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Abstract. We analytically study the Hamiltonian system in R4 with
Hamiltonian

H =
1

2
(p2x + p2y) +

1

2
(ω2

1x
2 + ω2

2y
2)− ε V1(x, y)

being (a) V1(x, y) = −(xy2 +ax3) and (b) V1(x, y) = −(x2y+ax3) with
a ∈ R, where ε is a small parameter and ω1 and ω2 are the unperturbed
frequencies of the oscillations along the x and y axis, respectively. For
the potential (a) using averaging theory of first order we analytically
find for each a ∈ R eight families of periodic solutions in every positive
energy level of H when the frequencies are not equal. For the potential
(b) using averaging theory of first and second order we analytically find
seven families of periodic solutions in every positive energy level of H
when the frequencies are not equal. Four of these seven families are
defined for all a ∈ R whereas the other three are defined for all a ̸= 0.
Moreover, we provide the shape of all these families of periodic solutions.
These Hamiltonians may represent the central parts of deformed galaxies
and thus have been extensively used and studied numerically in order
to describe local motion in galaxies near an equilibrium point.

1. Introduction and statement of the main results

After equilibrium points the periodic solutions are the most simple non–
trivial solutions of a differential system. Their study is of special interest
because the motion in their neighborhood can be determined by their kind
of stability. The stable periodic orbits explain the dynamics of bounded
regular motion, while the unstable ones helps to understand the possible
chaotic motion of the system. So, periodic orbits play a very important role
in understanding the orbital structure of a dynamical system.

Over the last half century dynamical systems perturbing a harmonic os-
cillator have been used extensively to describe the local motion, i.e. motion
near an equilibrium point. The study of this motion have been made mainly
using several numerical techniques, see for instance [2, 4, 5, 6, 8, 10, 14, 15,
16, 17, 23, 24] to cite just a few.
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The general form of a potential for a two-dimensional dynamical system
composed of two harmonic oscillators with cubic perturbing terms is

V =
1

2
(ω2

1x
2 + ω2

2y
2) + εV1(x, y),

where ω1 and ω2 are the unperturbed frequencies of the oscillator along the
x and the y axes, respectively, ε is the small perturbation parameter and
V1 is the cubic function containing the perturbed terms. We will use the
perturbation functions

(a) V1(x, y) = −(xy2 + ax3),

and

(b) V1(x, y) = −(x2y + ax3),

with a ∈ R. These perturbed oscillators are important because they describe
the motion of a star under the gravity field of a galaxy, for more information
see for instance the paper of Caranicolas [5] and the references quoted there.

The Hamiltonian associated to the potential V is

(1) H = H(x, y, px, py) =
1

2
(p2x + p2y) + V (x, y),

and the corresponding Hamiltonian system is

ẋ = px,

ẏ = py,

ṗx = −ω2
1 x− ε

∂V1

∂x
,

ṗy = −ω2
2 y − ε

∂V1

∂y
.

(2)

As usual the dot denotes derivative with respect to the time t ∈ R. Due to
the physical meaning the frequencies ω1 and ω2 are both positive.

We note that system (2) for ε = 0 can be solved. It has the solutions on
the energy level H = h of the form

x(t) = C1 cos(tω1) + C2 sin(tω1),

y(t) = C3 cos(tω2) + C4 sin(tω2),

px(t) = −C1ω1 sin(tω1) + C2ω1 cos(tω1),

py(t) = −C3ω2 sin(tω2) + C4ω2 cos(tω2),

(3)

where C1, C2, C3, C4 ∈ R satisfy

h =
1

2
(ω2

1(C
2
1 + C2

2 ) + ω2
2(C

2
3 + C2

4 )).

Note that the solutions of system (2) for ε = 0 given in (3) are periodic if
and only if ω2/ω1 = p/q with p, q ∈ N and p, q coprime, where as usual N
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denotes the set of positive integers. The period of these periodic solutions
is

T =
2pπ

ω2
=

2qπ

ω1
.

As far as we know there are no rigorous analytic studies of the existence
of periodic solutions for the Hamiltonian system (2) when V1 is as in cases
(a) or (b) and ω1 ̸= ω2. For the particular case a = 0 potentials (a) and
(b) are the same interchanging the names of the variables x and y. Periodic
orbits of this particular case has been studied by several authors from both
an analytical and numerical point of view by using different techniques, see
for instance [11, 12, 13, 7] for ω1 = ω2, or [9] for a numerical study for some
values ω1 ̸= ω2. Miller in [20] studies the potential (a) with ω1 = ω2 = 1
and a ̸= 0 by means of a Lissajous transformation, in particular he found six
families of periodic orbits. The particular case ω1 = ω2 = 1 and a = −1/3
is the well know Hénon-Heiles potencial [16]. More global dynamics of the
perturbed potential (a) with ω1 = ω2 and a ̸= 0 where studied numerically
in [5]. The perturbed potential (b) with with ω2 = ω1 has been studied
analytically in [14], where the authors found six families of periodic orbits
by using similar techniques than the ones in [20].

In this paper we will study the periodic orbits of the Hamiltonian system
(2) with perturbed potentials (a) and (b) by using averaging theory. More
precisely, for the perturbed potential (a) we will study the case ω2 = ω1/2
with first order averaging, and for the perturbed potential (b) we will study
the cases ω2 = 2ω1 and ω2 = 3ω1 with first and second order averaging,
respectively. These cases together with the case ω2 = ω1 are the unique cases
that we are able to study with these averaging techniques. More precisely, for
both systems (a) and (b), we will prove the existence of families of periodic
solutions parameterized by the energy in every energy level H = h > 0, and
these families will be given explicitly up to first order in the small parameter
ε. The case a = 0 has been studied by several authors so it is not considered
in this work.

Our first main result deals with the periodic solutions of the Hamiltonian
system associated to the Hamiltonian system (2) with V1(x, y) given in (a).

Theorem 1. Using averaging theory of first order for |ε| ̸= 0 sufficiently
small at every positive energy level H = h of the Hamiltonian H given in (1)
with V1(x, y) given in (a) and with ω2 = ω1/2 > 0, we find for its associated
Hamiltonian system (2), eight periodic solutions (four linearly stable and
four unstable) bifurcating from the periodic solutions of (3) with a period
tending to 4π/ω1 as ε → 0. We denote τ = ω1t.



4 M. CORBERA, J. LLIBRE AND C. VALLS

(a) The four linearly stable periodic solutions can be written in the form
(x̃(t),±ỹ(t), p̃x(t),±p̃y(t))+O(ε) where (x̃(t), ỹ(t), p̃x(t), p̃y(t)) is, re-
spectively

( √
2h√
3ω1

cos τ,
4
√
h√

3ω1

cos
(τ
2

)
,−

√
2h√
3

sin τ,−2
√
h√
3

sin
(τ
2

))
,

( √
2h√
3ω1

cos τ,
4
√
h√

3ω1

sin
(τ
2

)
,−

√
2h√
3

sin τ,
2
√
h√
3

cos
(τ
2

))
.

