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Abstract
We classify the set of central configurations lying on a common circle in the
Newtonian four-body problem. Using mutual distances as coordinates, we show
that the set of four-body co-circular central configurations with positive masses
is a two-dimensional surface, a graph over two of the exterior side-lengths.
Two symmetric families, the kite and isosceles trapezoid, are investigated
extensively. We also prove that a co-circular central configuration requires a
specific ordering of the masses and find explicit bounds on the mutual distances.
In contrast to the general four-body case, we show that if any two masses of
a four-body co-circular central configuration are equal, then the configuration
has a line of symmetry.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The study of central configurations (c.c.s) in the Newtonian n-body problem has become a
vibrant sub-field of celestial mechanics. While much is known about specific cases, usually
involving symmetry or assuming one or more bodies is infinitesimally small, less is known
about the general structure of the set of c.c.s. For example, finiteness of c.c.s (up to symmetry)
was only recently established by Hampton and Moeckel [12] in the four-body problem, and by
Albouy and Kaloshin [2] (except for masses in a codimension two subvariety) in the five-body
problem.

In this work, we strive to deepen our understanding of the general set of c.c.s by fully
classifying the four-body co-circular central configurations (c.c.c.s), that is, those four-body
c.c.s which also lie on a common circle (see figure 1). According to Hampton [10], this
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Figure 1. An example of a co-circular c.c. The centre of the circumscribing circle is marked with
a ◦ and the centre of mass is denoted by ×.

problem was first posed by Alain Albouy. Requiring the bodies to lie on a common circle
effectively reduces the problem of finding four-body c.c.s by one dimension, allowing for a
more substantial investigation. Although such a restriction may seem somewhat arbitrary, it is
hoped that this work will prove useful in analysing the general structure of four-body convex
c.c.s, that is, those c.c.s forming a convex quadrilateral.

Co-circular c.c.s are significant since they individually form the base of any spatial,
pyramidal c.c. [1, 9]. Such a three-dimensional configuration contains five bodies, with four
co-planar bodies lying on a common circle and the fifth body (top of the pyramid) lying on the
normal line through the centre of the common circle. Albouy showed that the four co-planar
bodies must be a c.c. of the planar four-body problem [1]. Therefore, our work also serves to
classify the set of pyramidal c.c.s.

Our approach uses only the mutual distances as coordinates. The fact that Ptolemy’s
theorem is so nicely expressed in these coordinates is critical to our results. Our main result is
proving that the set of positions that yield a c.c.c. with positive masses is a two-dimensional
surface, the graph of a differentiable function f over two of the exterior side-lengths. The
boundaries of this surface correspond to three important symmetric cases: a kite, an isosceles
trapezoid and a degenerate case where three bodies lie at the vertices of an equilateral triangle
and the fourth body of the quadrilateral has zero mass. This last case corresponds to c.c.s of the
planar, circular, restricted four-body problem [13]. We also prove that for any c.c.c., the masses
must be ordered in a precise fashion, with the largest body lying on the vertex between the two
longest exterior sides, the smallest body opposite the largest, and the two largest (smallest,
respectively) bodies lying on the longest (smallest, respectively) exterior side (see section 4.2).
In contrast to the famous result of MacMillan and Bartky [15] for convex 4-body c.c.s, we
demonstrate that not all choices of positive masses lead to a co-circular c.c.

Moreover, we prove the somewhat surprising result that if just two masses of a four-body
c.c.c. are equal, then the configuration is symmetric, either a kite or an isosceles trapezoid.
These symmetric cases are explored in great detail in section 3, in part to aid in the proof of
our main result demonstrating the two-dimensional surface of c.c.c.s. In section 5.1, we prove
sharp bounds for each exterior side-length, each diagonal, the ratio of the diagonals and the
ratio of the second- and third-largest exterior side-lengths. We finish with some geometric
results relating the positions of the bodies to the circumscribing circle.
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Any planar c.c., given the correct initial velocities, leads to a relative equilibrium solution
in which the bodies rigidly rotate about their centre of mass. If the c.c. is also co-circular, the
circumcircle containing the bodies will also rotate about the centre of mass. In [10], Hampton
shows that only in the case of four equal masses positioned at the vertices of square, does the
centre of mass coincide with the centre of the circumcircle, answering a question posed by
Alain Chenciner. Some recent work in [18] proves the existence of a family of co-circular
kite c.c.s using Cartesian coordinates. A similar result also appears in [23], where Dziobek’s
equations are utilized, and the family is shown to exist for homogeneous force laws that include
the Newtonian n-body problem as well as the n-vortex problem.

2. Co-circular central configurations

Suppose we have n bodies with mass and position given by mi and qi ∈ R
2, respectively,

for i = 1, . . . , n. Denote rij = ‖qi − qj‖ as the distance between the ith and j th bodies
and let q = (q1, . . . , qn) ∈ R

2n. The centre of mass of the system is c = M−1 ∑n
i=1 miqi

where M = m1 + · · · + mn is the total mass. The equations of motion can be described by the
Newtonian potential function

U(q) =
n∑

i<j

mimj

rij

as simply

mi q̈i = ∂U

∂qi

, i ∈ {1, 2, . . . , n}.
Denote I (q) as the moment of inertia,

I (q) = 1

2

n∑
i=1

mi‖qi − c‖2 = 1

2

n∑
i=1

mi‖qi‖2 − 1

2
M‖c‖2

a characterization of the size of the system as measured from the centre of mass.
A planar c.c. of the n-body problem is a configuration x ∈ R

2n which satisfies the
algebraic equations

∇U(x) + λ ∇I (x) = 0 (1)

for some value of λ (see [19–21, 26] or [29] for more details). Viewing λ as a Lagrange
multiplier, a c.c. is simply a critical point of U subject to the constraint I equals a constant.

The ith component in (1) is given by∑
j �=i

mimj (xj − xi )

r3
ij

+ λmi(xi − c) = 0.

From this equation, it follows that if x = (x1, x2, . . . , xn) is a planar c.c., then

kx = (kx1, kx2, . . . , kxn)

and

Rx = (Rx1, Rx2, . . . , Rxn)

are also planar c.c.s for any constant k �= 0 and any R ∈ SO(2). In the first case, the value
of the multiplier λ changes to λ/|k|3 whereas the second case requires no change in λ. When
counting c.c.s it is standard to fix the size (a unique choice of k) and identify any configurations
which are rotationally equivalent via the equivalence relation x ∼ Rx for R ∈ SO(2). Any
planar c.c. leads to a two-parameter family of homographic solutions where each body travels
along the same (scaled) solution of the Kepler problem.
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2.1. Mutual distances

In this section we derive the equations for a c.c.c. using the mutual distances rij as coordinates.
We make use of Ptolemy’s theorem to give a derivation for c.c.c.s that mirrors the approach
used by Schmidt [24].

Denote r = (r12, r13, r14, r23, r24, r34) ∈ R
+6

as a vector of mutual distances. It is a
straightforward calculation to check that

I = 1

2M

∑
i<j

mimj r
2
ij .

For the case n = 4, the mutual distances are not independent; they generically describe a
tetrahedron in R

3 rather than a configuration in the plane. Locating planar four-body c.c.s
requires an additional constraint found by setting the volume of the tetrahedron to zero. This
constraint arises from the Cayley–Menger determinant

V (r) =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 r2

12 r2
13 r2

14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣
.

Assuming the rij correspond to an actual tetrahedron, then the square of the volume of this
tetrahedron is V/288 [24]. However, it is important to note that V may be positive for a given
choice of 6 mutual distances, but that does not imply a configuration exists which realizes
those particular distances. For instance, r = (2, 4, 1, 7, 4, 1) gives V (r) = 3118 but there is
no physical configuration with these distances since r12 = 2, r13 = 4, r23 = 7 does not satisfy
the triangle inequality. Conversely, it is possible for all the triangle inequalities to be satisfied,
yet have V (r) < 0. One such example is the one-parameter family rt = (1, t, 1, 1, 2/t, 1)

which gives V (rt ) = −8t−2(t2 − 2)2 which is strictly negative for all t > 0 except at the unit
square t = √

2.

To ensure a given vector r corresponds to an actual configuration of four bodies, either in
the plane (with no three bodies collinear) or in space, it is necessary and sufficient that all strict
triangle inequalities be satisfied and V (r) � 0. Sufficiency follows from theorem 9.7.3.4 and
its proof in [6]. Specifically, let

G = {r ∈ R
+6

: V (r) � 0 and rij + rjk > rik for all triples of indices

(i, j, k) where i �= j �= k}.
We say that r ∈ R

+6
is geometrically realizable if r ∈ G. Any geometrically realizable vector

of mutual distances corresponds to a four-body planar, non-collinear configuration if V (r) = 0
and a tetrahedron if V (r) > 0.

