Symmetric periodic orbits near a heteroclinic loop formed by two singular points and their invariant manifolds of dimension 1 and 2

Montserrat Corbera ${ }^{1}$, Jaume Llibre ${ }^{2}$ and Ernesto Pérez-Chavela ${ }^{3}$
${ }^{1}$ Departament de Tecnologies Digitals i de la Informació, Universitat de Vic, Laura 13, 08500 Vic, Barcelona, Spain
${ }^{2}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{3}$ Departamento de Matemáticas, Universidad Autónoma Metropolitana-I, Apdo. Postal 55-534, 09340 México D.F., México
E-mail: montserrat.corbera@uvic.cat, jllibre@mat.uab.cat and epc@xanum.uam.mx

Received 20 July 2006, in final form 19 October 2006
Published 30 November 2006
Online at stacks.iop.org/JPhysA/39/15313

Abstract

In this paper we consider vector fields in \mathbb{R}^{3} that are invariant under a suitable symmetry and that possess a 'generalized heteroclinic loop' \mathcal{L} formed by two singular points (e^{+}and e^{-}) and their invariant manifolds: one of dimension 2 (a sphere minus the points e^{+}and e^{-}) and one of dimension 1 (the open diameter of the sphere having endpoints e^{+}and e^{-}). In particular, we analyse the dynamics of the vector field near the heteroclinic loop \mathcal{L} by means of a convenient Poincaré map, and we prove the existence of infinitely many symmetric periodic orbits near \mathcal{L}. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in \mathbb{R}^{3}, and the second one is the charged rhomboidal four-body problem.

PACS number: $02.30 . \mathrm{Hq}$
Mathematics Subject Classification: 70F10, 78A35, 34C25

1. Introduction

In this paper we study the periodic motion around a generalized heteroclinic loop \mathcal{L} formed by a two-dimensional sphere \mathbb{S}^{2} and an interior diameter Γ of the sphere, see figure 1 . We suppose that the flow of a system X having such a loop is defined on the closed ball \mathbb{D}^{3} of \mathbb{R}^{3} having as boundary \mathbb{S}^{2}. On \mathbb{S}^{2} we have two foci, e^{+}and e^{-}, diametrally opposite at the endpoints of the diameter Γ. Every orbit on \mathbb{S}^{2} different from the two foci starts spiraling at e^{-}and ends spiraling at e^{+}. In fact, $\mathbb{S}^{2} \backslash\left\{e^{+}, e^{-}\right\}$is the two-dimensional unstable manifold of e^{-}which coincides with the two-dimensional stable manifold of e^{+}. Moreover, the diameter Γ is formed by a unique orbit starting at e^{+}and ending at e^{-}; i.e. Γ is the one-dimensional