(4)

(b) The four unstable periodic orbits have a stable and an unstable man-
ifold, and can be written in the form (x̃(t) + εx̃1(t),±εỹ(t), p̃x(t) +
εp̃x,1(t),±εp̃y(t)) +O(ε2) where

(x̃(t) + εx̃1(t), εỹ(t), p̃x(t) + εp̃x,1(t), εp̃y(t)) =

(x̃0(t), 0, p̃x,0(t), 0) + ε(x̃1(t), ỹ1(t), p̃x,1(t), p̃y,1(t))

is, respectively

(√2h

ω1
cos(τ), 0,−

√
2h sin(τ), 0

)
+ ε
(ah
ω4
1

(3− cos(2τ)),

√
55ha√
2ω2

1

(sin(τ/2) + cos(τ/2)),
2ah

ω3
1

sin(2τ),

√
55ha

2
√
2ω3

1

(cos(τ/2)− sin(τ/2))
)
,

(√2h

ω1
cos(τ), 0,−

√
2h sin(τ), 0

)
+ ε
(ah
ω4
1

(3− cos(2τ)),

√
55ha√
2ω2

1

(sin(τ/2)− cos(τ/2)),
2ah

ω3
1

sin(2τ),

√
55ha

2
√
2ω3

1

(cos(τ/2) + sin(τ/2))
)
.

The proof of Theorem 1 is given in section 3.

Our second main result deals with the periodic solutions of the Hamil-
tonian system associated to the Hamiltonian system (2) with V1(x, y) given
in (b).

Theorem 2. The following statements hold for the Hamiltonian system (2)
with Hamiltonian H given in (1) and V1(x, y) in (b).

(a) Using averaging theory of first order for |ε| ̸= 0 sufficiently small at
every positive energy level H = h and with ω2 = 2ω1 > 0, we find
for the Hamiltonian system (2), four periodic solutions (two linearly
stable and two unstable) bifurcating from the periodic solutions of
(3) with a period tending to 2π/ω1 as ε → 0. The two unstable
periodic orbits have a stable and an unstable manifold, each one
formed by two cylinders. All these periodic solutions can be written
as (x̃(t), ỹ(t), p̃x(t), p̃y(t)) + O(ε) with (x̃(t), ỹ(t), p̃x(t), p̃y(t)) being
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respectively,(
0,±

√
h√
2ω1

sin τ, 0,±
√
2h cos(τ)

)
,

( 2
√
h√

3ω1

cos
(τ
2

)
,±

√
h√
6ω1

cos τ,−2
√
h√
3

sin
(τ
2

)
,∓
√

2h

3
sin τ

)
,

(5)

where τ = 2ω1t.

(b) Using averaging theory of second order for |ε| ̸= 0 sufficiently small
at every positive energy level H = h and with ω2 = 3ω1 > 0, for
each a ̸= 0 we find for the Hamiltonian system (2), three periodic
solutions (two linearly stable and one unstable) bifurcating from the
periodic solutions of (3) with a period tending to 2π/ω1 as ε → 0.
The unstable periodic orbit has a stable and an unstable manifold,
each one formed by two cylinders. All these periodic solutions can be
written as (x̃(t), ỹ(t), p̃x(t), p̃y(t))+O(ε) with (x̃(t), ỹ(t), p̃x(t), p̃y(t))
being respectively,

(6)
( ri
ω1

cos
(τ
3

)
,∓

√
2h− r2i

3ω1
cos τ,−ri sin

(τ
3

)
,±
√

2h− r2i sin τ
)

for i = 1, 2, 3, where τ = 3ω1t and r1, r2, r3 as well as the stability
of the solutions for each ri are given in the proof of the theorem.

The proof of Theorem 2 is given in section 4.

In section 2 we present a summary of the results on the averaging theory
that we shall need for proving our results.

2. The averaging theory of first and second order

In this section we summarize the averaging theory of second order, it
provides sufficient conditions for the existence of periodic solutions for a
periodic differential system depending on a small parameter. See [3] for
additional details and for the proofs of the results stated in this section.

Theorem 3. Consider the differential system

(7) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R × D → Rn, R : R × D × (−εf , εf ) → Rn are continuous
and T-periodic functions in the first variable, and D is an open subset of
Rn. Assume that the following hypotheses hold.

(i) F1(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, R and DxF1 are locally
Lipschitz with respect to x, and R is differentiable with respect to ε.
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We define f1, f2 : D → Rn as

f1(z) =

∫ T

0
F1(s, z)ds,(8)

f2(z) =

∫ T

0
[DzF1(s, z)

∫ s

0
F1(t, z)dt+ F2(s, z)]ds.(9)

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0},
there exist a ∈ V such that
(ii.1) if f1(z) ̸≡ 0, then f1(a) = 0 and dB(f1, a) ̸= 0, where dB(f1, a)

denotes the Brouwer degree of the function f1 : V → Rn at the
fixed point a; and

(ii.1) if f1(z) ≡ 0 and f2(z) ̸≡ 0, then f2(a) = 0 and dB(f2, a) ̸= 0.

Then for |ε| > 0 sufficiently small, there exists a T−periodic solution φ(t, ε)
of the system such that φ(0, ε) → a when ε → 0. The kind of stability or
instability of the limit cycle φ(t, ε) is given by the eigenvalues of the Jacobian
matrix Dz(f1(z) + εf2(z))|z=a.

Note that a sufficient condition for showing that the Brouwer degree of a
function f at a fixed point a is non–zero, is that the Jacobian of the function
f at a (when it is defined) is non–zero, see [19].

Under the assumption (ii.1) Theorem 3 provides the averaging theory
of first order, and it provides the averaging theory of second order when
assumption (ii.2) holds.

3. Proof of Theorem 1

For proving Theorem 1 we shall use Theorem 3, so the first step is to
write system (2) in such a way that conditions of Theorem 3 be satisfied.

We observe that system (2) with V1(x, y) given in (a) is invariant by the
symmetry (x, y, px, py) 7→ (x,−y, px,−py). This implies that if (x(t), y(t),
px(t), py(t)) is a solution so is (x(t),−y(t), px(t),−py(t)).

First we write system (2) and the Hamiltonian (1) in polar coordinates

(10)
x =

r cos θ

ω1
, px = r sin θ,

y =
ρ cos(α+ ω2θ/ω1)

ω2
, py = ρ sin(α+ ω2θ/ω1),
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and we get the system of equations

ṙ = ε

(
3ar2 cos2 θ

ω2
1

+
ρ2

ω2
2

cos2
(
α+

θω2

ω1

))
sin θ,

θ̇ = −ω1 + ε

(
3a

ω2
1

r cos3 θ +
ρ2

rω2
2

cos θ cos2
(
α+

θω2

ω1

))
,

ρ̇ =
rερ

ω1ω2
cos θ sin

(
2
(
α+

θω2

ω1

))
,

α̇ = −ε

(
3aω2

ω3
1

r cos3 θ +
ρ2 − 2r2

rω1ω2
cos θ cos2

(
α+

θω2

ω1

))
,

(11)

and the Hamiltonian

H =
1

2

(
r2 + ρ2

)
− ε

ω1
r cos θ

(
a

ω2
1

r2 cos2 θ +
ρ2

ω2
2

cos2
(
α+

θω2

ω1

))
.

