V (t2, t3) → ∞ as (t2, t3) approaches the left edge t2 = 0 and the bottom edge
t2 = t3 of this triangle, since these represent collisions.

For any δ > 0, V is continuous and achieves a minimum on the compact set
K = {δ ≤ t2 ≤ t3 − δ ≤ 1/

√
3 − δ}. For δ sufficiently small this will also be the

minimum of V on the open triangle. It suffices to show that the minimum of V on
K does not occur on the horizontal line segment t3 = 1/

√
3, δ ≤ t2 ≤ 1/

√
3 − δ.

With the help of Mathematica, it is straightforward to calculate V (t2, t3) and its
gradient. It suffices to show that the partial derivatives never satisfy Vt2 = 0, Vt3 ≤ 0
anywhere on the line segment. The formulas are complicated but reduce to one
variable when we set t3 = 1/

√
3. Factorization of these partial derivatives in the

extension field of the rational numbers by
√
3 shows that on the line segment, Vt2 = 0

only at the point (2 −
√
3, 1/

√
3). More precisely Vt2 has a factor (t2 − (2 −

√
3)),

several simple factors which are clearly positive, and a more complicated factor of
the form μ1p1(t2)+μ3p3(t2). The polynomials p1, p3 factorize nicely in the extension
field, revealing that they are both positive for δ ≤ t2 ≤ 1/

√
3 − δ. At the point

(2−
√
3, 1/

√
3) where Vt2 = 0 we have Vt3 > 0. It follows that the minimum of V on

K does not occur on the line segment t3 = 1/
√
3, δ ≤ t2 ≤ 1/

√
3− δ. It must be at a

critical point in the interior.

If we combine this with the other results in this section we get the following
corollary.

Corollary 1. The convex critical points of the (1+ 3)-body problem are nonde-
generate minima of V (θ1, θ2, θ3) up to symmetry. Consequently, given μ = (μ1, μ2, μ3),
μi > 0, each of its convex critical points continues to a smooth family of linearly stable
relative equilibria xε, 0 < ε < ε0, of the 4-body problem with masses (1, εμ1, εμ2, εμ3).

Proof. We already know that the convex relative equilibria of the (1 + 3)-body
problem represent nondegenerate critical points of V up to symmetry. Also, there is
just one convex critical point for each cyclic ordering. By the previous proposition,
this must be a minimum, hence a nondegenerate minimum up to symmetry. By [29]
this is a necessary and sufficient condition for the continued relative equilibria to be
linearly stable.

Finally, we show that the convex relative equilibria of the 4-body problem con-
structed here for masses (1, εμ1, εμ2, εμ3), 0 < ε < ε0, are the only convex relative
equilibria for those masses if ε0 is sufficiently small.

Theorem 2. Given μi > 0, there is ε0 > 0 such that for 0 < ε < ε0, the four
masses (1, εμ1, εμ2, εμ3) admit a unique convex relative equilibrium for each cyclic
ordering.

Proof. Given μ = (μ1, μ2, μ3), we have one convex critical point for each cyclic
ordering, and each of these determines a curve of relative equilibria for the masses
(1, εμ1, εμ2, εμ3), 0 < ε < ε0. We want to show that every convex relative equilibrium
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is on one of these curves if ε0 is sufficiently small. If not, then there is a sequence of
convex relative equilibria xε, ε = εk → 0, which are not on any of the curves. With
our normalization (angular speed 1) there must be a convergent subsequence so we
may assume there is a limit configuration x̄ which will also be convex. If there is no
coalescing of the small bodies, i.e., if x̄i �= x̄j for i �= j, then x̄ is represented by one
of our convex critical points. It follows from the implicit function theorem that the
curve of continued relative equilibria contains all of the nearby solutions to the relative
equilibrium equations (4), and therefore the sequence xε is contained in the curve for
ε sufficiently small, contradicting the hypothesis. The only other possibility is that
some of the small bodies coalesce. We will show that this can’t happen. Suppose for
definiteness that we have a sequence of convex relative equilibria with cyclic order
0123.

First of all it is easy to see that it is not possible that all of the small bodies
coalesce into a single cluster x̄1 = x̄2 = x̄3. If this happened, then the 4-body relative
equilibrium xε would violate the perpendicular bisector theorem [30]. Recall that this
states that if we divide the plane into four open quadrants using a line connecting
two of the bodies and the perpendicular bisector of the bodies, then the other two
bodies cannot occupy just one of the open quadrants or just two diagonally opposite
quadrants. For example, if the cyclic ordering is 0123 and all three small bodies
coalesce, then for ε sufficiently small, xε2 and xε3 would both be in one of the open
quadrants determined by xε0 and xε1.