We say that the bodies are ordered sequentially if they are numbered consecutively while
traversing the boundary of the quadrilateral (either clockwise or counter-clockwise). For the
rest of this work, we will assume that any cyclic quadrilateral is ordered sequentially so that
r12, r23, r34 and r14 are the lengths of the exterior sides of the quadrilateral and r13 and r24 are
the lengths of the diagonals. Denote

P(r) = r12r34 + r14r23 − r13r24.

If a quadrilateral is ordered sequentially and is cyclic, then Ptolemy’s theorem states that
P = 0. Moreover, for any convex quadrilateral ordered sequentially or for any tetrahedron,
we have that P � 0, with equality if and only if the four bodies lie on a circle [5].
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Let P ⊂ G denote the set of all geometrically realizable r satisfying P(r) = 0. The c.c.c.s
we seek to classify lie inside P . We note that the codimension one level surfaces {V = 0} and
{P = 0} meet tangentially at any point in P . To prove this, we will show that ∇V and ∇P are
parallel at any point in P .

Let �i be the oriented area of the triangle whose vertices contain all bodies except for
the ith body. For a quadrilateral ordered sequentially, we have �1, �3 > 0 and �2, �4 < 0.
To find ∇V restricted to P , we use an important formula concerning the Cayley–Menger
determinant,

∂V

∂r2
ij

= −32 �i�j . (2)

This formula is only valid when restricting to planar configurations. The minus sign in
equation (2) is not included in Dziobek’s original paper [8] nor in several later works on
four-body c.c.s that utilize the Cayley–Menger determinant. However, checking equation (2)
on the square configuration indicates the need for the minus sign. The correct formula appears
in the doctoral thesis of Hampton [11] and has also been confirmed by Schmidt [25].

Let δ = r12r13r14r23r24r34. Then, for any r ∈ P , we have

∂V

∂rij

(r) = ∂V

∂r2
ij

· d(r2
ij )

drij

= −64rij �i�j

= −64rij · ±1

16r2
c

· rjkrklrj l · rikrilrkl

= ±4δ

r2
c

rkl

where rc is the circumradius of the cyclic quadrilateral and k and l are the two distinct indices in
{1, 2, 3, 4} different from both i and j . Here we have used the formula |�i | = rjkrklrj l/(4rc)

for the area of a triangle inscribed in a circle of radius rc. Using the same ordering for indices as
we used for the mutual distances, the signs of the partials of V are (+, −, +, +, −, +), which are
identical to the signs of ∇P = (r34, −r24, r23, r14, −r13, r12). We have proven the following
important lemma.

Lemma 2.1. For any r ∈ P ,

∇V (r) =

 4

r2
c

∏
i<j

rij


 ∇P(r).

In other words, on the the set of geometrically realizable vectors for which both V and P

vanish, the gradients of these two functions are parallel.

We note that the above lemma does not hold in general and relies heavily on the fact that
we are restricting to the family of cyclic quadrilaterals. Also, if the sign in equation (2) were
not present, then ∇V (r) and ∇P(r) would point in opposite directions, violating the fact that
any tetrahedron must have P > 0. Lemma 2.1 shows that ∇V is superfluous when using the
Lagrange multiplier method to locate c.c.c.s. However, the Cayley–Menger determinant is
still required to ensure the configuration is geometrically realizable. For example, the family
rt = (1, t, 1, 1, 2/t, 1) mentioned earlier satisfies V (rt ) < 0 (except for the unit square at
t = √

2), but also yields P(rt ) = 0. Such a family needs to be excluded from the set of
solutions.
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Corollary 2.2. Assuming a sequential ordering, a four-body c.c.c. r is a critical point of the
function

U + λM(I − I0) + σP (3)

satisfying I = I0, P = 0 and V = 0.

The choice of λM as the first Lagrange multiplier in corollary 2.2 simplifies the resulting
equations. Using the six mutual distances as variables, we find

m1m2(r
−3
12 − λ) = σ

r34

r12
, m3m4(r

−3
34 − λ) = σ

r12

r34
, (4)

m1m3(r
−3
13 − λ) = −σ

r24

r13
, m2m4(r

−3
24 − λ) = −σ

r13

r24
, (5)

m1m4(r
−3
14 − λ) = σ

r23

r14
, m2m3(r

−3
23 − λ) = σ

r14

r23
. (6)

Identical equations are obtained using V instead of P in the function (3) and simplifying the
resulting area formulae by assuming the bodies lie on a common circle. Following Schmidt’s
derivation of the equations for a c.c. of the planar four-body problem [24], we have grouped
the above equations in pairs so that the product of the right-hand sides is simply σ 2. This
yields the well-known relation of Dziobek [8]

(r−3
12 − λ)(r−3

34 − λ) = (r−3
13 − λ)(r−3

24 − λ) = (r−3
14 − λ)(r−3

23 − λ) (7)

which is required of any planar 4-body c.c. (not just co-circular ones). Solving each of the
three pairs of equations in (7) for λ yields

λ = r−3
12 r−3

34 − r−3
13 r−3

24

r−3
12 + r−3

34 − r−3
13 − r−3

24

= r−3
13 r−3

24 − r−3
14 r−3

23

r−3
13 + r−3

24 − r−3
14 − r−3

23

= r−3
14 r−3

23 − r−3
12 r−3

34

r−3
14 + r−3

23 − r−3
12 − r−3

34

. (8)

If we set

s1 = r−3
12 + r−3

34 , p1 = r−3
12 r−3

34 ,

s2 = r−3
13 + r−3

24 , p2 = r−3
13 r−3

24 ,

s3 = r−3
14 + r−3

23 , p3 = r−3
14 r−3

23 ,

then equation (8) can be written as

λ = p1 − p2

s1 − s2
= p2 − p3

s2 − s3
= p3 − p1

s3 − s1

which means that (s1, p1), (s2, p2), (s3, p3), viewed as points in R
+2, must all lie on the same

line with slope λ. This in turn, is equivalent to∣∣∣∣∣∣
1 1 1
s1 s2 s3

p1 p2 p3

∣∣∣∣∣∣ = 0,

a representation that leads to the particularly nice factorization

(r3
13 − r3

12)(r
3
23 − r3

34)(r
3
24 − r3

14) = (r3
12 − r3

14)(r
3
24 − r3

34)(r
3
13 − r3

23). (9)

Equation (9) is necessary and sufficient for a four-body planar c.c. given that the six
mutual distances determine a geometrically realizable planar configuration. However, it does
not ensure positivity of the masses. This equation can also be derived from the mass ratios
given by Schmidt (equations (9)–(14)) in [24]. A similar and equivalent equation also appears
on page 278 in the classic text of Wintner [29]. Note that equation (9) shows that if two sides
with a common vertex are equal, then to be a c.c., there must be another pair of congruent
sides sharing a common vertex.
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2.2. Mass ratios

The ratios of the masses are easily obtained by dividing appropriate sets of equations from (4),
(5) and (6). For example, we have

m2

m1
= (λ − r−3

13 ) r13r14

(r−3
23 − λ) r23r24

= (r−3
14 − λ) r13r14

(λ − r−3
24 ) r23r24

, (10)

m3

m1
= (r−3

12 − λ) r12r14

(r−3
23 − λ) r23r34

= (r−3
14 − λ) r12r14

(r−3
34 − λ) r23r34

, (11)

m4

m1
= (r−3

12 − λ) r12r13

(λ − r−3
24 ) r24r34

= (λ − r−3
13 ) r12r13

(r−3
34 − λ) r24r34

. (12)

Requiring positive masses places additional constraints on the mutual distances. First,
note that if λ = r−3

ij for any pair of indices i, j , then equations (4), (5) and (6) and nonzero

masses imply that σ = 0 and all rij are equal (the regular tetrahedron solution). If r−3
13 −λ < 0,

then positivity of the masses implies σ > 0 by (5). This in turn gives

r12, r14, r23, r34 < λ−1/3 < r13, r24. (13)

If we had assumed that r−3
13 −λ > 0, then the inequalities in (13) would be reversed. However,

this is impossible, for then P > r13r24 > 0 and the configuration is not co-circular. Therefore,
(13) is the only possibility and each side of the quadrilateral is shorter in length than either
diagonal.

It can also be shown that the shortest exterior side must lie opposite the longest. This
follows from

(r−3
12 − λ)(r−3

34 − λ) = (r−3
14 − λ)(r−3

23 − λ) (14)

and inequalities (13). For example, suppose that r12 is the largest exterior side-length. Then,
since each factor in equation (14) is positive, we have r12 � r14 implies r23 � r34 and r12 � r23

implies r14 � r34. Together, these two implications show that r34 is the shortest exterior side-
length. The argument works exactly the same regardless of which exterior side is taken to be
the longest. Without loss of generality, we label the bodies so that r12 is the longest exterior
side-length. Then, positivity of the masses implies

r13, r24 > r12 � r14, r23 � r34.

