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Abstract. We study the families of periodic orbits of the spatial isosceles 3-body problem (for
small enough values of the mass lying on the symmetry axis) coming via the analytic continuation
method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular
momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic
orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced
problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem
at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov
problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits.
These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom
system. The continuation of periodic orbits is done in two different ways, the first going directly from
the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using
two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the
reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic
Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces
different results. This work is merely analytic and uses the variational equations in order to apply
Poincaré’s continuation method.
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1. Introduction. We consider a special case of the spatial 3-body problem,
the spatial isosceles 3-body problem, or simply the isosceles problem. This problem
consists of describing the motion of two equally massive bodies, m1 = m2 = 1/2,
having initial conditions and velocities symmetric with respect to a straight line which
passes through their center of mass, and a third body, with mass m3 = µ, having
initial position and velocity on this straight line. This problem is called the isosceles
problem because the three bodies form an isosceles triangle at any time, eventually
degenerated to a segment.

The most interesting application of the spatial isosceles 3-body problem was given
by Xia in [25]. He used two spatial isosceles 3-body problems to prove that five bodies
can escape to infinity in a finite time without collision. Other works on the spatial
isosceles 3-body problem are [16] and the references therein. If in the spatial isosceles
3-body problem the initial positions and velocities of the three bodies are contained
in a plane, then the motion remains always in this plane, and we have the so-called
planar isosceles 3-body problem. There are several papers about the planar isosceles
3-body problem, for instance, [9], [17], etc.

When the third body of the isosceles 3-body problem has infinitesimal mass (i.e.,
µ = 0) then we obtain the restricted isosceles problems. Depending on the motion
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