To see that the bodies can’t form exactly two distinct clusters, we will use the
fact that the relative equilibria satisfy Dziobek’s equations [15]. Suppose, for example,
that x̄1 �= x̄2 = x̄3. One of Dziobek’s equations gives

μ1Δ2(r
−3
13 − 1) = μ2Δ1(r

−3
23 − 1),

where Δi is the oriented area of the triangle with body i deleted. By hypothesis,
r23 → 0 and Δ1 → 0 as ε → 0, while r13 and Δ2 have nonzero limits. Using the
convexity assumption, we will show that the area Δ1 is bounded below by a nonzero
multiple of r23, and so the right side tends to ∞ as ε → 0. Since the left side is
bounded, this is a contradiction. Hence no coalescing occurs and the sequence xε is
impossible.

To verify the order of vanishing of the area Δ1 we will use the perpendicular
bisector theorem again. We have x̄0 = (0, 0), we may assume that x̄1 = (1, 0), and
using scaling and rotation we may even assume that xε0 = (0, 0) and xε1 = (1, 0) for

ε > 0 sufficiently small. It follows that x̄2 = x̄3 = (12 ,±
√
3
2 ) (the points on the unit

circle on the bisector of (0, 0) and (1, 0)). In other words the configuration coalesces

into an equilateral 3-body shape. Assume that the limit is (12 ,
√
3
2 ). Convexity with

the ordering 0123 implies that xε3 must lie to the left of the vertical line at 1
2 , and x

ε
2

must be to the right.

As xε3 → x̄3, it must approach the limit from outside the circle of radius 1 based
at (1, 0). This is exactly the locus where the perpendicular bisector of xε0 and xε3
passes through x̄1. To avoid a contradiction to the perpendicular bisector theorem,
we need this bisector to pass above xε1. Similarly xε2 approaches the limit point from
inside the circle; otherwise xε1 and xε3 would be in opposite quadrants of the bisector
of xε0 and xε2 (see Figure 7). It follows that the angle between the vector xε2 − xε3 and

the radial vector (12 ,
√
3
2 ) is bounded away from zero. (In fact, its limit inferior is at

least 30◦.) Thus Δ1 is bounded below by a nonzero multiple of r23 as claimed.
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Fig. 7. Hypothetical coalescence of m2 and m3 as ε → 0 for a convex shape. xε
3 would have

to approach the equilateral point (gray) from outside of the dashed circle while xε
2 would have to

approach from inside. In fact, this cannot happen.

7. The singular curve and the bifurcation curve. In the last section we saw
that the singular curve of the mass mapping does not intersect the triangle T ⊂ C+

and noted that it follows by symmetry that it is also disjoint from the other two
triangular components of C+. In this section we will analyze the part of the singular
curve which lies in the hexagonal component. In addition we will try to understand
the bifurcation curve, B = μP(S) = −μsph(S). (Recall that we have defined μP to be
μsph on the triangular parts of C+ and −μsph on the hexagonal part.) As we will see,
it divides the positive mass region P into two components. For masses in the same
component, the number of relative equilibria of the (1+ 3)-body problem is constant.

7.1. Analysis of the singular curve. First we show that the singular curve
does not intersect the boundary of the hexagonal component. The boundary of this
hexagonal component is given by the curves

C1 = {(t2, t3) ∈ C+ : t2 = 2−
√
3, t3 ∈ [1,

√
3]},

C2 = {(t2, t3) ∈ C+ : t2 ∈ [2−
√
3, 1/

√
3], t3 = (t2 + 1)/(1− t2)},

C3 = {(t2, t3) ∈ C+ : t2 ∈ [1/
√
3, 1], t3 = 2 +

√
3},

C4 = {(t2, t3) ∈ C+ : t2 = 1, t3 ∈ [
√
3, 2 +

√
3]},

C5 = {(t2, t3) ∈ C+ : t2 ∈ [1/
√
3, 1], t3 = (

(
2 +

√
3
)
t2 + 1)/(2 +

√
3− t2)},

C6 = {(t2, t3) ∈ C+ : t2 ∈ [2−
√
3, 1/

√
3], t3 = 1}.

