Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Central configurations of nested rotated regular tetrahedra

M. Corbera^{a,*}, J. Llibre^b

^a Departament de Tecnologies Digitals i de la Informació, Universitat de Vic, 08500 Vic, Barcelona, Catalonia, Spain ^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ARTICLE INFO

Article history: Received 9 January 2009 Received in revised form 8 June 2009 Accepted 10 July 2009 Available online 24 July 2009

MSC: 70F10 70F15

JGP SC: Classical mechanics

Keywords: n-body problem Spatial central configurations Nested regular tetrahedra

1. Introduction

The equations of motion of the N-body problem in the three-dimensional Euclidean space are

$$m_i \ddot{\mathbf{q}}_i = -\sum_{j=1, j\neq i}^N G m_i m_j \frac{\mathbf{q}_i - \mathbf{q}_j}{|\mathbf{q}_i - \mathbf{q}_j|^3}, \quad i = 1, \dots, N,$$

where $\mathbf{q}_i \in \mathbb{R}^3$ is the position vector of the point mass m_i in an inertial coordinate system and G is the gravitational constant which can be taken equal to 1 by choosing the unit of time conveniently. We fix the center of mass $\sum_{i=1}^{N} m_i \mathbf{q}_i / \sum_{i=1}^{N} m_i$ of the system at the origin of \mathbb{R}^{3N} . The *configuration space* of the *N*-body problem in \mathbb{R}^3 is

$$\mathcal{E} = \{(\mathbf{q}_1, \dots, \mathbf{q}_N) \in \mathbb{R}^{3N} : \sum_{i=1}^N m_i \, \mathbf{q}_i = 0, \, \mathbf{q}_i \neq \mathbf{q}_j, \text{ for } i \neq j\}$$

Given positive masses m_1, \ldots, m_N a configuration $(\mathbf{q}_1, \ldots, \mathbf{q}_N) \in \mathcal{E}$ is *central* if there exists a positive constant λ such that

$$\ddot{\mathbf{q}}_i = -\lambda \, \mathbf{q}_i, \quad i = 1, \dots, N, \tag{1}$$

that is, if the acceleration $\ddot{\mathbf{q}}_i$ of each point mass m_i is proportional to its position \mathbf{q}_i relative to the center of mass of the system and is directed towards the center of mass. In a central configuration system (1) can be written as

$$\sum_{j=1,j\neq i}^{N} m_j \frac{\mathbf{q}_i - \mathbf{q}_j}{|\mathbf{q}_i - \mathbf{q}_j|^{3/2}} = \lambda \, \mathbf{q}_i, \quad i = 1, \dots, N.$$
⁽²⁾

* Corresponding author. Tel.: +34 938815519; fax: +34 938856900.

E-mail addresses: montserrat.corbera@uvic.cat (M. Corbera), jllibre@mat.uab.cat (J. Llibre).

ABSTRACT

In this paper we prove that there are only two different classes of central configurations with convenient masses located at the vertices of two nested regular tetrahedra: either when one of the tetrahedra is a homothecy of the other one, or when one of the tetrahedra is a homothecy of Euler angles $\alpha = \gamma = 0$ and $\beta = \pi$ of the other one.

We also analyze the central configurations with convenient masses located at the vertices of three nested regular tetrahedra when one them is a homothecy of the other one, and the third one is a homothecy followed by a rotation of Euler angles $\alpha = \gamma = 0$ and $\beta = \pi$ of the other two.

In all of these cases we have assumed that the masses on each tetrahedron are equal but masses on different tetrahedra could be different.

© 2009 Elsevier B.V. All rights reserved.

^{0393-0440/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2009.07.004