Central configurations of three nested regular polyhedra for the spatial 3n-body problem

M. Corbera ${ }^{\mathrm{a}, *}$, J. Llibre ${ }^{\text {b }}$
${ }^{\text {a }}$ Departament de Tecnologies Digitals i de la Informació, Universitat de Vic, 08500 Vic, Barcelona, Spain
${ }^{\mathrm{b}}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

A R TICLE INFO

Article history:

Received 4 September 2008
Accepted 15 November 2008
Available online 25 November 2008

MSC:

70F10
70F15
Keywords:
3n-body problem
Spatial central configurations
Nested regular polyhedra

Abstract

Three regular polyhedra are called nested if they have the same number of vertices n, the same center and the positions of the vertices of the inner polyhedron \mathbf{r}_{i}, the ones of the medium polyhedron \mathbf{R}_{i} and the ones of the outer polyhedron \mathcal{R}_{i} satisfy the relation $\mathbf{R}_{i}=\rho \mathbf{r}_{i}$ and $\mathcal{R}_{i}=R \mathbf{r}_{i}$ for some scale factors $R>\rho>1$ and for all $i=1, \ldots, n$. We consider $3 n$ masses located at the vertices of three nested regular polyhedra. We assume that the masses of the inner polyhedron are equal to m_{1}, the masses of the medium one are equal to m_{2}, and the masses of the outer one are equal to m_{3}. We prove that if the ratios of the masses m_{2} / m_{1} and m_{3} / m_{1} and the scale factors ρ and R satisfy two convenient relations, then this configuration is central for the $3 n$-body problem. Moreover there is some numerical evidence that, first, fixed two values of the ratios m_{2} / m_{1} and m_{3} / m_{1}, the $3 n$-body problem has a unique central configuration of this type; and second that the number of nested regular polyhedra with the same number of vertices forming a central configuration for convenient masses and sizes is arbitrary.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The equations of motion of the N-body problem in the ℓ-dimensional space with $\ell=2,3$ are

$$
m_{i} \ddot{\mathbf{q}}_{i}=-\sum_{j=1, j \neq i}^{N} G m_{i} m_{j} \frac{\mathbf{q}_{i}-\mathbf{q}_{j}}{\left|\mathbf{q}_{i}-\mathbf{q}_{j}\right|^{3}}, \quad i=1, \ldots, N
$$

where $\mathbf{q}_{i} \in \mathbb{R}^{\ell}$ is the position vector of the punctual mass m_{i} in an inertial coordinate system and G is the gravitational constant which can be taken equal to one by choosing conveniently the unit of time. We take the center of mass $\sum_{i=1}^{N} m_{i} \mathbf{q}_{i} / \sum_{i=1}^{N} m_{i}$ of the system at the origin of $\mathbb{R}^{\ell N}$. The configuration space of the N-body problem in \mathbb{R}^{ℓ} is defined by

$$
\mathcal{E}=\left\{\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right) \in \mathbb{R}^{\ell N}: \sum_{i=1}^{N} m_{i} \mathbf{q}_{i}=0, \mathbf{q}_{i} \neq \mathbf{q}_{j}, \text { for } i \neq j\right\}
$$

Given a set of masses m_{1}, \ldots, m_{N}, a configuration $\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right) \in \mathcal{E}$ is central if there exists a positive constant λ such that

[^0]
[^0]: * Corresponding author. Tel.: +34 938815519; fax: +34 938856900.

 E-mail addresses: montserrat.corbera@uvic.cat (M. Corbera), jllibre@mat.uab.cat (J. Llibre).