The singular curve F (t2, t3) on C1 becomes

−73728
(
t23 + 1

)3
h(t3),

where h(t3) is a polynomial of degree 12. By applying the Sturm algorithm we see
that h(t3) has no zeros on the interval t3 ∈ [1,

√
3]. Therefore the singular curve does

not intersect C1.



BIFURCATION OF RELATIVE EQUILIBRIA 1395

The singular curve F (t2, t3) on C2 is

−
2688(t2 + 1)

(
t22 + 1

)12 (
9t102 − 35t82 + 90t62 − 256t52 − 70t42 + 45t22 − 7

)
(t2 − 1)18

.

By applying the Sturm algorithm again we see that the polynomial of degree 10 of
this expression has no real solutions on the interval t2 ∈ [2 −

√
3, 1/

√
3]. Therefore

the singular curve does not intersect C2.
By doing the same for Ci with i = 3, . . . , 6 we prove that the singular curve does

not intersect the boundary of the hexagonal component. The constant sign of F on
the boundary of the hexagon turns out to be positive. On the other hand, the value
of F at the point (t2, t3) = (1/

√
3,
√
3) representing the equilateral triangle shape is

negative. So the singular curve must separate the equilateral point from the boundary
of the hexagon. In fact, we will show that it consists of a single convex oval.

First we show the part of the singular curve in the cone C is contained in the
rectangle R = 2

5 ≤ t2 ≤ 4
5 , 1 ≤ t3 ≤ 5

2 which contains the hexagonal part of C+. We
already know that S does not intersect the triangle U = {0 < t2 < t3 < 1} representing
the convex configurations, and hence it also does not intersect the images of U under
the sixfold symmetry group. We will now show that S does not intersect the infinite
rectangle (0, 25 )× (1,∞). One can check that this, together with U and their images
under the symmetry group, cover the complementary region C\R, proving that S ⊂ R.
The method is similar to the one used above. The change of variables

t2 =
2u2

5(1 + u2)
, t3 = 1 + v2

maps the (u, v)-plane onto (0, 25 ) × (1,∞), and all of the nonzero coefficients of the
polynomial F (u, v) representing the singular curve turn out to be positive.

Now that we have confined S to R we will show that it consists of a single,
smooth convex oval. The proof uses the idea of the Hessian curve associated to a plane
algebraic curve [17]. For a curve in the projective plane defined by a homogeneous
polynomial in three variables, the Hessian curve is the zero-set of the usual 3 × 3
Hessian determinant of second partial derivatives. For an affine curve, such as our
singular curve S = {F (t2, t3) = 0}, the Hessian curve is given by the determinant

H(t2, t3) =

∣∣∣∣∣∣
d(d − 1)F (d− 1)F2 (d− 1)F3

(d− 1)F2 F22 F23

(d− 1)F3 F32 F33

∣∣∣∣∣∣ ,
where d = 35 is the total degree of F and where the subscripts denote partial deriva-
tives with respect to the variables (t2, t3).

Note that if (t2, t3) is a singular point of the curve, then the first row of the
determinant is zero so the H(t2, t3) = 0. The Hessian also vanishes at points where
the curvature of the curve is zero. This follows since, up to a nonzero factor, the
curvature is given by

κ =
[
−F3 F2

] [F22 F23

F32 F33

] [
−F3

F2

]
.

Hence, at a point where F = κ = 0, the nonzero vector (0, F2, F3) is in the kernel of
the matrix defining H .
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Using the same transformation technique, one can show that the polynomial
H(t2, t3) does not vanish in the rectangle R. The change of variables

t2 =
2

5
+

2u2

5(1 + u2)
, t3 = 1 +

3u2

2(1 + u2)

maps the (u, v)-plane onto R, and the resulting H(u, v) has coefficients of all the same
sign.

It follows that every component of S is a smooth, convex closed curve. To see
that there is only one it suffices to show that there are exactly two points on S where
the tangent line is vertical. In fact we will also show that these two points are exactly
the point of intersection of S with the symmetry curve

1 + 2t2t3 − t23 = 0, or t2 =
t23 − 1

2t3
.

