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Abstract

In this paper we consider vector fields in R? that are invariant under a suitable
symmetry and that possess a ‘generalized heteroclinic loop’ £ formed by two
singular points (e* and e~) and their invariant manifolds: one of dimension
2 (a sphere minus the points e* and ¢~) and one of dimension 1 (the open
diameter of the sphere having endpoints e* and ¢™~). In particular, we analyse
the dynamics of the vector field near the heteroclinic loop £ by means of
a convenient Poincaré map, and we prove the existence of infinitely many
symmetric periodic orbits near £. We also study two families of vector fields
satisfying this dynamics. The first one is a class of quadratic polynomial vector
fields in R, and the second one is the charged rhomboidal four-body problem.
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Mathematics Subject Classification: 70F10, 78A35, 34C25

1. Introduction

In this paper we study the periodic motion around a generalized heteroclinic loop £ formed
by a two-dimensional sphere S? and an interior diameter T of the sphere, see figure 1. We
suppose that the flow of a system X having such a loop is defined on the closed ball D? of
R? having as boundary S?. On S? we have two foci, e* and e~, diametrally opposite at the
endpoints of the diameter I'. Every orbit on S? different from the two foci starts spiraling at
e~ and ends spiraling at ¢*. In fact, Sz\{e”, e~} is the two-dimensional unstable manifold of
e~ which coincides with the two-dimensional stable manifold of e*. Moreover, the diameter
" is formed by a unique orbit starting at ¢* and ending at ¢™; i.e. I is the one-dimensional
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