Central configurations of nested rotated regular tetrahedra

M. Corbera ${ }^{\mathrm{a}, *}$, J. Llibre ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Departament de Tecnologies Digitals i de la Informació, Universitat de Vic, 08500 Vic, Barcelona, Catalonia, Spain
${ }^{\text {b }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

A R TICLE INFO

Article history:

Received 9 January 2009
Received in revised form 8 June 2009
Accepted 10 July 2009
Available online 24 July 2009

MSC:

70F10
70F15
JGP SC:
Classical mechanics

Keywords:

n-body problem
Spatial central configurations
Nested regular tetrahedra

Abstract

In this paper we prove that there are only two different classes of central configurations with convenient masses located at the vertices of two nested regular tetrahedra: either when one of the tetrahedra is a homothecy of the other one, or when one of the tetrahedra is a homothecy followed by a rotation of Euler angles $\alpha=\gamma=0$ and $\beta=\pi$ of the other one.

We also analyze the central configurations with convenient masses located at the vertices of three nested regular tetrahedra when one them is a homothecy of the other one, and the third one is a homothecy followed by a rotation of Euler angles $\alpha=\gamma=0$ and $\beta=\pi$ of the other two.

In all of these cases we have assumed that the masses on each tetrahedron are equal but masses on different tetrahedra could be different.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The equations of motion of the N-body problem in the three-dimensional Euclidean space are

$$
m_{i} \ddot{\mathbf{q}}_{i}=-\sum_{j=1, j \neq i}^{N} G m_{i} m_{j} \frac{\mathbf{q}_{i}-\mathbf{q}_{j}}{\left|\mathbf{q}_{i}-\mathbf{q}_{j}\right|^{3}}, \quad i=1, \ldots, N
$$

where $\mathbf{q}_{i} \in \mathbb{R}^{3}$ is the position vector of the point mass m_{i} in an inertial coordinate system and G is the gravitational constant which can be taken equal to 1 by choosing the unit of time conveniently. We fix the center of mass $\sum_{i=1}^{N} m_{i} \mathbf{q}_{i} / \sum_{i=1}^{N} m_{i}$ of the system at the origin of $\mathbb{R}^{3 N}$. The configuration space of the N-body problem in \mathbb{R}^{3} is

$$
\mathcal{E}=\left\{\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right) \in \mathbb{R}^{3 N}: \sum_{i=1}^{N} m_{i} \mathbf{q}_{i}=0, \mathbf{q}_{i} \neq \mathbf{q}_{j}, \text { for } i \neq j\right\}
$$

Given positive masses m_{1}, \ldots, m_{N} a configuration $\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right) \in \mathcal{E}$ is central if there exists a positive constant λ such that

$$
\begin{equation*}
\ddot{\mathbf{q}}_{i}=-\lambda \mathbf{q}_{i}, \quad i=1, \ldots, N \tag{1}
\end{equation*}
$$

that is, if the acceleration $\ddot{\mathbf{q}}_{i}$ of each point mass m_{i} is proportional to its position \mathbf{q}_{i} relative to the center of mass of the system and is directed towards the center of mass. In a central configuration system (1) can be written as

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{N} m_{j} \frac{\mathbf{q}_{i}-\mathbf{q}_{j}}{\left|\mathbf{q}_{i}-\mathbf{q}_{j}\right|^{3 / 2}}=\lambda \mathbf{q}_{i}, \quad i=1, \ldots, N \tag{2}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author. Tel.: +34 938815519; fax: +34 938856900.

 E-mail addresses: montserrat.corbera@uvic.cat (M. Corbera), jllibre@mat.uab.cat (J. Llibre).