Now the vertical tangents occur at the common zeros of F and its partial deriva-
tive F3. There is a factorization

18t3F (t2, t3)− (1 + t23)F3(t2, t3) = (1 + 2t2t3 − t23)P (t2, t3),

where the first factor gives the symmetry curve and P is some other polynomial. It
follows that the intersection points of S with the symmetry curve are points with
vertical tangents. To show that there are exactly two such points we use the equation
of the symmetry curve to eliminate t2 from F and then use Sturm’s algorithm to
count the real roots of the resulting one-variable polynomial.

To show that there are no other vertical tangents, it suffices to rule out points
with F = P = 0. This can be done as before, namely, after the change of variables
(4) we get a polynomial P (u, v), all of whose nonzero coefficients have the same sign.

7.2. The bifurcation curve. By definition, the bifurcation curve B is the image
of the convex closed curve S under the normalized mass map. As the mass map is
continuous, B is a continuous closed curve. In this section we will show that it is a
simple, closed curve which is smooth except at three points.

Let H denote the open, hexagonal component of the positive mass region C+.
Since S ⊂ H we can consider the restriction μP : H → P which maps H into the pos-
itive mass octant of the sphere. Since the map extends continuously to the boundary
curves and maps these to the curves where a mass vanishes, μP : H → P is a smooth,
proper map.

Recall that H represents the nonconvex part of the configuration space, that
is, configurations where the large mass is inside the triangle formed by the three
small ones. Hence for a given normalized positive mass vector μ0 ∈ P , the preimage
μ−1
P (μ0) consists of all of the nonconvex relative equilibria of the (1+3)-body problem

associated to μ0. It follows from properness that the number of preimages is finite.
For nonbifurcation values μ0 ∈ P \B the maps μP is a local diffeomorphism near each
of these preimages. The following result justifies calling B the bifurcation curve.

Proposition 5. If μ0, μ
′
0 are nonbifurcation values in the same component of

P \ B, then they admit the same number of relative equilibria of the (1 + 3)-body
problem.

Proof. Consider the preimage of the bifurcation curve, μ−1
P (B). By properness,

it is a compact subset of the open hexagon H. It certainly contains the singular
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configurations S but also those nonconvex configurations which map to the same
mass values as some singular configuration. (See Figure 9 for a numerical plot.)

The complement V = H\μ−1
P (B) is an open set, and the mapping μP : V → P \B

is a proper local diffeomorphism. It follows that over each component of P \ B it is
a finite covering map, and in particular, the number of preimages is constant. This
shows that the number of nonconvex relative equilibria is constant in each component
of P \ B. Since the number of convex relative equilibria is constant over the whole
octant P , the proof is complete.

The main result of this section is that the bifurcation curve B divides the positive
mass octant into just two components. The inner component consists of a cuspoidal
triangle containing the equal mass vector. The complement will be called the outer
component of the octant. In addition, we will determine the number of relative
equilibria corresponding to each component.

Proposition 6. The bifurcation curve B is a simple closed curve in P with three
singular points. The equal mass point is contained in the inner component, and the
curve is symmetric under permutations of the masses.

Proof. B is the image of S under the normalized mass mapping μP . The idea is
to show that as p = (t2, t3) moves counterclockwise around the convex curve S, the
image point μP(t2, t3) moves monotonically clockwise around the equal mass point.
Let α(μ) denote an angular variable in the positive octant P which increases as we
move counterclockwise around the equal mass point (1, 1, 1)/

√
3.

Let p move on S with (counterclockwise) velocity vector ν = (−F3, F2), where
the subscripts denote partial derivatives. We will show that the angle α(μP (p)) is
strictly decreasing and has nonzero derivative except at three points. Working with
the unnormalized mass map, the image point μ(p) = (a, b, c) has velocity vector
(a′, b′, c′) = Dμ(p)ν ∈ R3. The derivative of the angle α(μ(p)) is zero exactly when
this velocity vector lies in the plane spanned by (1, 1, 1) and μ(p) = (a(p), b(p), c(p)).
In other words, nonmonotonicity occurs where the determinant

G(t2, t3) =

∣∣∣∣∣∣
1 1 1
a b c
a′ b′ c′

∣∣∣∣∣∣ = 0.

The polynomial G can be explicitly computed using the formulas for a, b, c, F2, F3.
After discarding some factors which are positive in C, we end up with a complicated
polynomial of total degree 68 with integer coefficients.

Figure 8 shows a numerical plot of the curve G = 0 and the singular curve F = 0.
Apparently they intersect at just three points, and the sign of G is constant on the
rest of the singular curve. The three intersection points seem to be points on the
symmetry curves. We will verify below that the intersection is as in the figure. The
sign of G on the rest of the singular curve turns out to be negative, which corresponds
to a clockwise winding of the bifurcation curve around the equal mass point.