We note that system (11) is periodic in the variable θ if and only if ω2 =
pω1/(2q) for some p, q ∈ N coprime. Moreover its period is 2qπ.

Note that in system (11), the equations of ṙ, θ̇ and α̇ depend in ρ2 instead
of ρ. We thus introduce the new variable Γ = ρ2. In this new variable
system (11) becomes

ṙ = ε

(
3ar2 cos2 θ

ω2
1

+
Γ

ω2
2

cos2
(
α+

θω2

ω1

))
sin θ,

θ̇ = −ω1 + ε

(
3a

ω2
1

r cos3 θ +
Γ

rω2
2

cos θ cos2
(
α+

θω2

ω1

))
,

Γ̇ =
2rεΓ

ω1ω2
cos θ sin

(
2
(
α+

θω2

ω1

))
,

α̇ = −ε

(
3aω2

ω3
1

r cos3 θ +
Γ− 2r2

rω1ω2
cos θ cos2

(
α+

θω2

ω1

))
,

(12)

and the Hamiltonian becomes

(13) H =
1

2

(
r2 + Γ

)
− ε

ω1
r cos θ

(
a

ω2
1

r2 cos2 θ +
Γ

ω2
2

cos2
(
α+

θω2

ω1

))
.

Now in system (12) we take as independent variable the angular variable
θ and it becomes

(14) r′ =
ṙ

θ̇
, Γ′ =

Γ̇

θ̇
, α′ =

α̇

θ̇
,

where the prime denotes derivative with respect to θ. We compute Γ by
solving equation H = h, and we get

(15) Γ =
ω2
2

(
2ar3ε cos3 θ + ω3

1

(
2h− r2

))
ω2
1

(
ω1ω2

2 − 2rε cos θ cos2
(
α+ θω2

ω1

)) = Γ0 + Γ1ε+O(ε2),
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where

Γ0 = 2h− r2,

Γ1 =
2r cos θ

ω3
1ω

2
2

(
ar2ω2

2 cos
2 θ + (2h− r2)ω2

1 cos
2
(
α+

θω2

ω1

))
.

We substitute the expression of Γ into (12) and we develop the right-hand
side in power series of ε up to second order. Therefore, at each energy level
H = h the equations of motion can be written as

(16) r′ = εF11 + ε2F21 +O(ε3), α′ = εF12 + ε2F22 +O(ε3),

where

F11 =
−3a

ω3
1

r2 cos2 θ sin θ +
1

ω1ω2
2

(r2 − 2h) cos2
(
α+

θω2

ω1

)
sin θ,

F12 =
3aω2

ω4
1

r cos3 θ +
2h− 3r2

rω2
1ω2

cos θ cos2
(
α+

θω2

ω1

)
,

F21 =
sin(2θ)

2rω6
1ω

4
2

(
− 9a2r4ω4

2 cos
4 θ + 4ar2ω2

1ω
2
2(r

2 − 3h) cos2 θ

cos2
(
α+

θω2

ω1

)
+ ω4

1(r
4 − 4h2) cos4

(
α+

θω2

ω1
)
))

,

F22 =
cos2 θ

r2ω7
1ω

3
2

(
9a2r4ω4

2 cos
4 θ + 2ar2ω2

1ω
2
2(6h− 5r2) cos2 θ

cos2
(
α+

θω2

ω1

)
+ ω4

1(r
2 − 2h)2 cos4

(
α+

θω2

ω1

))
.

In order that the differential system (16) be in the normal form (7) for
applying the averaging theory, this system must be periodic in the variable
θ. System (14) is periodic in the variable θ when ω2 = pω1/(2q) for p, q ∈ N
and its period is 2qπ. Then system (16) is in the normal form (7) for applying
the averaging theory with T = 2qπ, x = (r, α), t = θ, F1(θ,x) = (F11, F12),
F2(θ,x) = (F21, F22) and ε2R(θ,x, ε) is O(ε3). We also observe that F and
R are C2 in x and 2qπ–periodic in θ. After some computations, from (8) we
get

f1(x) =

∫ 2qπ

0
F1(θ,x)dθ = (f11(x), f12(x)),

with

f11(x) =

∫ 2qπ

0
F11 dθ =

0 p ̸= q,
2πq

ω3
1

(2h− r2) sin(2α) p = q,

and

f12(x) =

∫ 2qπ

0
F12 dθ =

0 p ̸= q,
πq

rω3
1

(2h− 3r2) cos(2α) p = q.
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We shall always consider the case p ̸= 2q (i.e. ω1 ̸= ω2), because the case
ω1 = ω2) was studied in [20].

Case 1: p = q. Since p and q are coprime, we take q = 1; that is, ω2 = ω1/2.
The solutions of system f1(x) = (f11(x), f12(x)) = 0 are (r(1,j), α(1,j)) =

(
√
2h, π(1 + 2j)/4) and (r(2,j), α(2,j)) = (

√
2h/3, πj/2) with j = 0, 1, 2, 3.

Now we compute the Jacobian matrix of f1 and we get

(17)

J = Dxf1 =


∂f11
∂r

∂f11
∂α

∂f12
∂r

∂f12
∂α



=


−4πr sin(2α)

ω3
1

4π(2h− r2) cos(2α)

ω3
1

−π(2h+ 3r2) cos(2α)

r2ω3
1

2π(3r2 − 2h) sin(2α)

rω3
1

 .

By evaluating the determinant of J on the solutions (r(i,j), α(i,j)) for i = 1, 2
and j = 0, 1, 2, 3 we obtain

det (J )(r,α)=(r(1,j),α(1,j))
= −32π2h

ω6
1

̸= 0,

det (J )(r,α)=(r(2,j),α(2,j))
=

32π2h

ω6
1

̸= 0.

If follows from Theorem 3 that for any given h > 0 and for |ε| sufficiently

small, system (16) has eight 2π–periodic solutions. They are (r(i,j)(θ, ε),

α(i,j)(θ, ε)) for i = 1, 2 and j = 0, 1, 2, 3, and (r(i,j)(θ, ε), α(i,j)(θ, ε)) tends
to (r(i,j), α(i,j)) when ε → 0.