We can also assume that r14 � r23 by an appropriate relabelling. More specifically,
equations (4), (5) and (6) are invariant under the transformation r13 ↔ r24, r14 ↔ r23,
m1 ↔ m2, m3 ↔ m4, which corresponds to interchanging bodies one and two, and bodies
three and four. This interchange reverses the direction of the sequential ordering around the
circle (clockwise to counter-clockwise or vice versa). The choice r14 � r23 imposes the relation
r13 � r24 between the two diagonals. To see this, note that for a cyclic quadrilateral ordered
sequentially, the lengths of each diagonal r13 and r24 can be written as functions of the four
exterior sides,

r13 =
√

ab

c
and r24 =

√
ac

b
, (15)

where a = r12r34 + r14r23, b = r12r14 + r23r34 and c = r12r23 + r14r34. These can be derived
using the Law of Cosines and the fact that opposite interior angles are supplementary [28]. If
each equation in (15) holds, one can check that both P = 0 and V = 0 follows.

We then have
r13

r24
= b

c
= r12r14 + r23r34

r12r23 + r14r34
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and r13 � r24 if and only if b − c � 0 if and only if (r14 − r23)(r12 − r34) � 0. Since r12 is the
largest exterior side-length, r14 � r23 if and only if r13 � r24. Our final assumption is to fix
the longest exterior side-length to one (r12 = 1), which specifies a particular choice of scaling.
This is equivalent to holding the moment of inertia I constant. Summarizing, without loss of
generality, we can restrict to the set of mutual distances

� = {r ∈ R
+6

: r13 � r24 > r12 = 1 � r14 � r23 � r34}.
Any c.c.c. with positive masses and our particular choice of labelling and scaling will
correspond to some vector r of mutual distances in �. A similar reduction was established by
Hampton [10].

Using the appropriate formula for λ produces nice formulae for the mass ratios. For
example, substituting λ = (p2 −p3)/(s2 − s3) into the first equation in (10) yields, after some
simplification,

m2

m1
= r2

23r
2
24 (r3

13 − r3
14)

r2
13r

2
14 (r3

24 − r3
23)

. (16)

Similar substitutions in (11) and (12) give, respectively,

m3

m1
= r2

23r
2
34 (r3

12 − r3
14)

r2
12r

2
14 (r3

23 − r3
34)

, (17)

and

m4

m1
= r2

24r
2
34 (r3

13 − r3
12)

r2
12r

2
13 (r3

24 − r3
34)

. (18)

All of these ratios are positive and well-defined on �, except for m3/m1 when r12 = r14 and
r23 = r34 (a kite configuration). In this exceptional symmetric case, we use a different formula,

m3

m1
= (r−3

12 − λ)r2
12

(r−3
23 − λ)r2

23

= (r3
13 − r3

12)(r
3
24 − r3

12)r
4
23

(r3
13 − r3

23)(r
3
24 − r3

23)r
4
12

(19)

obtained using λ = (p1 − p2)/(s1 − s2). This can also be derived using equation (9).
Other mass ratios can be obtained in a similar fashion or by dividing pairs of equations

from (16), (17) and (18). Since the masses can be scaled by any positive factor, we fix m1 = 1
without any loss of generality. This choice will be made for the rest of this work.

Summarizing the above, a configuration r ∈ � with masses m1 = 1, m2, m3, m4 is a
c.c.c. if and only if it is in the common zero set of the following six polynomials:

F1 = r2
13(r23 + r14r34) − (r2

14r23 + r14r34(r
2
23 + 1) + r23r

2
34),

F2 = r2
24(r14 + r23r34) − (r2

14r23r34 + r14(r
2
34 + r2

23) + r23r34),

F3 = (r3
13 − 1)(r3

23 − r3
34)(r

3
24 − r3

14) − (1 − r3
14)(r

3
24 − r3

34)(r
3
13 − r3

23),

F4 = m2r
2
13r

2
14(r

3
24 − r3

23) − r2
23r

2
24(r

3
13 − r3

14),

F5 = m3r
2
14(r

3
23 − r3

34) − r2
23r

2
34(1 − r3

14),

F6 = m4r
2
13(r

3
24 − r3

34) − r2
24r

2
34(r

3
13 − 1).

We will refer to this system of six equations as system I. The polynomials F1 and F2 are easily
obtained from the two equations for r13 and r24 given in (15). F3 is a restatement of equation (9)
and the remaining three polynomials are easily derived from equations (16), (17) and (18),
respectively.

There are two ways of approaching the problem of classifying co-circular c.c.s. First,
given three positive masses m2, m3 and m4, one can try to simultaneously solve system I.
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Figure 2. An example of a co-circular kite c.c. with m2 = m4. The centre of the circumscribing
circle is marked with a ◦.

Since this is six equations in five unknowns, there is typically no solution. On the other hand,
there is the inverse approach: for what set of mutual distances does there correspond a set of
positive masses that make the configuration central? This is the approach pursued here. It
involves a simpler analysis, restricting to the set of solutions to {F1 = 0, F2 = 0, F3 = 0}
lying in �.

3. Symmetric cases

Before studying the full set of c.c.c.s, we analyse the two symmetric cases: a kite configuration
and an isosceles trapezoid. These symmetric cases occur on the boundaries of the space �,
sharing a common point corresponding to the square c.c. with equal masses. There is a one-
parameter family for each case.

3.1. Kite configurations

We call a convex quadrilateral a kite configuration if two opposite bodies lie on an axis of
symmetry of the configuration (see figure 2). Using the bounds that define �, it is straight-
forward to show that a co-circular c.c. is a kite if and only if one pair of opposite bodies lie
on a diameter of the circumscribing circle. To see that any kite configuration is automatically
a c.c., note that equation (9) is immediately satisfied when r12 = r14 = 1 and r23 = r34. This
gives a kite c.c. with an axis of symmetry between bodies 1 and 3. A similar kite exists with
symmetry axis between bodies 2 and 4, but is excluded here by our choice that r14 � r23.

We set r23 = r34 = x and the diagonals r13 = c and r24 = 2x/c where x ∈ (0, 1] is
a parameter and c =

√
1 + x2. These distances, together with r12 = r14 = 1, describe a

planar (V = 0), kite c.c. that also satisfies Ptolemy’s relation P = 0. It only remains to check
whether the mass ratios are positive. First note that under these assumptions, m2 = m4, a result
we expect from symmetry. Expressions (16), (18) and (19) with m1 = 1 give m2 = m4 = m

and m3 = α m, where

m = 4x(c3 − 1)

c(8 − c3)
and α = c(8x3 − c3)

4(c3 − x3)
.
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Figure 3. The values of the masses for the co-circular kite configurations.

The value for m2 = m4 is positive since 1 < c �
√

2. For x ∈ (0, 1], α, and consequently m3,
is positive if and only if 1/

√
3 < x � 1. We have m3 = 0 and r24 = 1 when x = 1/

√
3. In

this degenerate case, bodies 1, 2 and 4 form an equilateral triangle and the configuration is a
c.c. of the planar, circular, restricted four-body problem. At the other endpoint, setting x = 1
yields a square and all masses equal to one, as expected. Figure 3 displays the values of the
masses as a function of the parameter x.

Theorem 3.1. There exists a one-parameter family of co-circular kite c.c.s with bodies one and
three lying on the diameter of the circumscribing circle. The masses are m1 = 1, m2 = m4 = m

and m3 = α m and are ordered m1 � m2 = m4 � m3 with equality if and only if the
configuration is a square. At one end of the family, x = 1/

√
3, is a c.c. of the planar,

circular, restricted four-body problem, with bodies 1, 2 and 4 forming an equilateral triangle
and m3 = 0. At the other end, x = 1, is the square with equal masses.

Proof. The only item remaining to show is the ordering of the masses, which is clear from
figure 3, but can be shown rigorously with straightforward analysis. We first show m3 � m2

by verifying that α � 1. On the interval 1/
√

3 � x � 1, this is equivalent to showing
c(8x3 − c3) � 4(c3 − x3) or

c(8x3 − 4x2 − 4) � (x2 + 1)2 − 4x3.

This inequality becomes an equality at x = 1. Assuming x < 1, we can divide both sides by
the common positive factor 1 − x to obtain

−4c(2x2 + x + 1) < 4x + (1 − x)3

which is clearly valid for 1/
√

3 � x < 1.
Next, we show that m � 1 for 1/

√
3 � x � 1. This is equivalent to 4x(c3 − 1) �

c(8 − c3) or

(x2 + 1)2 − 4x � 4c(2 − x(x2 + 1)).

This inequality also becomes an equality at x = 1. As before, assuming x < 1, we can divide
both sides by the common positive factor 1 − x to obtain

−(x3 + x2 + 3x − 1) < 4c(x2 + x + 2).

It is straightforward to show that the polynomial on the left-hand side of this last inequality is
negative for 1/

√
3 � x < 1 while the right-hand side is clearly positive. The above arguments
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also show that the relationships between the masses are strict inequalities if x < 1. This
completes the proof. �

Remark.

(1) While our work was being completed, a similar theorem appeared in both [18] and [23].
(2) It can be shown with straightforward calculus that both m and α are strictly increasing

functions of x for 1/
√

3 � x � 1. Thus, m2, m3 and m4 are strictly increasing functions
of the common side-length r23 = r34.