Using symmetry, it suffices to study the intersection points F = G = 0 on one-
sixth of the singular curve. It is convenient to look at the lower left arc between the
vertical tangent where the blue symmetry curve crosses S and the bottom horizontal
tangent point, p0, where the red symmetry curve crosses. We will show that p0 is the
only point on the lower left arc where G = 0.

We know that p0 lies on the red symmetry curve. This curve maps to the equal
mass curve a = c. As noted in section 4, the preimage of this equal mass curve consists
of two curves given by φ1 = 0 and φ2 = 0 with φi from (13). It turns out that these
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Fig. 8. The gray curve G = 0 meets the singular curve F = 0 in three points, one of which is
the bottom horizontal tangency point p0. These map to the cusp points of the bifurcation curve B.

curves meet at p0. Thus p0 is a common root of many different polynomials: φ1, φ2,
F , G, and the partial derivative F2, whose vanishing defines points with horizontal
tangents. Since φ1, φ2 are the simplest, we start by defining p0 as the common root
of these and then verify that it lies on all the other curves.

Start by replacing φ1, φ2 by two other polynomials which also vanish at p0. Taking
a Gröbner basis of the ideal 〈φ1, φ2〉 with respect to lexicographic order leads to a
polynomial in t3 alone of the form

t3(1 + t23)
3ψ1(t3), ψ1 = 63t103 − 135t83 + 45t63 − 25t43 − 16t23 − 4.

Evidently ψ1(t3) is the factor which vanishes at p0. A Gröbner basis for the ideal
〈ψ1, φ2〉 shows that 〈ψ1, φ2〉 = 〈ψ1, ψ2〉, where

ψ2 = 22 + 96t2 − 384t3 + 449t23 − 600t33 − 891t43

+ 1080t53 + 927t63 − 3240t73 − 315t83 + 1512t93.

Thus p0 is a common root of these two even simpler polynomials.
It is not hard to see that a polynomial with rational coefficients vanishes at p0

if and only if it is in the ideal 〈ψ1, ψ2〉 in the polynomial ring Q[t2, t3]. But without
using this remark, we can explicitly write the polynomials F,G, F2 in the form of
polynomial combinations

F = u1ψ1 + u2ψ2, G = v1ψ1 + v2ψ2,

where ui(t2, t3), vi(t2, t3) are rational polynomials (and similarly for F2). We did
this using Mathematica’s PolynomialReduce command. (This command expands a
general polynomial as a polynomial combination of the ψi with a remainder which
vanishes for polynomials in the ideal.)

If p is a solution of F = G = 0 with p �= p0, then (ψ1(p), ψ2(p)) �= (0, 0) and it
follows by linear algebra that the determinant

H = u1v2 − u2v1 = 0.
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Polynomial reduction of this new polynomial shows that H = w1ψ1 + w2ψ2 and
therefore it still vanishes at p0. So we form another determinant

K = u1w2 − u2w1.

We will see that this is nonzero along the entire lower left arc of S, including the point
p0. It follows, as required, that there are no points of the arc other than p0 where the
angle α(p) has zero velocity.

Proving that K > 0 along the arc is done by the now-familiar method of blowing
up a rectangle containing the arc to the entire plane and obtaining a polynomial with
all positive coefficients. The rectangle [ 9

20 ,
3
5 ] × [ 1310 ,

8
5 ] was used. It is not hard to

rigorously check that it contains the relevant arc of the convex curve S. To do this,
it suffices to verify that the endpoints of the arc lie in the rectangle. The endpoint
p0 satisfies ψ1 = ψ2 = 0. Using Sturm’s algorithm, we find that the one variable
polynomial ψ1(t3) has only one positive real root and that it lies in interval [1310 ,

8
5 ].