The eigenvalues of the matrix J evaluated at (r, α) = (r(1,j), α(1,j)) for
j = 0, 1, 2, 3 are

λ1,2 = ±4π
√
2h

ω3
1

,

and the eigenvalues of the matrix J evaluated at (r, α) = (r(2,j), α(2,j)) for
j = 0, 1, 2, 3 are

λ1,2 = ±i
4π

√
2h

ω3
1

,

where i =
√
−1. So we have that the periodic solutions (r(1,j)(θ, ε), α(1,j)(θ, ε))

for j = 0, 1, 2, 3 are linearly unstable, and the periodic solutions (r(2,j)(θ, ε),

α(2,j)(θ, ε)) for j = 0, 1, 2, 3 are linearly stable. Since the eigenvalues of the

matrix (17) evaluated at (r(2,j)(θ, ε), α(2,j)(θ, ε)) provide the stability of the
fixed point corresponding to the Poincaré map defined in a neighborhood of
the periodic solution associated to (r(2,j)(θ, ε), α(2,j)(θ, ε)) (see for instance
the proof of Theorem 11.6 of [22]), and this fixed point is locally a saddle, we
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obtain that the four unstable orbits have a stable and an unstable manifolds
formed by two cylinders.

Now we shall go back through the changes of variables in order to see
how the 2π–periodic solutions (r(i,j)(θ, ε), α(i,j)(θ, ε)), with i = 1, 2 and j =
0, 1, 2, 3 of the differential system (16) are written in the original variables

(x, y, px, py). By substituting (r(i,j)(θ, ε), α(i,j)(θ, ε)) into equation H = h

with H given in (13) we get Γ(i,j)(θ, ε). Then

(r(i,j)(θ, ε),Γ(i,j)(θ, ε), α(i,j)(θ, ε)),

is a 2π–periodic solution for the differential system (14). This solution pro-
vides the 2π/ω1–periodic solution for the differential system (12)

(r(i,j)(θ(i,j)(t, ε), ε), θ(i,j)(t, ε),Γ(i,j)(θ(i,j)(t, ε), ε), α(i,j)(θ(i,j)(t, ε), ε)) =(
r(i,j) +O(ε),−ω1t+O(ε), 2h− r2(i,j) +O(ε), α(i,j) +O(ε)

)
.

Now, we introduce the variable ρ(i,j)(θ(i,j)(t, ε), ε) =
√

Γ(i,j)(θ(i,j)(t, ε), ε).
Going back to the change of variables (10) we get the 2π/ω1 periodic solu-
tions of system (2) with V1 = −(xy2 + ax3).

For the case i = 2, we get the four 2π/ω1 periodic solutions of system (2)
with V1 = −(xy2 + ax3) given in (4). We note that these four solutions are
different because changing the independent variable τ = ω1t we cannot pass
from one of them to the others. This completes the proof of statement (a)
of Theorem 1.

For the case i = 1, note that r(1,j) = 2h and so ρ(1,j)(θ(1,j)(t, 0), 0) =√
Γ(1,j)(θ(1,j)(t, 0), 0) = 0 (see (15)). Going back to the change of variables

(10) for the case i = 1, the terms of order 0 of the solutions of system (2) with

V1 = −(xy2+ax3) are the same for the four solutions (r(1,j)(θ, ε), α(1,j)(θ, ε))
with j = 0, 1, 2, 3. They are

(x̃(t), ỹ(t), p̃x(t), p̃y(t)) =

(√
2h cos(tω1)

ω1
, 0,−

√
2h sin(tω1), 0

)
.

So the four solutions (r(1,j)(θ, ε), α(1,j)(θ, ε)) with j = 0, 1, 2, 3 could give the
same periodic orbit of the initial system (2). Next we will see that this is
not the case by computing the first tems in power series of ε of the solutions.
In particular we will see that each solution (r(1,j)(θ, ε), α(1,j)(θ, ε)) provides
a different periodic solution of system (2).
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By abuse of notation let

r(1,j)(t, ε) = r(1,j)(θ(1,j)(t, ε), ε) = r0 +
∞∑
k=1

rk(t)ε
k,

θ(1,j)(t, ε) = −ω1t+

∞∑
k=1

θk(t)ε
k,

ρ(1,j)(t, ε) =
√

Γ(1,j)(θ(1,j)(t, ε), ε),

α(1,j)(t, ε) = α(1,j)(θ(1,j)(t, ε), ε) = α0 +
∞∑
k=1

αk(t)ε
k.

(18)

Going back to the change of variables (10) we get

x(1,j)(t, ε) =
r(1,j)(t, ε) cos(θ(1,j)(t, ε))

ω1
,

y(1,j)(t, ε) = r(1,j)(t, ε) sin(θ(1,j)(t, ε)),

p(1,j)x (t, ε) =
ρ(1,j)(t, ε)

ω2
cos
(
α(1,j)(t, ε) +

ω2θ
(1,j)(t, ε)

ω1

)
,

p(1,j)y (t, ε) = ρ(1,j)(t, ε) sin
(
α(1,j)(t, ε) +

ω2θ
(1,j)(t, ε)

ω1

)
.

(19)

We substitute the power series (18) into the solution (19), and then the
solution (19) into system (2) with V1 = −(xy2 + ax3). Let

G1 = ẋ− px =

∞∑
k=1

G1kε
k,

G2 = ẏ − py,

G3 = ṗx + ω2
1 x− ε

(
3ax2 + y2

)
=

∞∑
k=1

G3kε
k,

G4 = ṗy + ω2
2 y − 2xyε.

We develop both sides of equations Gi = 0 with i = 1, . . . , 4 in power series
of ε and we compute the first terms in ε of (18). In particular, we compute
the terms up to order four for (r, θ) and the terms up to order two for α.

Notice that if r = 2h then Γ(1,j) = O(ε), and consequently ρ(1,j) = O(
√
ε).

Thus in the expansion of G2 and G4 for each solution (r(1,j)(θ, ε), α(1,j)(θ, ε))
with j = 0, 1, 2, 3 it appears terms in

√
ε which do not disappear until we

substitute the solution (r, θ) up to order three in ε. On the other hand, as
we will see later on, the first term in power series in ε which is different on

both solutions (x(1,1)(t), p
(1,1)
x (t)) and (x(1,2)(t), p

(1,2)
x (t)) is the term of order

3. To compute this term we need terms in ε up to order four of (r, θ) and
up to order two of α in (18). These terms are computed following the next
procedure.
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The terms G11 and G31 only depend on ṙ1(t) and θ̇1(t), then by solving

the system of equations G11 = 0 and G31 = 0 we get ṙ1(t) and θ̇1(t), and

integrating we get r1(t) and θ1(t). Now we substitute r1, ṙ1, θ1 and θ̇1
into G12 and G32. As above, G12 and G32 only depend on ṙ2(t) and θ̇2(t).

Solving the system of equations G12 = 0, G32 = 0 we get ṙ2(t) and θ̇2(t),
and integrating we get r2(t) and θ2(t). We substitute these solutions into

G13 = 0 and G33 = 0 proceeding as above and we get ṙ3(t), θ̇3(t), r3(t) and

θ3(t). Now we substitute rk, ṙk, θk and θ̇k for k = 1, 2, 3 into G2 and we
develop in power series of ε, we see that the terms of order 0 and 1 of G2

are equal to zero and the term of order 2 only depends on α̇1(t). Equating
to zero the second ordre term of the development of G2 we get α̇1(t), and

integrating we get α1(t). By substituting rk, ṙk, θk and θ̇k for k = 1, 2, 3,

α̇1(t) and α1(t) into G14 = 0 and G34 = 0 we obtain ṙ4(t), θ̇4(t), r4(t) and

θ4(t). Then substituting rk, ṙk, θk and θ̇k for k = 1, 2, 3, 4, α̇1(t) and α1(t)
into G2 we obtain α̇2(t) and α2(t). We could compute higher order terms
by following this pattern.