(3) The centre of mass for the kite lies closest to the largest body (m1) for x < 1 and is
equivalent to the circumcentre at x = 1. If the circumcentre is taken to be the origin,
and m1 is positioned on the positive x-axis, then a short calculation shows that the centre
of mass for x = 1/

√
3 is ((41

√
3 − 21)/104, 0) ≈ (0.4809, 0). By the main result of

Hampton [10] and by continuity, the centre of mass has coordinates (x̄, 0) with x̄ > 0 for
1/

√
3 � x < 1. Moreover, a graph of the first coordinate of the centre of mass shows that

it is a strictly decreasing function of x.

Denote θij as the arc along the circumscribing circle between bodies i and j . Since
we have specified r12 = 1 as the longest exterior side, θ12 will be the largest arc between
any two consecutive bodies. For the kite family, the circumradius r is simply r = c/2 and
θ12 can be expressed in terms of the parameter x as θ12 = 2 arctan(1/x), a monotonically
decreasing function. The maximum value of θ12 is 120◦ (x = 1/

√
3, m3 = 0) while the

minimum value is 90◦ (x = 1, square). For the smallest arc between any two consecutive
bodies, we have θ23 = θ34 = 2 arctan(x), an increasing function of x ranging from 60◦ to
90◦ for 1/

√
3 < x � 1. Note also that the maximum interior angle � 234 of the quadrilateral

is equivalent to θ12 while the minimum interior angle � 214 is equivalent to θ23. Therefore,
the largest interior angle of a co-circular kite c.c. has a supremum of 120◦ (m3 = 0) and a
minimum of 90◦ (square). Furthermore, the arc length along the circumscribing circle between
bodies 1 and 2 is given by

Arc(x) = θ12 · c

2
=

√
x2 + 1 arctan

(
1

x

)
.

From this formula, it is clear that Arc(x) is a decreasing function, with a supremum of
2π/(3

√
3 ) ≈ 1.2092 (m3 = 0) and a minimum attained at the square configuration of

2−3/2 π ≈ 1.1107.

3.2. The isosceles trapezoid

In this section we verify the existence of a one-parameter family of isosceles trapezoids. Some
of the results depend on symbolic calculations where Maple [16] is used to compute Gröbner
bases and/or Sturm sequences. A Maple worksheet containing all the pertinent computations
is available at http://mathcs.holycross.edu/∼groberts/Papers/papers.html.

Any isosceles trapezoid, that is, a trapezoid whose legs are congruent, can be circumscribed
in a circle with centre lying on the axis of symmetry. In our setup, the isosceles trapezoids
correspond to the case where r14 = r23 and r13 = r24. Equation (16) then implies that m1 = m2.
From equations (17), (18) and (9), we have

m3

m4
= r2

13r
2
23(r

3
12 − r3

14)(r
3
24 − r3

34)

r2
14r

2
24(r

3
23 − r3

34)(r
3
13 − r3

12)
= r2

13r
2
23(r

3
24 − r3

14)

r2
14r

2
24(r

3
13 − r3

23)
, (20)

so that m3 = m4 follows as well. The equality of the two pairs of masses is expected from the
symmetry of the configuration. This fact appears in the well-known paper of MacMillan and

http://mathcs.holycross.edu/~groberts/Papers/papers.html
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Figure 4. An example of an isosceles trapezoid c.c. The centre of the circumscribing circle is
marked with a ◦.

Bartky [15]. It also turns out that if the c.c. is assumed to be co-circular, then equality of two
pairs of adjacent masses implies the configuration is an isosceles trapezoid. It is unknown if
the same fact holds for general four-body convex c.c.s.

Lemma 3.2. If m1 = m2 and m3 = m4, then the corresponding c.c.c. must be an isosceles
trapezoid.

Proof. If m1 = m2 and m3 = m4, then equations (16) and (20) imply

r2
23r

2
24(r

3
13 − r3

14) − r2
13r

2
14(r

3
24 − r3

23) = 0,

r2
13r

2
23(r

3
24 − r3

14) − r2
14r

2
24(r

3
13 − r3

23) = 0.

Taking the difference of these two equations and factoring the result yields

(r13 − r24)(r
2
13r

2
14r

2
24 + r2

13r
2
23r

2
24 + r13r

3
14r

2
23 + r13r

2
14r

3
23 + r3

14r
2
23r24 + r2

14r
3
23r24) = 0,

which implies r13 = r24 since the mutual distances are real, positive numbers. Since the
configuration is on a circle, it follows that r14 = r23, and the configuration is an isosceles
trapezoid. �

Remark. A slightly stronger result exists. In fact, for c.c.c.s, only one pair of adjacent masses
need be equal (e.g. m1 = m2 or m3 = m4) to imply the configuration is an isosceles trapezoid
(see corollary 4.7).

To describe the family of isosceles trapezoid c.c.s, we set r12 = 1, r34 = x, r14 = r23 = y

where 0 � x � 1 and x � y � 1 are dependent parameters (see figure 4). Using Ptolemy’s
theorem, we have r13 = r24 =

√
x + y2. One can then check that V = 0 is satisfied for

this family. As before, we fix m1 = 1 so that m2 = 1. Then, by equations (17) and (20),
m3 = m4 = m, where

m = x2(1 − y3)

y3 − x3
.
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Figure 5. The relationship between the two distances x = r34 and y = r14 = r23 in the isosceles
trapezoid family of c.c.s.

In order for the trapezoid to be a c.c., equation (9) must also be satisfied. Unlike the kite
family, this yields a non-trivial condition. Letting

T (x, y) = (y2 + x)3/2(2y3 − x3 − 1) − y3 − x3y3 + 2x3, (21)

the constraint T = 0 must be satisfied in order for the isosceles trapezoid to be a c.c.
A graph of the level curve T = 0 in the xy-plane for 0 � x � 1, x � y � 1 is shown in

figure 5. Note that while the smallest side of the trapezoid (parallel to the base) can range from
0 to 1, the length of the congruent legs is considerably constrained between approximately
0.908 and 1. At the point (0, 1) (left endpoint of the curve), we have an equilateral triangle
(r34 = 0, r23 = r24 = r14 = r12 = 1) and m3 = m4 = 0, corresponding to an equilibrium
point of the planar, circular, restricted, three-body problem where two infinitesimal masses are
located at the same Lagrange point. At the point (1, 1) (right endpoint), we have the equal
mass square c.c.

Next we show that T (x, y) = 0 implicitly defines a differentiable function y = τ(x)

for x ∈ [0, 1]. Consequently, there exists a one-parameter family of co-circular isosceles
trapezoid c.c.s parametrized by r34 = x. The following lemma and its proof will be important
in the verification of theorem 4.3, establishing the surface of co-circular c.c.s.

Lemma 3.3. For each value of x ∈ (0, 1], there exists a unique value of y ∈ [x, 1] such that
T (x, y) = 0. Moreover, the distance parameter y can be written as a differentiable function,
y = τ(x).

Proof. Since r13 = r24 > 1 on �, we have that
√

x + y2 > 1 or y >
√

1 − x. Since
1 � r23 � r34 on �, we also have that x � y � 1. Thus we can restrict to the subset � of the
xy-plane defined as

� = {(x, y) ∈ R
2 : 0 � x � 1, x � y � 1 and y �

√
1 − x}.

For x � 0, the curves y = √
1 − x and y = x intersect at x = (−1 +

√
5)/2. Thus, on �,

y � (−1 +
√

5)/2.
Note that T (x, 1) = (1 − x3)((1 + x)3/2 − 1) � 0 for 0 � x � 1 with equality only at

x = 0 or x = 1. Furthermore,

T (x,
√

1 − x) = (1 − x3)((1 − x)3/2 − 1),

T (x, x) = (1 − x3)(x3 − (x2 + x)3/2),
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each of which are negative for 0 < x < 1. Fix an x ∈ (0, 1) and consider T (x, y) = Tx(y) as
a function in the variable y. It follows that Tx < 0 at the lower boundary of � and Tx > 0 at
the upper boundary of �. Since T is continuous, there is a solution to T (x, y) = 0 inside �

for each x ∈ (0, 1). To see that it is unique, we compute that

∂2T

∂y2
= 3

[
−2y(x3 + 1) +

√
x + y2 (16y3 + 4xy − x3 − 1) +

y2(4y3 + 2xy − x3 − 1)√
x + y2

]
.

The quantity 4y3 + 2xy − x3 − 1 is strictly positive on �. To see this, note that the inequality
x + y2 > 1 implies that x + 2y2 > 1 + y2. Then, we have

4y3 + 2xy − x3 − 1 = 2y(x + 2y2) − x3 − 1

> 2y(1 + y2) − x3 − 1

� 2y(1 + y2) − y3 − 1 (since x � y)

= y3 + 2y − 1

� (−1 +
√

5)3

8
+

√
5 − 2 (since y � (−1 +

√
5)/2)

> 0.

