ON THE EXISTENCE OF BI-PYRAMIDAL CENTRAL CONFIGURATIONS OF THE $n+2$-BODY PROBLEM WITH AN n-GON BASE

Montserrat Corbera
Departament de Tecnologies Digitals i de la Informació
Universitat de Vic
C/. Laura, 13
08500 Vic, Barcelona, Catalonia, Spain
Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain

Abstract

In this paper we prove the existence of central configurations of the $n+2$-body problem where n equal masses are located at the vertices of a regular n-gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n-gon passing through its center. Here this kind of central configurations is called bi-pyramidal central configurations. In particular, we prove that if the masses m_{n+1} and m_{n+2} and their positions satisfy convenient relations, then the configuration is central. We give explicitly those relations.

1. Introduction. We consider the spatial N-body problem

$$
m_{k} \ddot{\mathbf{q}}_{k}=-\sum_{\substack{j=1 \\ j \neq k}}^{N} G m_{k} m_{j} \frac{\mathbf{q}_{k}-\mathbf{q}_{j}}{\left|\mathbf{q}_{k}-\mathbf{q}_{j}\right|^{3}},
$$

$k=1, \ldots, N$, where $\mathbf{q}_{k} \in \mathbb{R}^{3}$ is the position vector of the punctual mass m_{k} in an inertial coordinate system, and G is the gravitational constant which can be taken equal to one by choosing conveniently the unit of time. The configuration space of the spatial N-body problem is

$$
\mathcal{E}=\left\{\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right) \in \mathbb{R}^{3 N}: \mathbf{q}_{k} \neq \mathbf{q}_{j}, \text { for } k \neq j\right\}
$$

Given m_{1}, \ldots, m_{N} a configuration $\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right) \in \mathcal{E}$ is central if there exists a positive constant λ such that

$$
\ddot{\mathbf{q}}_{k}=-\lambda\left(\mathbf{q}_{k}-\mathbf{c}\right),
$$

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary: 70F10; Secondary: 70F15.
 Key words and phrases. Spatial central configurations, $n+2$-body problem, bi-pyramidal central configurations.

 The authors are supported by a MICIIN/FEDER grant numberMTM2008-03437. The second author is also supported by a grant of the Generalitat de Catalunya number 2009SGR 410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES-316338.