Taking the resultant of ψ1, ψ2 with respect to t3 gives another polynomial ψ3(t2) whose
unique real root in [0, 1] lies in the required interval [ 9

20 ,
3
5 ]. The other endpoint of the

arc is the left vertical tangent point. Sturm’s algorithm shows that F has no positive
real roots on the vertical line t2 = 9

20 , and since the singular curve contains points
to the right of this, the whole curve must lie to the right. The left vertical tangent
point lies on the symmetry curve 1+ 2t2t3 − t23 = 0 along which t3 is a monotonically
increasing function of t2. The symmetry curve intersects the horizontal line t3 = 8

5
(the top of our rectangle) at (3980 ,

8
5 ), and since F < 0 at this point, it lies inside the

singular curve. It follows that our vertical tangent point lies to the left and below
(3980 ,

8
5 ) and, in particular, below the top of the rectangle.
Having shown that the bifurcation curve is a simple closed curve, it remains to

count the relative equilibria corresponding to mass vectors in each component. We
certainly want to identify configurations which differ only by a rotation of the circle.
We get half as many solutions if we also identify those which differ by a reflection. In
doing the counts of preimages under μP we have to recall that we have imposed the
ordering t1 < t2 < t3, which means identifying under reflections. For example, for
every mass vector μ ∈ P we found exactly three convex preimages in C but there are
six convex relative equilibria if we identify only by rotations.

From previous work we know the number of relative equilibria of the (1+3)-body
problem for equal small masses [20, 12]. Up to rotation, there are 8 nonconvex ones
in addition to the 6 convex ones for a total of 14. The nonconvex ones consist of the
equilateral triangle counted twice and an isosceles shape counted six times. Because
of our ordering convention, the corresponding result is that the point μ = (1, 1, 1)/

√
3

has exactly 7 preimages under μP : C+ → P .
Theorem 3. Let μ be a normalized, positive mass vector which is not on the

bifurcation curve. If μ is in the inner component of P \ B, then it has 7 preimages
under μP : C+ → P. If μ is in the outer component, it has 5 preimages. Up to
rotation, this means there are either 14 or 10 relative equilibria of the (1 + 3)-body
problem, respectively (under the assumption of distinct limiting positions for the small
masses).

Proof. It suffices to count the preimages in the hexagon for one point in each
component. The desired numbers of preimages are 4 and 2, respectively. The equal
mass point serves as a representative of the inner component of P \B, and the results
of [20, 12] imply that there are indeed 4 nonconvex preimages (see Figure 9).

Next consider the mass point μ0 = (2/3, 1/3, 2/3). The equal mass equation
μ1−μ3 = 0 leads to the factors φ1, φ2 from (13), while the equation μ1−2μ2 = 0 gives
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a new polynomial φ3. It turns out that there are no relevant solutions to the system
φ2 = φ3 = 0. This is shown by computing their resultant to obtain a polynomial in
t2 alone and then using Sturm’s algorithm to see that this polynomial has no real
roots in the interval [ 25 ,

4
5 ]. (Recall that the hexagonal part of C+ is contained in a

rectangle with these bounds on t2.) The resultant of the system φ1 = φ3 = 0 has
exactly two roots in this interval. Since φ1 = 0 is the graph t3 = 2t2/(1− t22) it is easy
to rigorously localize the solutions (t2, t3) of the system in the hexagon. Numerical
solutions are plotted in Figure 9. This shows that μ0 has exactly 2 preimages in the
hexagon. Since the number is not 4, μ0 must lie in the outer component of P \B and
serves as a representative for that region.

For mass values on the bifurcation curve the number of preimages in the hexagon
seems to be 3 at the non–cusp points and 2 at the cusp points. For these points, at
least one preimage is singular, and it is not clear whether or not these continue to
relative equilibria of the 4-body problem with ε > 0. We will not try to prove this
rigorously but we will present some numerical evidence. Figure 9 shows the preimage
of the bifurcation curve under the normalized mass map μ−1

P (B).
In Figure 9 we have followed the notation of Figures 3 and 2. That is, the solid

thin red, thin blue, and thin green curves give the fixed point curves of the reflection
symmetries which correspond to one of the components of the preimages of the equal
mass curves μ1 = μ3, μ1 = μ2, and μ2 = μ3, respectively. The other component of
the preimages of the equal mass curves is represented by the dashed red, dashed blue,
and dashed green curves, respectively. The black points represent the four preimages
on the hexagon of the equal mass point (1/

√
3, 1/

√
3, 1/

√
3): the equilateral point

(t2, t3) = (1/
√
3,
√
3) and the other three intersection points of the preimages of the

three equal mass curves (see also section 4). The red points correspond to the two
preimages of the point (2/3, 1/3, 2/3).