Once we have the coefficients of the power series (18) we substitute them
into (19), and then we develop again the solution (19) into power series of
ε. Due to the invariance by the symmetry (x, y, px, py) 7→ (x,−y, px,−py)
we have

x(1,j)(t, ε) = x(1,j−2)(t, ε), y(1,j)(t, ε) = −y(1,j−2)(t, ε),

p(1,j)x (t, ε) = p(1,j−2)
x (t, ε), p(1,j)y (t, ε) = −p(1,j−2)

y (t, ε),

for j = 3, 4. Moreover, these are the results that we have obtained

x(1,1)(t, ε) = x
(1)
0 (t) + x

(1)
1 (t)ε+ x

(1)
2 (t)ε2 + x

(1)
3 (t)ε3 +O(ε4),

y(1,1)(t, ε) = y
(1)
1 (t)ε+ y

(1)
2 (t)ε2 + y

(1)
3 (t)ε3 +O(ε4),

p(1,1)x (t, ε) = px
(1)
0 (t) + px

(1)
1 (t)ε+ px

(1)
2 (t)ε2 + px

(1)
3 (t)ε3 +O(ε4),

p(1,1)y (t, ε) = py
(1)
1 (t)ε+ py

(1)
2 (t)ε2 + py

(1)
3 (t)ε3 +O(ε4),

x(1,2)(t, ε) = x
(1)
0 (t) + x

(1)
1 (t)ε+ x

(1)
2 (t)ε2 + x

(2)
3 (t)ε3 +O(ε4),

y(1,2)(t, ε) = y
(2)
1 (t)ε+ y

(2)
2 (t)ε2 + y

(2)
3 (t)ε3 +O(ε4),

p(1,2)x (t, ε) = px
(1)
0 (t) + px

(1)
1 (t)ε+ px

(1)
2 (t)ε2 + px

(2)
3 (t)ε3 +O(ε4),

p(1,2)y (t, ε) = py
(2)
1 (t)ε+ py

(2)
2 (t)ε2 + py

(2)
3 (t)ε3 +O(ε4),
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where

x
(1)
0 (t) =

√
2h

ω1
cos(tω1),

x
(1)
1 (t) =

ah

ω4
1

(3− cos(2tω1)),

y
(k)
1 (t) =

√
55a2

2

h

ω4
1

(
sin
( tω1

2

)
± cos

( tω1
2

))
,

px
(1)
0 (t) =−

√
2h sin(tω1),

px
(1)
1 (t) =

2ah

ω3
1

sin(2tω1),

py
(k)
1 (t) =

√
55a2

2

h

2ω3
1

(
cos
( tω1

2

)
∓ sin

( tω1

2

))
,

and x
(1)
2 , x

(1)
3 , y

(k)
2 (t), y

(1)
3 (t), px

(1)
2 (t), px

(k)
3 (t), py

(k)
2 (t), py

(k)
3 (t) are given in the

appendix. In the expressions y
(k)
1 (t) and py

(k)
1 (t) the upper sign corresponds

to k = 1 and the lower sign to k = 2.

In short, we get four 2π/ω1 periodic solutions of system (2) with V1 =
−(xy2 + ax3) which completes the proof of statement (b) of Theorem 1.

Case 2: p ̸= q (we recall that we are also under the assumptions that
p ̸= 2q). Since f11(x) = 0 and f12(x) = 0, we need to consider averaging
of second order. We compute for our system the integral

∫ s
0 F1(t, z)dt of

(9), and after tedious computations we compute (9), and we get f2(x) =
(f21(r, α), f22(r, α)) where f21(r, α) = 0 and

f22(r, α) =
π

4p3ω6
1(p

2 − q2)

(
r2(15a2p6 − 15a2p4q2 − 48ap4q2 + 48ap2q4

− 48q6)48ahp4q2 − 48ahp2q4 − 32hp2q4 + 96hq6
)
.

Note that there are no values of a ∈ R and p, q ∈ N such that f22(r, α) is
identically zero, so we cannot go to higher order in the averaging theory for
trying to obtain information about the periodic solutions. Moreover, since
the function f21 is identically 0, the averaging theory of second order cannot
be applied and we do not get any information on the periodic solutions of
(16) in this case. This completes the proof of Theorem 1 because we have
shown that there are no other periodic solutions which can be found with
the averaging theory.

4. Proof of Theorem 2

For proving Theorem 2 we shall use Theorem 3. The first step is to
write system (2) with V1 = −(x2y + ax3) in such a way that conditions
of Theorem 3 be satisfied. As in Section 3 we write system (2) and the
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Hamiltonian (1) in polar coordinates (10) and we get the system of equations

ṙ =
εr sin(2θ)

2ω2
1ω2

(
3arω2 cos θ + 2ρω1 cos

(
α+

θω2

ω1

))
,

θ̇ = −ω1 +
ε cos2 θ

ω2
1ω2

(
3arω2 cos θ + 2ρω1 cos

(
α+

θω2

ω1

))
,

ρ̇ =
εr2 cos2 θ

ω2
1

sin
(
α+

θω2

ω1

)
,

α̇ =
ε cos2 θ

ρω3
1

(
− 3aρrω2 cos θ + ω1

(
r2 − 2ρ2

)
cos
(
α+

θω2

ω1

))
,

(20)

and the Hamiltonian

(21) H =
1

2

(
r2 + ρ2

)
− ε

ω2
1

r2 cos2 θ

(
ar cos θ

ω1
+

ρ

ω2
cos
(
α+

θω2

ω1

))
.

We note that system (20) is periodic in the variable θ if and only if ω2 =
pω1/q for some p, q ∈ N coprime. Moreover its period is 2qπ. We write
system (20) by taking as the new independent variable the angular variable
θ and we obtain

(22) r′ =
ṙ

θ̇
, ρ′ =

ρ̇

θ̇
, α′ =

α̇

θ̇
,

where the prime denotes derivative with respect to θ. We compute ρ =
ρ0 + ρ1ε+O(ε2) by solving equation H = h and we get

ρ0 =
√

2h− r2,

ρ1 =
r2 cos2 θ

ω3
1

(
ar cos θ√
2h− r2

+
ω1

ω2
cos
(
α+

θω2

ω1

))
.