Next, using the inequalities
√

x + y2 > 1 and x � 1, we have

∂2T

∂y2
> 3[−2y(x3 + 1) + (x + y2)1/2(16y3 + 4xy − x3 − 1)]

> 3[−2y(x3 + 1) + 16y3 + 4xy − x3 − 1]

= 3[4y(4y2 + x) − (2y + 1)(x3 + 1)]

> 3[4y(1 + 3y2) − 2(2y + 1)]

= 6(6y3 − 1)

> 0 (since y � (−1 +
√

5)/2 > 3
√

1/6).

This proves that ∂2T
∂y2 > 0 on �. Then, since Tx < 0 on the lower boundary of �, and

Tx > 0 on the upper boundary of �, it follows that

d

dy
(Tx(y)) |y=ŷ > 0, (22)

where ŷ satisfies Tx(y) = 0 and is the smallest such y-value to satisfy this equation. Since
∂2T
∂y2 > 0, y = ŷ is the unique solution to Tx(y) = 0. This proves there exists a function
y = τ(x) for 0 < x < 1 satisfying T (x, τ (x)) = 0 on �.

Finally, since T (1, 1) = 0, set τ(1) = 1. We compute that ∂T
∂y

(1, 1) = 6(2
√

2 − 1) > 0.
Applying the implicit function theorem, this fact and inequality (22) proves that y = τ(x) is
a differentiable function of x for 0 < x � 1. �

Remark.

(1) For x = 1 (the square), we have τ ′(1) = 1/2 by implicit differentiation. Although
x = r34 = 0 is not a true physical solution, we can extend τ(x) to the closed interval
[0, 1] by defining τ(0) = 1. Another computation gives T (0, 1) = 0, ∂T

∂y
(0, 1) = 6 > 0

and τ ′(0) = −1/4.
(2) It can be shown that 0.9 < τ(x) < 1 for 0 < x < 1. The fact that τ(x) < 1 for 0 < x < 1

follows quickly from T (x, 1) = (1 − x3)((1 + x)3/2 − 1). To show that τ(x) > 0.9, we
introduce the new variable z =

√
x + y2 and use Maple to compute a Gröbner basis for
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the ideal generated by the two polynomials T (x, y = 9/10) and x + (9/10)2 − z2 [7].
This produces a polynomial in z of degree 9 which, using Sturm’s theorem [27], contains
no real roots between 0 and 2. Consequently, since τ(x) is a continuous function and
τ(0) = τ(1) = 1, it follows that τ(x) > 0.9. While this is a computer-assisted argument,
it only depends on symbolic and exact integer computations.

(3) The minimum of τ(x) can be found by simultaneously solving the equations T (x, y) = 0
and ∂T

∂x
= 0 on �. As above, introducing the variable z =

√
x + y2, we use Maple

to compute a Gröbner basis of the relevant ideal. Numerically approximating the roots
of two one-variable polynomials yields a unique minimum at x = 0.603 538 1491, y =
0.908 025 9298. This calculation was also confirmed using the free software Sage [22]
and agrees with the data given in table II in [15].

In [15], MacMillan and Bartky show that a unique isosceles trapezoid c.c. exists for any
choice of masses m1 = m2 and m3 = m4. They use a different parametrization than ours,
setting r23 = κ

√
r12r34 , with κ as a parameter. In our notation, κ = y/

√
x . The same result

is proven by Albouy [3]. For completeness sake, we provide another proof using symbolic
computation with Maple.

Theorem 3.4. The mass parameter m is an increasing function of x satisfying m(0) = 0 and
m(1) = 1. Consequently, for each choice of the mass parameter m, there exists a unique
isosceles trapezoid c.c. Moreover, the largest pair of equal masses in the isosceles trapezoid
c.c. lies on the larger base.

Proof. By lemma 3.3 and its proof, there exists a differentiable function τ(x) for x ∈ [0, 1]
satisfying T (x, y = τ(x)) = 0. Moreover, x < τ(x) < 1 for x ∈ [0, 1) and τ(1) = 1. Thus,
the mass parameter m is non-negative on x ∈ [0, 1] and is given by

m(x) =



x2(1 − (τ (x))3)

(τ (x))3 − x3
if 0 � x < 1,

1 if x = 1.

Using τ(1) = 1 and τ ′(1) = 1/2, a straightforward application of L’Hôpital’s rule gives

lim
x→1−

m(x) = 1,

so that m(x) is a continuous function on [0, 1]. We compute that, for x ∈ [0, 1),

dm

dx
= x[(1 − (τ (x))3)(2(τ (x))3 + x3) − 3x(τ(x))2(1 − x3)τ ′(x)]

((τ (x))3 − x3)2
.

We claim that this quantity is positive for 0 < x < 1. Note that since τ(0) = 1 and
τ(x) < 1 for x < 1, we have that τ ′(x) < 0 for x near 0. Consequently, dm/dx > 0 for x

sufficiently close to 0. To show that dm/dx > 0 for all x ∈ (0, 1), we use Gröbner bases and
Sturm’s theorem [27]. Using the fact that τ ′(x) = − ∂T

∂x
/ ∂T

∂y
and inequality (22), it is sufficient

to show that

mx = (1 − y3)(2y3 + x3)
∂T

∂y
+ 3xy2(1 − x3)

∂T

∂x

is strictly positive on the curve y = τ(x) for x ∈ (0, 1). As with previous arguments, introduce
the variable z =

√
x + y2. Computing a Gröbner basis with respect to the lexicographic

ordering z > y > x for the ideal generated by

T = z3(2y3 − x3 − 1) − y3 − x3y3 + 2x3,

mx = (1 − y3)(2y3 + x3)
∂T

∂y
+ 3xy2(1 − x3)

∂T

∂x
,

Z = x + y2 − z2,
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yields a polynomial in x of the form

x4(x − 1)2(x2 + x + 1)2 · φ(x)

where φ(x) is degree 48. Using the Maple commands sturmseq and sturm, we apply Sturm’s
theorem to conclude that φ(x) has no real roots in [0, 1]. Consequently, the function mx does
not change sign along the curve y = τ(x). Since mx > 0 for x sufficiently close to 0, it follows
that mx > 0 on the curve y = τ(x) for all x ∈ (0, 1). �

Next, consider the arc θ12 along the circumscribing circle between bodies 1 and 2. We
have θ12 = 2 arcsin( 1

2rc
) where rc is the circumradius

rc = y

√
x + y2

4y2 − (1 − x)2
.

At (0, 1) (degenerate equilateral triangle), we have rc = 1/
√

3 and at (1, 1) (square), we have
rc = √

2/2, as expected. The maximum value of θ12 will occur at the minimum value of the

circumradius. We consider the quantity r2
c and claim that dr2

c
dx

is positive on 0 < x � 1. This
is equivalent to showing that

y(2y2 + 2xy2 + x2 − 1)
∂T

∂y
− (8y4 − 2(1 − x)2(x + 2y2))

∂T

∂x
(23)

is strictly positive on 0 < x � 1. This is verified with Maple using the same symbolic
computing techniques as in the proof of theorem 3.4. In this case, we obtain a polynomial
in y which, by Sturm’s theorem, has no roots between 0.9 and 1. This means that
expression (23) does not change sign along the curve y = τ(x). Since expression (23)
evaluates to 48(2

√
2 − 1) > 0 at the square x = 1, y = 1, it must be positive along all of

y = τ(x). Thus, the infimum of the circumradius is r = 1/
√

3 and θ12 is a strictly decreasing
function of x.

Next, consider the arc θ14 between bodies 1 and 4. In this case, we have θ14 =
2 arcsin(

y

2rc
). A similar argument as above, using Maple, shows that the quantity y

2rc
is a

strictly decreasing function for 0 � x � 1. Consequently, θ14 is also a strictly decreasing
function of x. This shows that the largest interior angle, � 234, given by (θ12 + θ14)/2, is a
strictly decreasing function of x. We have given a computer-assisted proof of the following
theorem.

Theorem 3.5. The largest arc θ12 in the isosceles trapezoid family is a strictly decreasing
function of the smallest side-length r34 = x. The supremum of θ12 is 120◦, from the
degenerate equilateral triangle (m3 = m4 = 0 and r34 = 0), while the minimum is 90◦,
attained at the square configuration. Similarly, the largest interior angle of the trapezoid
is a strictly decreasing function of x, with a supremum of 120◦ (degenerate equilateral
triangle) and minimum of 90◦ (square) while the smallest interior angle strictly increases from
60◦ to 90◦.

Remark.

(1) These bounds are the same as those for the co-circular kite family studied in section 3.1.
(2) In [15], a theorem stating that a unique isosceles trapezoid c.c. exists for each interior

angle between 60◦ and 120◦ is presented, although no formal proof is given.



