pp. 1049-1060

ON THE EXISTENCE OF BI–PYRAMIDAL CENTRAL CONFIGURATIONS OF THE n + 2–BODY PROBLEM WITH AN n–GON BASE

Montserrat Corbera

Departament de Tecnologies Digitals i de la Informació Universitat de Vic C/. Laura, 13 08500 Vic, Barcelona, Catalonia, Spain

JAUME LLIBRE

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain

ABSTRACT. In this paper we prove the existence of central configurations of the n + 2-body problem where n equal masses are located at the vertices of a regular n-gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n-gon passing through its center. Here this kind of central configurations is called *bi-pyramidal central configurations*. In particular, we prove that if the masses m_{n+1} and m_{n+2} and their positions satisfy convenient relations, then the configuration is central. We give explicitly those relations.

1. Introduction. We consider the spatial *N*-body problem

$$m_k \ddot{\mathbf{q}}_k = - \sum_{\substack{j=1\\j \neq k}}^N G m_k m_j \frac{\mathbf{q}_k - \mathbf{q}_j}{|\mathbf{q}_k - \mathbf{q}_j|^3} ,$$

k = 1, ..., N, where $\mathbf{q}_k \in \mathbb{R}^3$ is the position vector of the punctual mass m_k in an inertial coordinate system, and G is the gravitational constant which can be taken equal to one by choosing conveniently the unit of time. The *configuration space* of the spatial N-body problem is

$$\mathcal{E} = \{ (\mathbf{q}_1, \dots, \mathbf{q}_N) \in \mathbb{R}^{3N} : \mathbf{q}_k \neq \mathbf{q}_j, \text{ for } k \neq j \}.$$

Given m_1, \ldots, m_N a configuration $(\mathbf{q}_1, \ldots, \mathbf{q}_N) \in \mathcal{E}$ is *central* if there exists a positive constant λ such that

$$\ddot{\mathbf{q}}_k = -\lambda \left(\mathbf{q}_k - \mathbf{c} \right) \;,$$

²⁰¹⁰ Mathematics Subject Classification. Primary: 70F10; Secondary: 70F15.

Key words and phrases. Spatial central configurations, n + 2-body problem, bi-pyramidal central configurations.

The authors are supported by a MICIIN/FEDER grant number MTM2008–03437. The second author is also supported by a grant of the Generalitat de Catalunya number 2009 SGR 410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES-316338.