(23)

We substitute the expression of ρ into (22) and we develop the resulting
equations in power series of ε up to second order. In the energy level H =
h > 0 the equations of motion become

(24) r′ = εF11 + ε2F21 +O(ε3), α′ = εF12 + ε2F22 +O(ε3),
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with

F11 =− r sin(2θ)

2ω3
1ω2

(
3arω2 cos θ + 2ω1

√
2h− r2 cos

(
α+

θω2

ω1

))
,

F12 =
cos2 θ

ω4
1

√
2h− r2

(
3arω2

√
2h− r2 cos θ + ω1(4h− 3r2) cos

(
α+

θω2

ω1

))
,

F21 =
r sin θ cos3 θ

ω6
1ω

2
2

√
2h− r2

(
− 9a2r2ω2

2

√
2h− r2 cos2 θ + 2arω1ω2(5r

2 − 12h)

cos θ cos
(
α+

θω2

ω1

)
+ 2ω2

1

√
2h− r2(r2 − 4h) cos2

(
α+

θω2

ω1

))
,

F22 =
cos4 θ

ω7
1ω2(2h− r2)3/2

(
9a2r2ω2

2(2h− r2)3/2 cos2 θ

+ 2arω1ω2(24h
2 − 25hr2 + 7r4) cos θ cos

(
α+

θω2

ω1

)
+ ω2

1

√
2h− r2(16h2 − 16hr2 + 5r4) cos2

(
α+

θω2

ω1

))
.

In order that the differential system (24) be in the normal form (7) for
applying the averaging theory we need that this system be periodic in the
variable θ. This implies that ω2/ω1 be rational. So from now on we assume
that ω2 = pω1/q with p, q ∈ N. We note that system (22) is 2qπ–periodic
in the variable θ. Then system (24) is in the normal form (7) for applying
the averaging theory with T = 2qπ, x = (r, α), t = θ, F1(θ,x) = (F11, F12),
F2(θ,x) = (F21, F22) and ε2R(θ,x, ε) is O(ε3). We also observe that F and

R are C2 in x and 2qπ–periodic in θ in an open set not containing r =
√
2h.

After some computations, from (8) we get

f1(x) =

∫ 2qπ

0
F1(θ,x)dθ = (f11(x), f12(x)),

with

f11(x) =

∫ 2qπ

0
F11 dθ =


0 p ̸= 2q,

πqr
√
2h− r2 sinα

2ω3
1

p = 2q,

f12(x) =

∫ 2qπ

0
F12 dθ =


0 p ̸= 2q,

πq
(
4h− 3r2

)
cosα

2ω3
1

√
2h− r2

p = 2q.

Case 1: p = 2q. Since p and q are coprime, we take q = 1. The solutions
of system f1(x) = (f11(x), f12(x)) = 0 are (r(1,j), α(1,j)) = (0, π/2 + jπ) and
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(r(2,j), α(2,j)) = (2
√

h/3, jπ) with j = 0, 1.

J = Dxf1 =


∂f11
∂r

∂f11
∂α

∂f12
∂r

∂f12
∂α



=


π
(
h− r2

)
sinα

√
2h− r2ω3

1

πr
√
2h− r2 cosα

2ω3
1

πr
(
3r2 − 8h

)
cosα

2 (2h− r2)3/2 ω3
1

−
π
(
4h− 3r2

)
sinα

2
√
2h− r2ω3

1

 .

By evaluating the determinant of J on the solutions (r(i,j), α(i,j)) for i = 1, 2
and j = 0, 1 we get

det (J )(r,α)=(r(1,j),α(1,j))
= −π2h

ω6
1

̸= 0,

det (J )(r,α)=(r(2,j),α(2,j))
=

2π2h

ω6
1

̸= 0.

If follows from Theorem 3 that for any given h > 0 and for |ε| sufficiently

small, system (24) has the four 2π–periodic solutions that are (r(i,j)(θ, ε),

α(i,j)(θ, ε)) for i = 1, 2 and j = 0, 1 such that the solution (r(i,j)(θ, ε),

α(i,j)(θ, ε)) tends to (r(i,j), α(i,j)) when ε → 0.

The eigenvalues of the matrix J evaluated at (r, α) = (r(1,j), α(1,j)) for
j = 0, 1 are

λ1 = −(−1)j
√
2hπ

ω3
1

, λ2 = (−1)j
π
√
h√

2ω3
1

,

and the eigenvalues of the matrix J evaluated at (r, α) = (r(2,j), α(2,j)) for
j = 0, 1 are

λ1,2 = ± i
√
2hπ

ω3
1

.

So we have that the periodic solutions (r(1,j)(θ, ε), α(1,j)(θ, ε)) for j = 0, 1

are linearly unstable and the periodic solutions (r(2,j)(θ, ε), α(2,j)(θ, ε)) for
j = 0, 1 are linearly stable. Note that the unstable orbits have a stable and
an unstable manifolds formed by two cylinders.

Now we shall go back through the changes of variables in order to see how
the 2π–periodic solutions (r(i,j)(θ, ε), α(i,j)(θ, ε)), with i = 1, 2 and j = 0, 1 of
the differential system (24) looks in the initial Hamiltonian system (2) with

V1 = −(x2y + ax3). By substituting (r(i,j)(θ, ε), α(i,j)(θ, ε)) into equation

H = h with H given in (21) we get ρ(i,j)(θ, ε). Then

(r(i,j)(θ, ε), ρ(i,j)(θ, ε), α(i,j)(θ, ε)),



ELLIPTIC OSCILLATORS REVISITED 17

is a 2π–periodic solution for the differential system (22). This solution pro-
vides the 2π/ω1–periodic solution for the differential system (20)

(r(i,j)(θ(i,j)(t, ε), ε), θ(i,j)(t, ε), ρ(i,j)(θ(i,j)(t, ε), ε), α(i,j)(θ(i,j)(t, ε), ε)) =(
r(i,j) +O(ε),−ω1t+O(ε),

√
2h− r2(i,j) +O(ε), α(i,j) +O(ε)

)
.

Going back to the change of variables (10) we get the four 2π/ω1 periodic
solutions of system (2) with V1 = −(x2y+ax3) given in (5), which clearly are
different solutions. This completes the proof of statement (a) of Theorem 3.

Case 2: p ̸= 2q. Since f11(x) = 0 and f12(x) = 0, we need to consider
averaging of second order. After tedious computations, from (9), we get
f2(x) = (f21(r, α), f22(r, α)) where

f21(r, α) =



0 p ̸= q, p ̸= 3q, p ̸= 5q,

0 p = 5q,

g0(r, α) p = q,

−πaqr2
√
2h− r2 sinα

2ω6
1

p = 3q,

and

f22(r, α) =


g1(r, α) p ̸= q, p ̸= 3q, p ̸= 5q,
g2(r, α) p = 5q,
g3(r, α) p = q,
g4(r, α) p = 3q,

where

g0(r, α) =
πrq sinα

2ω6
1

(
5ar
√

2h− r2 + cosα(8h− 4r2)
)
,

g1(r, α) =
π
(
3p2r2

(
5a2p2 − 20a2q2 + q2

)
− 8hq4

)
2pω6

1 (p
2 − 4q2)

,

g2(r, α) =
πq

210ω6
1

(75(105a2 + 1)r2 − 8h),

g3(r, α) =
πq

ω6
1

(3(15a2 − 1)r2 + 12 cos(2α)(h− r2) + 8h

6

+
5ar cosα(3h− 2r2)√

2h− r2

)
,

g4(r, α) = − πq

30ω6
1

(
8h− 27(25a2 + 1)r2 +

30ar
(
3h− 2r2

)
cosα

√
2h− r2

)
.