Four-body co-circular central configurations 359

4. The surface of c.c.c.s

We now analyse the full set of c.c.c.s and show it is equivalent to a graph over two of the
exterior side-lengths. The set of interest is all vectors r = (1, r13, r14, r23, r24, r34) ∈ �

satisfying equation (9), P = 0 and V = 0. Recall that for a cyclic quadrilateral, the diagonals
can be expressed in terms of the exterior sides. Expanding the expressions in equation (15)
yields

r13 =
(

r2
14r23 + r14r34(r

2
23 + 1) + r23r

2
34

r23 + r14r34

)1/2

, (24)

r24 =
(

r2
14r23r34 + r14(r

2
34 + r2

23) + r23r34

r14 + r23r34

)1/2

, (25)

which are equivalent to F1 = 0 and F2 = 0, respectively. If equations (24) and (25) hold, one
can check that both P = 0 and V = 0 follow. This avoids the need to use the Cayley–Menger
determinant V = 0 and also serves to eliminate the variables r13 and r24. Substituting relations
(24) and (25) into equation (9) and setting r12 = 1 yields

F(r14, r23, r34) = (r3
13 − 1)(r3

23 − r3
34)(r

3
24 − r3

14) − (1 − r3
14)(r

3
24 − r3

34)(r
3
13 − r3

23) = 0

where r13 and r24 are understood to be functions of r14, r23, r34 given by equations (24) and (25),
respectively.

The relations on the mutual distances in �, coupled with the fact that the bodies are on
a common circle, lead to further restrictions on the variables r14, r23, r34. Since r13 > 1,
equation (24) implies that

r2
14r23 + r14r34(r

2
23 + 1) + r23r

2
34 > r23 + r14r34

which simplifies to

r2
14 + r2

34 + r14r34r23 > 1. (26)

Similarly, r24 > 1 and equation (25) imply that

r2
23 + r2

34 + r14r34r23 > 1. (27)

Note that since we are assuming r14 � r23, inequality (26) follows directly from inequality (27).
Also, the calculations above can be reversed, so that inequalities (26) and (27) imply r13 > 1
and r24 > 1, respectively. We have proven the following lemma.

Lemma 4.1. Let

C = {(r14, r23, r34) ∈ R
+3

: 1 � r14 � r23 � r34 and r2
23 + r2

34 + r14r34r23 > 1}, and

� = {s = (r14, r23, r34) ∈ R
+3

: s ∈ C and F(s) = 0}.
Any point in � corresponds to a four-body c.c.c. with positive masses and up to a relabelling
and rescaling, � contains all such configurations.

4.1. � as a graph

We now show that � is a surface by proving that it is a graph r14 = f (r23, r34) (see figure 6).
First note that the boundaries of � consist of a line corresponding to the kites (K), a curve
containing the isosceles trapezoids (T) and a curve corresponding to degenerate c.c.s (D) with
m3 = 0. Since they contain only positive masses, (K) and (T) are included in � while (D)
is excluded. The kites lie on the line r14 = 1, r23 = r34 = x with 1/

√
3 < x � 1. The
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Figure 6. On the left is the surface � of c.c.c.s in r34r23r14-space. The outline of the projection
onto the r34r23-plane is shown plotted in the plane r14 = 0.9. This figure was generated with
Matlab [17] using a bisection algorithm. On the right is the image of � in m2m3m4-space under
equations (16), (17) and (18) with m1 = 1. This figure shows the full set of masses for which a
co-circular c.c. exists.

trapezoids lie on a curve in the plane r14 = r23 and as shown in section 3.2, r23 can be written
as a differentiable function of r34. The degenerate c.c. with m3 = 0 are critical points of the
planar, circular, restricted four-body problem. Here, bodies 1, 2 and 4 lie on an equilateral
triangle, with r12 = r24 = r14 = 1. It is straightforward to show that if r24 = 1, that is, when
the only strict inequality defining C becomes an equality, then F = 0 can only be satisfied on
C if r14 = 1. Therefore, the boundary of � contains only the cases (K), (T) or (D).

Lemma 4.2. On C, both
∂r13

∂r14
and

∂r24

∂r14
are strictly positive.

Proof. A straightforward calculation shows that

∂r13

∂r14
= r23[r34(r

2
14 + r2

23 − r2
34 + 1) + 2r14r23]

2r13(r23 + r14r34)2

which is strictly positive on C since r23 � r34. A similar calculation yields

∂r24

∂r14
= r23r34(r

2
14 + r2

23 + r2
34 + 2r14r23r34 − 1)

2r24(r14 + r23r34)2

which is strictly positive due to inequality (27). �

Recall that for the isosceles trapezoid family, the exterior side r23 can be written as a
differentiable function of r34, denoted by r23 = τ(r34) for 0 � r34 � 1 and that τ < 1 except
for r34 = 0, 1.

Theorem 4.3. The set of c.c.c.s � is the graph of a differentiable function r14 = f (r34, r23)

over the two variables r34 and r23. The domain of this function is the region

D = {(r34, r23) ∈ R
+2

: 1 � r23 � r34, r23 � τ(r34) and r2
23 + r2

34 + r34r23 > 1}.

Proof. We will show that the projection of � onto the r34r23-plane equals D (see figure 7) and
that r14 can be written as a differentiable function of r34 and r23 over D, that is, ∂f

∂r34
and ∂f

∂r23

exist and are continuous on the interior of D.
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Figure 7. The projection π(�) = D of the surface of co-circular c.c.s onto the r34r23-plane.

According to the definition of C, the distance r14 must satisfy both

r14 � r23 and r14 >
1 − r2

23 − r2
34

r23r34
. (28)

Therefore, define

ẑ(r34, r23) = max

{
r23,

1 − r2
23 − r2

34

r23r34

}
.

We will show that for a given point (r34, r23) in D, F = 0 has a unique solution for some r14

satisfying ẑ � r14 � 1. This point will clearly lie in �.
The intersection of the two surfaces r14 = r23 and r14 = (1 − r2

23 − r2
34)/(r23r34) projected

onto the first quadrant of the r34r23-plane is a piece of the parabola r2
23 = 1 − r34. This curve

divides D into two regions, denoted D1 and D2. On D1, defined as the set of points in the
interior of D for which r23 <

√
1 − r34, we have that ẑ = (1 − r2

23 − r2
34)/(r23r34). On D2,

defined as the set of points in the interior of D for which r23 �
√

1 − r34, we have that ẑ = r23.
The three curves defining the boundaries of D correspond to the kites (r23 = r34), the

isosceles trapezoid family (r23 = τ(r34)) and the degenerate case with m3 = 0 (r24 = r14 = 1).
If r14 = 1 and we restrict to the interior of D, then inequalities (26) and (27) show that r13 > 1
and r24 > 1. It then follows that

F(r14 = 1, r23, r34) = (r3
13 − 1)(r3

24 − 1)(r3
23 − r3

34)

is strictly positive on the interior of D.
Next, we claim that F(r14 = ẑ, r23, r34) is strictly negative on the interior of D. To see

this, consider a point in the region D1 and suppose that r14 = ẑ = (1 − r2
23 − r2

34)/(r23r34).
Then, inequality (27) becomes an equality and r24 = 1. Moreover, 0 < r23 � r14 < 1 by
the definition of ẑ and the fact that (r34, r23) is in the interior of D. We also have, using
equation (24), that

r2
13 − r2

34 = r14(r14r23 + r34 + r34(r
2
23 − r2

34))

r23 + r14r34
> 0

since r23 > r34. It follows that

F(r14 = ẑ, r23, r34) = −(1 − r3
14)(1 − r3

23)(r
3
13 − r3

34)

is strictly negative on D1.
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Now consider a point in D2 and suppose that r14 = r23. On this plane, we also have that
r13 = r24 since the quadrilateral is cyclic (or by examining equations (24) and (25)). A short
computation gives

F(r14 = r23, r23, r34) = (r3
13 − r3

23) · T (x = r34, y = r23)

where T is given by equation (21) from the isosceles trapezoid family. As demonstrated in the
proof of lemma 3.3, the value of T on D2 is strictly negative since T vanishes only on the upper

boundary of D and ∂T
∂y

(x, y = τ(x)) > 0. Since r14 = r23 implies that r13 =
√

r34 + r2
23 > r23,

we have that F(r14 = r23, r23, r34) is strictly negative. This shows that F(r14 = ẑ, r23, r34) is
strictly negative on the interior of D. By the intermediate value theorem, it follows that for
each point (r34, r23) in the interior of D, there exists a solution to F = 0 for some r14 satisfying
ẑ < r14 < 1.

To see that this solution is unique, we show that ∂F
∂r14

> 0 on �. We compute that

∂F

∂r14
= 3r2

13
∂r13

∂r14
α1 + 3r2

24
∂r24

∂r14
α2 + 3r2

14α3

where

α1 = (r3
23 − r3

34)(r
3
24 − r3

14) − (1 − r3
14)(r

3
24 − r3

34),

α2 = (r3
23 − r3

34)(r
3
13 − 1) − (1 − r3

14)(r
3
13 − r3

23),

α3 = (r3
24 − r3

34)(r
3
13 − r3

23) − (r3
23 − r3

34)(r
3
13 − 1).