Now we analyze the preimage of the bifurcation curve. The arc of the bifurcation
curve denoted by r in Figure 9 has exactly three preimages, the arc of the singular
curve r1 and two additional arcs denoted by r2 and r3. We note that the preimage
curves r1 and r2 intersect on the reflection symmetry curve corresponding to μ1 = μ3,
and that the preimage curves r1 and r3 intersect on the reflection symmetry curve
corresponding μ2 = μ3. These two points correspond to the cusps between the arcs
r and b and the arcs r and g of the bifurcation curve, respectively. In short, each
point of the arc r has exactly three preimages on the hexagon except the points of
the cusps that have only two preimages. The same occurs with the preimages of the
arcs b and g. We note that the preimages of the bifurcation curve give a triangle-
like shape curve surrounding the oval corresponding to the singular curve. Moreover
this triangle meets the oval at the points of intersection with the reflection symmetry
curves.

For a better understanding of the behavior of the mass map we analyze the
preimage of a curve c in the positive mass octant, different from the equal mass
curves, that starts at the equal mass point, crosses the arc of the bifurcation curve
b, and ends at the curve μ3 = 0. We distinguish between points of c inside the
bifurcation curve (in black) and points of c outside the bifurcation curve (in orange).
The preimage of c consist of four curves that start at the four preimages of the equal
mass point. These curves are denoted by c1, c2, c3, and c4. When we follow the
curve c from the equal mass point to the endpoint on the curve μ3 = 0, we obtain
the following. The preimage curve c1 starts at the top preimage of the equal mass
point, continues inside the triangle approaching the preimage of the bifurcation curve
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Fig. 9. The upper figure corresponds to the numerical plot of the preimage, under the normalized
mass map μP , of the curves of the positive mass octant showed on the lower figure. The color coding
of the curves is the same on both figures.

b3 as we approach b, and continues outside the triangle up to the endpoint on the
line t2 = 1 when we follow c up to endpoint with μ3 = 0. The same occurs with
the preimage curve c2. It starts at the left corner preimage of the equal mass point,
continues inside the triangle approaching b2 as we approach b inside the bifurcation
curve, and continues outside the triangle to the endpoint on the line t2 = q as we
move on c up to the endpoint with μ3 = 0. (We recall that μ3 = 0 on the vertical
lines t2 = q and t2 = 1; see section 4.) The preimage curve c3 starts at the equilateral
point, it continues inside the oval (the singular curve) approaching b1 as we approach
b inside the bifurcation curve, but it is not defined for the points of c outside the
bifurcation curve. The same occurs with the preimage curve c4. It starts at the right
corner preimage of the equal mass point, it continues inside the triangle approaching
the intersection point between c3 and b1 outside the oval as we approach b inside
the bifurcation curve, and it is not defined for the points of c outside the bifurcation
curve.

In short, the points inside the bifurcation curve have four preimages inside the
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triangle; two of these preimages coincide when we take points of the bifurcation curve
and are not defined for points outside the bifurcation curve.

Appendix. The polynomial F (t2, t3) is

(
t172 + 192t162 + 10t152 − 320t142 + 1576t132 − 1472t122 − 1962t112 − 1472t102 + 25710t92

−1472t82 − 1962t72 − 1472t62 + 1576t52 − 320t42 + 10t32 + 192t22 + t2
)
t183

+
(−96t172 − t162 + 2112t152 − 3072t142 + 1280t132 + 16918t122 − 4416t112 − 114612t102

−1472t92 + 138360t82 + 1472t72 − 17304t62 − 3072t52 + 4658t42 − 2240t32 + 12t22 + 288t2 + 1
)
t173

+2
(
48t182 + 5t172 − 576t162 + 811t152 + 1568t142 − 13665t132 + 1408t122 + 107595t112

−6816t102 − 256599t92 − 5344t82 + 156249t72 + 2080t62 − 19795t52 − 192t42 + 2353t32 − 1488t22

+6t2 + 96) t163 + 2
(
384t172 + 1536t162 − 48t152 + 5907t142 − 768t132 − 93065t122 + 260080t112

+347195t102 − 529120t92 − 442425t82 + 260016t72 + 173697t62 + 1728t52 − 18243t42 − 368t32

+2353t22 − 1120t2 + 5
)
t153 + 2

(−748t172 − 432t162 + 13983t152 + 1376t142 + 26159t132

−791664t122 − 171921t112 + 3646336t102 + 321455t92 − 3951280t82 − 275787t72 + 1051104t62