Case 2.1: p ̸= q, p ̸= 3q and p ̸= 5q. There are no a ∈ R and p, q ∈ N such
that f22(r, α) be identically 0. Since the function f21 is identically 0 and f22
is not identically 0, the averaging theory does not provide any information
on the periodic solutions of (24) in this case.
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Case 2.2: p = 5q. As in the previous case the averaging theory does not
provide any information on the periodic solutions of (24).

Case 2.2: p = q. This case corresponds to the case ω1 = ω2 studied in [14].
So it is not considered in this work.

Case 2.3: p = 3q. Since p and q are coprime, we take q = 1. We seek
solutions of system f2(x) = 0 for which the Jacobian of f2 evaluated at the
solution be non–zero. The solutions of equation f21(r, α) = 0 are r = 0, r =√
2h and α = jπ for j = 0, 1. The solution r = 0 does not provide solutions

of f2(x) = 0, because f22(0, α) = −(4hπ)/(15ω6
1) ̸= 0. The solution r =

√
2h

is not valid because in this case system f2(x) = 0 is not defined. Now we
analyze the solutions α = jπ. For this, we need an auxiliary result.

Lemma 4. Assume h > 0 and let t1(a, h), t2(a, h), t3(a, h) be the three real
solutions of the polynomial

(455625a4 + 40050a2 + 729)t3 − (911250a4h+ 94500a2h+ 1890h)t2

+ (29700a2h2 + 928h2)t− 128h3 = 0,

ordered from big to small. Then the following statements hold for the equa-
tion f22(r, jπ) = 0.

(a) For a > 0 it has a unique positive real solution r =
√

t2(a, h)

when j = 0, and two positive real solutions r =
√

t1(a, h) and

r =
√

t3(a, h) when j = 1.

(b) For a < 0 it has two positive real solutions r =
√

t1(a, h) and r =√
t3(a, h) when j = 0, and one positive real solution r =

√
t2(a, h)

when j = 1.
(c) The Jacobian matrix of f2 evaluated at (r, α) = (r(a, h), jπ), where

r(a, h) is any solution of f22(r, jπ) = 0 with a ̸= 0 and j = 0, 1, is
different from zero.

Proof. If r ̸=
√
2h, equation f22(r, jπ) = 0 is equivalent to equation

(25) (8h− 27(25a2 + 1)r2)
√

2h− r2 = −30ar(3h− 2r2)(−1)j .

Squaring both sides of (25) we get the polynomial equation (independent of
j)

(455625a4 + 40050a2 + 729)r6 − (911250a4h+ 94500a2h+ 1890h)r4

+ (29700a2h2 + 928h2)r2 − 128h3 = 0.
(26)

Equation (26) has the solutions of (25) and probably new ones.

By doing the change of variables t = r2 in (26) we obtain a new cubic
polynomial equation g(t) = 0 with positive discriminant

a2
(
405a2 + 13

)2 (
5843390625a6 + 604158750a4 + 19231425a2 + 194672

)
h6,

unless a positive real constant. So the polynomial g(t) = 0 has three real
positive roots, for more details about the discriminant of a cubic polynomial
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see [1]. Using the Descartes rule on the signs of a polynomial we can see
that these roots cannot be negative, and of course they are non-zero, so they
are positive and we denote them as t1(a, h) > t2(a, h) > t3(a, h) for a ̸= 0
and h > 0.

Now we study which of these solutions provide solutions of equation
f22(r, jπ) = 0. It is not difficult to check that the factors K1 = (3h − 2r2)
and K2 = (8h−27(25a2+1)r2) in f22(r, jπ) do not change their sing on the

solutions r = ±
√

ti(a, h) for all i = 1, 2, 3. In particular,
K1,K2 < 0 on r = ±

√
t1(a, h),

K1 > 0,K2 < 0 on r = ±
√

t2(a, h),

K1,K2 > 0 on r = ±
√

t3(a, h).

Analyzing the signs of the two summands of f22(r, jπ) we conclude that

f22(r, jπ) = 0 has the following solutions: r = −
√

t1(a, h), r =
√

t2(a, h)

and r = −
√

t3(a, h) when either j = 0 and a > 0 or j = π and a < 0; and

r =
√

t1(a, h), r = −
√

t2(a, h) and r =
√

t3(a, h) when either j = 1 and
a > 0 or j = 0 and a < 0. This proves statements (a) and (b).

To prove statement (c) we seek for the solutions r = r(a, h) of the equation
f22(r, jπ) = 0 such that the Jacobian of f2 evaluated at (r, α) = (r(a, h), jπ)
is equal to zero. The Jacobian of f2 evaluated at α = jπ is

det(J ) =
π2a2r2

(
3h2 − 6hr2 + 2r4

)
ω12
1 (r2 − 2h)

+
9π2a

(
25a2 + 1

)
(−1)jr3

√
2h− r2

10ω12
1

.

We transform equation det(J ) = 0 into a polynomial equation in the vari-
able t = r2 as we have done with equation f22(r, jπ) = 0 and we get

g1(t) = π4a2t2(−900a2h4 + 72(5625a4 + 500a2 + 9)h3t

− 12(50625a4 + 4450a2 + 81)h2t2 + 6(50625a4 + 4450a2 + 81)ht3

+ (−50625a4 − 4450a2 − 81)t4).

We compute the resultant between the polynomial g(t) and g1(t) with re-
spect to the variable t and we obtain a polynomial P (a, h), in the variables
a and h, with the property that if the polynomials g(t) and g1(t) have a
commun root, this occurs for values of (a, h) such that P (a, h) = 0, for more
information about the resultant of two polynomials see for instance [18, 21].
Since P (a, h) is zero if and only if a = 0 (recall that h > 0). Therefore there
are no solutions of system g(t) = 0, g1(t) = 0 with a ̸= 0, and consequently
there are no solutions of system f2(x) = 0 with a ̸= 0 having Jacobian equal
to zero. On the other hand it is easy to check that the solution f22(r, jπ) = 0

for a = 0, r = 2
3

√
2
3

√
h has Jacobian equal to zero. This completes the proof

of the lemma. �

Let r1 =
√

t1(a, h), r2 =
√

t2(a, h) and r3 =
√

t3(a, h); and let x1 =
(r2, 0), x2 = (r1, π), x3 = (r3, π), x4 = (r1, 0), x5 = (r3, 0), and x6 = (r2, π).
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From Lemma 4 together with Theorem 3, for any given h > 0 and for |ε|
sufficiently small, system (24) when a > 0 has three 2π–periodic solutions
(ri(θ, ε), αi(θ, ε)) with i = 1, 2, 3, such that (ri(θ, ε), αi(θ, ε)) tends to xi

when ε → 0. When a < 0 system (24) has three 2π–periodic solutions
(ri(θ, ε), αi(θ, ε)) with i = 4, 5, 6, such that (ri(θ, ε), αi(θ, ε)) tends to xi

when ε → 0.