Using F = 0, each αi restricted to � simplifies to

α1 = (1 − r3
14)(r

3
24 − r3

34)(1 − r3
23)

r3
13 − 1

,

α2 = (1 − r3
14)(r

3
13 − r3

23)(r
3
14 − r3

34)

r3
24 − r3

14

,

α3 = (r3
24 − r3

34)(r
3
13 − r3

23)(r
3
24 − 1)

r3
24 − r3

14

.

It is clear that α3 is strictly positive on � while α1 and α2 are non-negative. Taken together
with lemma 4.2, this proves that ∂F

∂r14
> 0 on �. Hence, there exists a function r14 = f (r34, r23)

implicitly defined by F = 0 over the interior of D.
Finally, on the boundary of D defined by r23 = r34, the only possible solution to F = 0

that lies inside C is r14 = 1 (the kite configurations). Similarly, on the boundary r23 = τ(r34),
since ∂F

∂r14
> 0, the only possible solution to F = 0 that lies inside C is r14 = r23 (the trapezoid

family). Thus, we define f (r34, r23 = r34) = 1 and f (r34, r23 = τ(r34)) = r23 to extend f

to all of D. The implicit function theorem, which is applicable on the boundaries (K) and (T)
as well, and the fact that F = 0 is algebraic, then shows that f is continuous on all of D and
differentiable on the interior of D.

From the proof of lemma 3.3, any point (r34, r23) lying above the curve τ has T > 0.
Since ∂F

∂r14
> 0 on �, it follows that the solution to F = 0 must satisfy r14 < r23, which lies

outside C. Likewise, any point (r34, r23) lying on or below the curve r2
23 + r2

34 + r34r23 = 1 will
have r24 � 1, which also lies outside C. It follows that the projection of � onto the r34r23-plane
is precisely equal to D. �
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4.2. Ordering of the masses

Remarkably, it is not difficult to show that for any c.c.c., the masses must be ordered in a
precise fashion. The arguments that follow rely mostly on the fact that the four bodies lie on
a common circle, as well as our ordering of the mutual distances.

Theorem 4.4. Any c.c.c. in � satisfies

m3 � m4 � m2 � m1 = 1.

In other words, the largest body is located at the vertex between the two longest exterior sides,
and the smallest body is opposite the largest one. In addition, the two largest bodies lie on the
longest side while the two smallest bodies lie on the smallest side.

Before proving this theorem, we verify some important inequalities relating the two
diagonals with the second and third-longest exterior sides.

Lemma 4.5. Any c.c.c in � satisfies

r13 − r24 � (r14 − r23)(1 − r34) and (29)

r13 − r24 � r14 − r23. (30)

Proof. Using equation (15), we have

r13 − r24 =
√

a

bc
(b − c) =

√
a

bc
(r14 − r23)(1 − r34).

Then, since

bc = (r14 + r23r34)(r23 + r14r34)

= r14r23 + r34(r
2
14 + r2

23 + r14r23r34)

> r14r23 + r34 (by the definition of C)

= a,

we have a
bc

< 1, which verifies inequality (29). Since 0 < r34 � 1, inequality (30) immediately
follows from (29). We note that equality is also needed in both (29) and (30) due to the isosceles
trapezoid family where both sides vanish. In fact, these inequalities are strict for all other co-
circular c.c.s. �

Lemma 4.6. Any c.c.c. in � satisfies
r13

r24
� r14

r23
.

Proof. Since r23 � r14, we have

r13

r24
= r14 + r23r34

r23 + r14r34
� r14(1 + r34)

r23(1 + r34)
= r14

r23
. �

Proof of theorem 4.4. We begin by showing

m2 = r2
23r

2
24 (r3

13 − r3
14)

r2
13r

2
14 (r3

24 − r3
23)

� 1.

Since r13 � r24 and r14 � r23, it suffices to show that r3
24 − r3

23 � r3
13 − r3

14 or equivalently,

r3
13 − r3

24 � r3
14 − r3

23. (31)
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Cubing both sides of inequality (30) yields

r3
13 − r3

24 + (−3r2
13r24 + 3r13r

2
24 + 3r2

14r23 − 3r14r
2
23) � r3

14 − r3
23.

Inequality (31) will then follow, provided −r2
13r24 + r13r

2
24 + r2

14r23 − r14r
2
23 is non-negative.

Factoring, this is equivalent to showing

r13r24(r24 − r13) + r14r23(r14 − r23) � 0. (32)

Beginning with 1 � r13r24 = r23r14 + r34, we have the following sequence of implications:

1 � r34 + r14r23 
⇒ r34 − r2
34 − r34r14r23 � 0


⇒ (1 − r34)(r14r23 + r34) � r14r23


⇒ r13r24(1 − r34) � r14r23


⇒ r13r24(r14 − r23)(1 − r34) � r14r23(r14 − r23).

Then, using inequality (29), we have

r13r24(r13 − r24) � r13r24(r14 − r23)(1 − r34) � r14r23(r14 − r23)

which verifies inequality (32) and shows that m2 � 1.
Next, we verify that m4 � m2. Using equations (16) and (18), we have

m2

m4
= r2

23

r2
14r

2
34

· r3
13 − r3

14

r3
13 − 1

· r3
24 − r3

34

r3
24 − r3

23

. (33)

Each of the three fractions in equation (33) are greater than or equal to 1. This follows since
r23 � r34 and 1 � r14. Consequently, m2/m4 � 1, as desired.

Finally, using equations (17), (18) and (9), we compute

m4

m3
= r2

24r
2
14(r

3
13 − 1)(r3

23 − r3
34)

r2
13r

2
23(r

3
24 − r3

34)(1 − r3
14)

= r2
24r

2
14(r

3
13 − r3

23)

r2
13r

2
23(r

3
24 − r3

14)
.

By lemma 4.6, r24r14 � r13r23. Since r13 � r24 and r14 � r23, we also have r3
13−r3

23 � r3
24−r3

14.
This proves that m3 � m4. �

Somewhat surprisingly, theorem 4.4 and its proof give strong implications if just two of
the masses are equal.

Corollary 4.7. If just two bodies of a c.c.c. have equal mass, then the configuration is
symmetric, either a kite or an isosceles trapezoid. Specifically, for any co-circular c.c. in
�, if either m1 = m2 or m3 = m4, then the configuration is an isosceles trapezoid and the
other pair of masses are necessarily equal. If m2 = m4, the configuration is a kite. If any
three masses are equal, then the configuration is a square and all four masses are necessarily
equal.

Proof. From the proof for m2 � 1, we have that

m2 = r2
23

r2
14

· r2
24

r2
13

· r3
13 − r3

14

r3
24 − r3

23

(34)

is the product of three positive numbers less than or equal to one. If m2 = m1 = 1, it follows
that each of the fractions in equation (34) is equal to one. This quickly yields r14 = r23 and
r13 = r24, yielding an isosceles trapezoid. Then, by equation (20), m3 = m4 follows.

Next, suppose that m3 = m4. Then, from the proof for m3 � m4, we must have
r3

13 − r3
23 = r3

24 − r3
14. This implies that

r3
13 − r3

24 = r3
23 − r3

14. (35)
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If r23 < r14, then the right-hand side of equation (35) is negative, contradicting the
fact that r13 � r24. Thus, r23 = r14 and then equation (35) gives r13 = r24 and the
configuration is, once again, an isosceles trapezoid. Then, by equation (16), m1 = m2

follows.
Finally, if m2 = m4, a similar argument using equation (33) shows that r14 = 1

and r23 = r34, yielding a kite configuration. If three of the masses are equal (either
m3 = m4 = m2 or m4 = m2 = m1), then the co-circular c.c. is simultaneously both an
isosceles trapezoid and a kite. This means it is a square and that all four masses must be
equal. �

Remark.

(1) Corollary 4.7 shows that if one pair of masses on either the longest or shortest exterior
side are equal, then the other pair is also equal and the configuration must be an isosceles
trapezoid. One would expect that with the same assumption, such a strong conclusion
does not hold for generic four-body convex c.c.s.

(2) The fact that m2 = m4 implies the configuration is a kite is already a consequence of the
main theorem in [4], where it is shown that this fact is true for any convex c.c., not just
co-circular ones.

(3) Corollary 4.7 and our work on the symmetric cases shows that there are positive masses
for which no c.c.c. exists. For example, if we consider a set of masses where mi = mj for
some choice of indices, then the configuration must be symmetric. However, our work in
section 3 shows that there is a specific relationship between the other two masses to ensure
that the configuration is a c.c.c. Thus, generically choosing the remaining two masses will
not yield a c.c.c., regardless of relabelling or rescaling.

(4) In the four-body problem, for a given choice and ordering of the masses, there exists a
convex c.c. [15, 30]. It is not known whether this configuration is unique. If we restrict
to co-circular c.c.s, we conjecture that the configuration is indeed unique. However,
a global argument on all of � seems technically quite challenging. We present some
visual evidence for uniqueness in figures 8 and 9. By contradiction, if there existed
a choice of masses for which two distinct c.c.c.s existed, then one of the curves in
figure 9 would have to intersect itself or collapse to a point. This does not appear to be
the case.