+83573t52 + 4976t42 − 18243t32 − 192t22 + 2329t2 − 160
)
t143 + 2

(
432t172 − 8437t162 − 4128t152

+103543t142 + 777296t132 + 75255t122 − 8403712t112 + 241263t102 + 17007440t92 − 308235t82

−11037088t72 + 206061t62 + 1570480t52 + 83573t42 + 1728t32 − 19795t22 − 1536t2 + 788
)
t133

+2
(−144t182 + 1067t172 + 864t162 − 111541t152 − 266000t142 + 266351t132 + 8363104t122

+145371t112 − 33342992t102 + 1133893t92 + 39272256t82 − 1328551t72 − 15223920t62

+206061t52 + 1051104t42 + 173697t32 + 2080t22 − 8652t2 − 736
)
t123 − 2

(
864t172 − 57382t162

+5328t152 + 371653t142 + 3687712t132 − 117359t122 − 33246288t112 − 554003t102

+70331072t92 − 2356107t82 − 51312336t72 + 1328551t62 + 11037088t52 + 275787t42

−260016t32 − 156249t22 − 736t2 + 981
)
t113 − 2

(
12745t172 + 720t162 − 257449t152

−519040t142 + 339025t132 + 17067472t122 + 853691t112 − 70187040t102 − 466473t92

+89207760t82 − 2356107t72 − 39272256t62 + 308235t52 + 3951280t42 + 442425t32 + 5344t22

−69180t2 + 736) t103 − 2
(
720t172 + 69060t162 + 5760t152 − 422855t142 − 3916848t132

−585717t122 + 39362016t112 + 1424501t102 − 89050160t92 − 466473t82 + 70331072t72

−1133893t62 − 17007440t52 − 321455t42 + 529120t32 + 256599t22 + 736t2 − 12855
)
t93

+2
(
144t182 + 1067t172 − 1152t162 − 150951t152 − 266864t142 + 175797t132 + 10991040t122

+1430105t112 − 51430256t102 − 1424501t92 + 70187040t82 + 554003t72 − 33342992t62

+241263t52 + 3646336t42 + 347195t32 − 6816t22 − 57306t2 − 736
)
t83 + 2

(
576t172

+8756t162 − 3792t152 − 158079t142 − 1054400t132 − 176915t122 + 15193232t112 + 1430105t102

−39362016t92 − 853691t82 + 33246288t72 + 145371t62 − 8403712t52 − 171921t42 + 260080t32

+107595t22 − 2208t2 − 981
)
t73 − 2

(
748t172 − 1200t162 − 20141t152 + 4512t142 + 113035t132

+1587600t122 + 176915t112 − 10991040t102 − 585717t92 + 17067472t82 − 117359t72

−8363104t62 − 75255t52 + 791664t42 + 93065t32 − 1408t22 − 8459t2 + 736
)
t63

+2
(
336t172 − 2279t162 + 1248t152 + 28861t142 + 432t132 − 113035t122 − 1054400t112

+175797t102 + 3916848t92 − 339025t82 − 3687712t72 + 266351t62 + 777296t52 + 26159t42

−768t32 − 13665t22 + 640t2 + 788
)
t53 − 2

(
48t182 − 5t172 − 864t162 + 3791t152 + 624t142

−28861t132 + 4512t122 + 158079t112 + 266864t102 − 422855t92 − 519040t82 + 371653t72

+266000t62 − 103543t52 − 1376t42 − 5907t32 − 1568t22 + 1536t2 + 160
)
t43

−2
(
96t172 − 6t162 − 1488t152 + 3791t142 − 1248t132 − 20141t122 + 3792t112 + 150951t102

+5760t92 − 257449t82 + 5328t72 + 111541t62 + 4128t52 − 13983t42 + 48t32 − 811t22 − 1056t2 − 5
)
t33
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+
(
t172 − 288t162 + 12t152 + 1728t142 − 4558t132 + 2400t122 + 17512t112 − 2304t102

−138120t92 − 1440t82 + 114764t72 + 1728t62 − 16874t52 − 864t42 + 3072t32 − 1152t22

−t2 + 192) t23 +
(
t162 − 192t152 + 10t142 + 672t132 − 1496t122 + 1152t112 + 2134t102 − 1440t92

−25490t82 − 1728t72 + 2134t62 + 864t52 − 1496t42 + 768t32 + 10t22 − 96t2 + 1
)
t3

−96t22
(
t42 − 1

)3
.
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