Now we analyze the stability of these periodic solutions from the eigen-
values of the Jacobian matrix J of f2(x) evaluated at xi for i = 1, . . . , 6.

The eigenvalues of J evaluated at (r, jπ) are

λ1,2 = ±π/(
√
10ω6

1)
√

m(r, a, h)

where

m(r, a, h) = −
10a2r2

(
3h2 − 6hr2 + 2r4

)
r2 − 2h

− 9a
(
25a2 + 1

)
(−1)jr3

√
2h− r2.

We are interested in the sign of m(r, a, h) on the solutions of f22(r, jπ). By
proceeding as in Lemma 4 we see that there is no (a, h) with a ̸= 0 and
h > 0 such that m(r, a, h) evaluated on the solutions of f22(r, jπ) be 0.
Moreover we can see that if a > 0 then m(r, a, h)|x1 < 0, m(r, a, h)|x2 < 0
and m(r, a, h)|x3 > 0, and if a < 0 then m(r, a, h)|x4 < 0, m(r, a, h)|x5 > 0
and m(r, a, h)|x6 < 0. Therefore the periodic solutions (ri(θ, ε), αi(θ, ε))
with i = 3, 5 are linearly unstable and the ones with i = 1, 2, 4, 6 are linearly
stable. Clearly, the unstable orbits have a stable and an unstable manifolds
formed by two cylinders.

Now we shall go back through the changes of variables in order to see
how the 2π–periodic solutions (ri(θ, ε), αi(θ, ε)), with i = 1, . . . , 6 of the
differential system (24) looks in the initial Hamiltonian system (2) with
V1 = −(x2y + ax3). By substituting (ri(θ, ε), αi(θ, ε)) into equation H = h
with H given in (21) we get ρi(θ, ε). Then

(ri(θ, ε), ρi(θ, ε), αi(θ, ε)),

is a 2π–periodic solution for the differential system (22). This solution pro-
vides the 2π/ω1–periodic solution for the differential system (20)

(ri(θi(t, ε), ε), θi(t, ε), ρi(θi(t, ε), ε), αi(θi(t, ε), ε)) =

(r +O(ε),−ω1t+O(ε),
√

2h− r2 +O(ε), α+O(ε))|(r,α)=xi .

Going back to the change of variables (10) we get 2π/ω1 periodic solutions

of system (2) with V1 = −(x2y+ax3). Denoting Rri =
√

2h− r2i , their first



ELLIPTIC OSCILLATORS REVISITED 21

order in ε is: For a > 0,(r2 cos(tω1)

ω1
,
Rr2 cos(3tω1)

3ω1
,−r2 sin(tω1),−Rr2 sin(3tω1)

)
,(r1 cos(tω1)

ω1
,−Rr1 cos(3tω1)

3ω1
,−r1 sin(tω1),Rr1 sin(3tω1)

)
,(r3 cos(tω1)

ω1
,−Rr3 cos(3tω1)

3ω1
,−r3 sin(tω1),Rr3 sin(3tω1)

)
,

(27)

and for a < 0(r1 cos(tω1)

ω1
,
Rr1 cos(3tω1)

3ω1
,−r1 sin(tω1),−Rr1 sin(3tω1)

)
,(r3 cos(tω1)

ω1
,
Rr3 cos(3tω1)

3ω1
,−r3 sin(tω1),−Rr3 sin(3tω1)

)
,(r2 cos(tω1)

ω1
,−Rr2 cos(3tω1)

3ω1
,−r2 sin(tω1),Rr2 sin(3tω1)

)
.

(28)

The first two periodic solutions in (27) are stable and the third one is
unstable, whereas the first and the third periodic solutions in (28) are stable
and the second one is unstable. Clearly these three solutions are different,
so this completes the proof of statement (b) Theorem 2.

Appendix

x
(1)
2 (t) =

a2h3/2

8
√
2ω7

1

(
120tω1 sin(tω1) + 19 cos(tω1) + 6 cos(3tω1)

)
,

x
(k)
3 (t) =

a2h2

8ω10
1

(
220 + 285a± 55 sin(tω1)∓ 110tω1 cos(tω1)

− 120atω1 sin(2tω1)− 137a cos(2tω1)− 2a cos(4tω1)
)
,

y
(k)
2 (t) =

√
55h3/2

√
a2

2ω7
1

(
− 2(1∓ tω1) sin

( tω1

2

)
− sin

(3tω1

2

)
± 2(1± tω1) cos

( tω1

2

)
∓ cos

(3tω1

2

))
,

y
(1)
3 (t) =

√
11

10

√
a2h2

768ω10
1

(
3 sin

( tω1

2

)
(10243a2 ∓ 1280tω1 ± 7680atω1

+ 21120a+ 1280t2ω2
1 − 1600)± 3 cos

( tω1

2

)
(10243a2

± 1280tω1 ∓ 7680atω1 + 21120a+ 1280t2ω2
1 − 1600)
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− 1920(a± 2tω1 − 5) sin
(3tω1

2

)
+ 640(a+ 1) sin

(5tω1

2

)
± 1920(a∓ 2tω1 − 5) cos

(3tω1

2

)
± 640(a+ 1) cos

(5tω1

2

))
,

px
(1)
2 (t) =

a2h3/2

8
√
2ω6

1

(
101 sin(tω1)− 18 sin(3tω1) + 120tω1 cos(tω1)

)
,

px
(k)
3 (t) =

a2h2

8ω9
1

(
± 110tω1 sin(tω1)∓ 55 cos(tω1)

+ 154a sin(2tω1)− 240atω1 cos(2tω1) + 8a sin(4tω1)
)
,

py
(k)
2 (t) =

√
55
√
a2h3/2

4ω6
1

(
2(1± tω1) cos

( tω1

2

)
− 3 cos

(3tω1

2

)
± sin

( tω1

2

)(
5∓ 2tω1 + 6 cos(tω1)

))
,

py
(k)
3 (t) =

√
11

10

√
a2h2

1536ω9
1

(
∓ 3 sin

( tω1

2

)(
10243a2 ∓ 3840tω1 ∓ 7680atω1

+ 5760a+ 1280t2ω2
1 + 960

)
± 1920 sin

(3tω1

2

)(
11− 3a± 6tω1

)
+ 3 cos

( tω1

2

)
(10243a2 ± 3840tω1 ± 7680atω1 + 5760a

+ 1280t2ω2
1 + 960)∓ 3200(a+ 1) sin

(5tω1

2

)
+ 3200(a+ 1) cos

(5tω1

2

)
+ 1920 cos

(3tω1

2

)
(11− 3a∓ 6tω1)

)
.

In the expressions the upper sign corresponds to k = 1 and the lower sign
to k = 2.
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