(5) The right-hand graph in figure 6 shows the surface of masses in m2m3m4-space for which a
co-circular c.c. exists. Attempts using Gröbner bases and symbolic computation software
to find a single polynomial expression relating the three masses were unsuccessful.
However, if I = 〈F1, F2, F3〉 ⊂ C[r13, r14, r23, r24, r34] is the ideal generated by the
first three equations in system I, then it is possible (using Maple) to compute a Gröbner
basis for I using a graded reverse lexicographic order. From this calculation, we deduce
that the dimension of the algebraic variety of I is two. Then, since the equations for
m2, m3 and m4 are rational functions of the distance variables, it follows that the image
of � under the three mass functions is contained in a two-dimensional algebraic variety
in R[m2, m3, m4]. Consequently, for a generic choice of positive masses, there does not
exist a c.c.c. We thank John Little for providing the details for this argument.

5. Some geometric facts about co-circular c.c.s

We now provide some precise bounds on the mutual distances as well as some interesting
geometric facts about four-body c.c.c.s.
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Figure 8. Surface and contour plots of the mass m2 as a function of the exterior side-lengths r23
and r34.

Figure 9. Each curve shows the relationship between m3 and m4 along a particular level curve of
m2 = constant. The bottom two figures are magnifications near the origin of the top figure.
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5.1. Bounds on the mutual distances

Let τ̂ be the minimum value of the function τ(x) defined in section 3.2 for the isosceles
trapezoid family. From remark 3 after lemma 3.3, τ̂ ≈ 0.908 026. It turns out that this value
is also the minimum value for r14 on all of �.

Proposition 5.1. The exterior sides and the diagonals of a c.c.c. in � are restricted by

0 < r34 � 1,
1√
3

< r23 � 1, τ̂ � r14 � 1, 1 < r13, r24 �
√

2.

These bounds are sharp.

Proof. The bounds for the distances r34 and r23 follow directly from theorem 4.3. Using
a similar argument as in the proof of theorem 4.3, we have that ∂F

∂r23
> 0 on the interior of

D. By the implicit function theorem, it follows that ∂r14
∂r23

< 0 on the interior of D. Since
r14 = 1 on the lower boundaries of D (the degenerate equilateral triangle or kite families), it
follows that the minimum value for r14 must occur on the upper boundary of D given by the
curve r23 = τ(r34). However, on this curve we have r14 = r23 (the isosceles trapezoid case).
Therefore, the minimum value of r14 occurs at the minimum value of r23 on τ . This is precisely
the number τ̂ ≈ 0.908 026.

The lower bounds on the diagonals come directly from the definition of � and follow from
inequality (27). To see that they are sharp, note that as (r34, r23) approaches the lower-left
boundary curve of D, r2

34 + r2
23 + r34r23 = 1, r14 approaches one due to the second inequality

in (28). Then, inequality (27) becomes an equality and r24 approaches one. The diagonal
r13 can also become arbitrarily close to one in the upper-left corner of D. Here, we have r34

approaching zero and both r23 and r14 approaching one. Equation (24) then shows that r13 also
approaches one.

Next, by equation (15), r13 �
√

2 is equivalent to ab � 2c or

(r34 + r14r23)(r14 + r23r34) � 2(r23 + r14r34).

This, in turn, can be written as

r14r34(1 − r2
23) � r23(r

2
14 + r2

34 − 2). (36)

Since r14 � 1 and r34 � 1, the right-hand side of (36) is non-positive, while r23 � 1 implies
that the left-hand side of (36) is non-negative. This verifies (36) and proves that r13 �

√
2.

Since r24 � r13, the upper bound on r24 is also established. These bounds are attained, but
only at the square configuration, since r23 = r34 = r14 = 1 is the only possible way to make
inequality (36) an equality. �

For a general four-body convex c.c. with diagonals r13 and r24, and r13 � r24, a
straightforward geometric argument shows that 1 � r13

r24
<

√
3. This is part of theorem 4.1

in [24]. Requiring the bodies to lie on a common circle reduces this bound considerably. More
precisely, the ratio r13/r24 of the diagonals satisfies the following sharp bounds:

1 � r13

r24
<

2√
3

≈ 1.1547 .

This follows because ∂( r13
r24

)/∂r23 < 0 on the interior of D. The minimum value of the ratio
of the diagonals (one) occurs at the upper boundary of D, at the isosceles trapezoid case (T),
while the maximum value occurs at r34 = r23 = 1/

√
3, the point of intersection of the kite

family (K) and the family of degenerate c.c.s (D).
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Furthermore, the ratio of the two opposite exterior sides r14 and r23 satisfies the following
sharp bounds:

1 � r14

r23
<

√
3.

This follows since ∂( r14
r23

)/∂r23 < 0 on the interior of D. Once again, the minimum value of
the ratio in question occurs at the upper boundary of D. This value is one, since r14 = r23 on
the boundary (T). The maximum occurs at the lower boundary of D where r14 = 1 for both
(K) and (D). Thus, r14

r23
= 1

r23
has a supremum of

√
3, since the infimum of r23 is 1/

√
3.

It is interesting to note that while the largest values of r13
r24

and r14
r23

occur very close to
the point of intersection between the kite and degenerate cases, the larger values of the ratio
r12
r34

= 1
r34

occur near the intersection of the trapezoid and degenerate cases (upper-left corner
of D). However, this ratio has no upper bound since r34 can be arbitrarily small.

5.2. Interior angles, arcs and semi-circles

According to Long [14], any interior angle of a four-body convex c.c. must lie between 60◦

and 150◦. Since opposite angles of a cyclic quadrilateral are supplementary, we can amend this
bound for our problem. In fact, the maximum interior angle of a four-body c.c.c. lies between
90◦ and 120◦ while the minimum interior angle lies between 60◦ and 90◦. These bounds are
sharp as they are identical to those obtained for the kite and trapezoid families.

A few restrictions on the possible shape and angles of a c.c.c. follow nicely from the
perpendicular bisector theorem due to Conley. Suppose that x is a planar c.c. For any
pair of bodies xi , xj , consider the perpendicular bisector of the line segment joining the two
bodies. Taken with the line passing through xi and xj , a coordinate system is formed dividing
the plane into four quadrants. The union of two opposite quadrants (taking the first with
the third quadrant or the second with the fourth) excluding the axes forms an open cone.
The perpendicular bisector theorem states that if one of these cones contains a body of the
configuration, then so must the other cone. An elegant proof can be found in Moeckel’s nice
paper on c.c.s [20].

As in section 3, denote θ12 as the arc along the circumscribing circle between bodies 1
and 2. By construction, this is the largest possible arc between consecutive bodies. Using
the perpendicular bisector theorem and some simple geometry, it is possible to show that
an upper bound for θ12 is 144◦. However, numerical calculations suggest that this bound
can be decreased to 120◦ and that the value of θ12 decreases as r23 increases through
D. The maximum θ12-value occurs at a minimum of the circumradius. Both the kite
and trapezoid families have a supremum of 120◦. Since θ12 is the largest arc along the
circumscribing circle, it follows that the minimum value of θ12 is 90◦, attained at the square
configuration.

Moreover, using the perpendicular bisector theorem, it is straightforward to see that no
c.c.c. can lie entirely in a semi-circle. This result easily extends to any number of bodies, not
just four-body c.c.c.s. Finally, using the law of cosines and the definition of �, we find that
three bodies of a c.c.c. cannot lie on the same half of the circumscribing circle as the longest
side r12 unless the configuration is a kite.

6. Conclusion

We have used mutual distances as coordinates to fully classify the set of co-circular c.c.s in
the planar four-body problem. This set is a two-dimensional surface, a graph over the two
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shortest exterior side-lengths, whose boundaries are important symmetric families consisting
of a kite, an isosceles trapezoid and an equilateral triangle with a zero mass off the triangle.
A specific ordering of the masses has been demonstrated to hold for any co-circular c.c.
Somewhat surprisingly, if just two masses of a co-circular c.c. are equal, then the configuration
is symmetric, either a kite or an isosceles trapezoid. The set of positive masses which yield
a co-circular c.c. lies in a two-dimensional algebraic variety. We conjecture that for those
masses for which a co-circular c.c. exists, the configuration is unique.

By restricting the central configuration to lie on a circle, we have been able to utilize
the resulting geometry as well as Ptolemy’s theorem to obtain many results. It is our hope
that this may spark similar efforts to use constraints in an attempt to classify general convex,
four-body c.c.s. For example, is it useful to search for c.c.s under the constraint P = c, where
c �= 0? Are there other feasible geometric constraints whose level sets are tangent to V = 0?
Could these methods help find a foliation of the space of convex c.c.s and suggest a technique
for proving the uniqueness of such configurations? Finally, are any of the relative equilibria
corresponding to the co-circular c.c.s on � linearly stable and if so, is it possible to rigorously
prove this is the case? We hope to explore some of these interesting questions in future work.
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